
Variables in Pharo
Marcus Denker, Inria

http://marcusdenker.de

http://marcusdenker.de

Plan for an interactive
Exploration

• These Slides where done as an outline / plan for an
interactive exploration

• They might therefore be not exactly the same as the
content of the Demo

Variables in ST80

• Temporary Variable

• Instance Variable, Class Instance Variable

• Class Variable (and Pool Variable)

• Globals

• Pseudo Variables: self, super, thisContext

Instance Variables

• Defined by the Class (or Trait)

• Can be read via the object:

• instVarNamed:(put:), #instVarAt:(put:)

• Instance Variables have an offset in the Object

• Defined by the order of the defined vars in the Hierarchy

1@2 instVarNamed: 'x'

Temporary Variable
• Defined by a method or Block

• Arguments are temps, too

• Can be read via the context

• #tempNamed:, tempNamed:put:

• With Closures this is more complex than you ever want to
know!

[| temp | temp := 1. thisContext tempNamed: 'temp'] value

Globals

• Entries in the “Smalltalk globals” Dictionary

• Contain the value

• Can be read via the global Dictionary

• Access via #value / value: on the Association

• Class Vars and Pool Vars are just Associations from other
Dictionaries

Smalltalk globals at: #Object.
Object binding value.

“Everything is an Object”

• For Variables… not really

Globals/Class Vars

• Here we have at least the Association (#binding):

• But there is no “GlobalVariable” class

• No API other than #value:/#value

• Classes define just names of variables

Object binding

Instance Variables

• The class just knows the names

• There is no Object representing instance variables

• Classes define just names of variables

• Bytecode accesses by offset

Point allInstVarNames

Temporary Variables

• The methods know nothing. Even to know the variable
name we need the compiler (and the source)

• There is no object representing temp Variables

• Reflective read and write is *hard* -> compiler needs to
create extensive meta-data

Why Not Do Better?

• Of course memory was a concern in 1980, but today we
should be able to do better!

• Why not have objects (and a class Hierarchy) that
describes all Variables in the system?

Variables
• Every defined Variable is described a meta object

• Class Hierarchy: Variable

• GlobalVariable

• ClassVariable

• Temporary Variables

• Instance Variables (aka Slots)

The Hierarchy
• Variable

• LiteralVariable

• ClassVariable

• GlobalVariable

• UndeclaredVariable

• WorkspaceVariable

• LocalVariable

• ArgumentVariable

• TemporaryVariable

• ReservedVariable

• SelfVariable

• SuperVariable

• ThisContextVariable

• Slot

Example: vars of a class

• Get all Variables of a class

• Inspect it

• #usingMethods

Point instanceVariables

Instance Variable

• Read x in a Point

• Write

• read/write without sending a message to the object

(Point instanceVariables first) read: (5@4)

point := 5@4.
(Point instanceVariables first) write: 100 to: point.

Globals

• Object binding class

• Object binding read

• We keep the Association API so the Global Variables can
play the role of associations in the global dictionary.

Object binding usingMethods

Temporary Variables

• There are too many to allocate them all

• They are created on demand (with the AST)

((LinkedList>>#do:) temporaryVariableNamed: 'aLink')

#lookupVar:

• Every variable knows the scope is was defined in

• Every scope know the outer scope

• #lookupVar: looks up names along the scope
[| temp |thisContext lookupVar: 'temp'] value.

[| temp |thisContext lookupVar: ‘Object'] value

(Point slotNamed: #x) scope outerScope

Debugger: Read Vars

• In the Debugger we to be able to read Variables from a
DoIt.

• lookupVar, then readInContext works for all Variables!

• DoItIn: uses this:

[| temp | temp :=1 . (thisContext lookupVar: 'temp')
readInContext: thisContext] value

Context>>readVariableNamed: aName
^ (self lookupVar: aName) readInContext: self

Variables as AST
Annotations

• Pharo uses the RB AST

• RBVariableNode instance for every use of a Variable

• Annotated with subclasses of Variables:

(Point>>#x) ast variableNodes first variable == (Point slotNamed: #x)

OCASTSemanticAnalyzer

• OCASTSemanticAnalyzer is the visitor that does the name
analysis

• Adds a scope for each block/the method

• Adds defined variables to the scope

• Every RBVariableNode use will get annotated with the
variable that #lookUpVar: finds

Variables and Bytecode

• Compiler just delegates to the Variable

• InstanceVariableSlot>>#emitStore:

• emitStore/emitValue:

emitStore: methodBuilder
"generate store bytecode"
methodBuilder storeInstVar: index

Does that mean…

• If variables are defined by a class, could we not make a
subclass?

• And even override the code generation methods ?!

Now let’s create our own
kind of Variable!

Lazy Variables

• Two ways to initialize instance state in ST80

• implement #initialize method (#new calls it)

• use accessors and lazy init pattern

• Can we not do better? Can the Variable not initialize
itself?

Lazy Variables
InstanceVariableSlot subclass: #LazyInitializedInstanceVariable

instanceVariableNames: 'default'
classVariableNames: ''
package: ‘CompilerTalk'

printOn: aStream
aStream

store: self name;
nextPutAll: ' => ';
nextPutAll: self class name;
nextPutAll: ' default: '.

default printOn: aStream

Lazy Variables
read: anObject

"if the value is nil, we write the default value "
^ (super read: anObject) ifNil: [

self write: default to: anObject]

emitValue: aMethodBuilder
"generate bytecode for '<varname> ifNil: [<varname> := default]'"
aMethodBuilder

pushInstVar: index;
pushDup;
pushLiteral: nil;
send: #==;
jumpAheadTo: #target if: false;
popTop;
pushLiteral: default;
storeInstVar: index;
jumpAheadTarget: #target

Let’s use it

Object subclass: #MyClass
instanceVariableNames: 'var'
classVariableNames: ''
package: ‘CompilerTalk'

?

How can we make ‘var’ to be a LazyInitializedInstanceVariable?

Class Definition

• We need a new way to define classes: Fluid Class
Definition

• uses cascade for extensibility

• no string, but {} arrays for variables

Fluid Class Definition

Object << #Point
slots: { #x . #y };
tag: 'BasicObjects';
package: 'Kernel'

Fluid Class Definition

• Pharo9: Default is the ST80 style class definition

• Fluid can be enabled

• It is used automatically when needed (when using a self
defined Variable, for example)

• Goal: Default for Pharo 10

Let’s use it

Object << #MyClass
slots: { #var };
package: ‘CompilerTalk'

#notation for normal instance Variables

Let’s use it

Object << #MyClass
slots: { #var => LazyInitializedInstanceVariable default: 5 };
package: ‘CompilerTalk'

For defining other variables: use =>

MyClass new var.
(MyClass new var: 8) var

Inspect method to see bytecode
put halt in read: method of Slot

thisProcess

• To get the current Process we use a message send to a
global variable. But we could use a variable like
thisProcess

• This avoids a message send (and possible interrupt
check) as we can emit a bytecode

self, thisContext…

• (Object lookupVar: ‘thisContext’) usingMethods

• See classes

• ThisContextVariable

• SelfVariable

• SuperVariable

The Code

ReservedVariable << #ThisProcessVariable
slots: {};
tag: 'Variables';
package: 'Kernel'

emitValue: methodBuilder
methodBuilder pushThisProcess

======
class side:
variableName

^ 'thisProcess'

======
Smalltalk globals resetReservedVariables

Compatibility

• Fully backward compatible: we can load ST80 style class
definitions (and Pharo9 just shows this view by default)

• Reflective API is compatible: “instVarAt:”… still exist

• If you want to restrict yourself to ST80, a checker could
be easily created

Compatibility

• But if you start to use your own kind of Variables, you
code will not be “ST80” compatible anymore

• But you will be able to use the power of the new
abstraction provided

• Was this not the original idea behind Smalltalk? That a
Programming System is a Medium?

Where do we use it?
• We are careful! We use Pharo ourselves…

• We need a stable system to work with

• We need to learn about how to use Variables best

• Variables are used by the Compiler internally

• Every instance variable is an InstanceVariableSlot (Globals, class vars)

• Variables are used by the Debugging infrastructure to read/write

• replaced the DebuggerMethodMap

• The Spec UI Framework uses ObservableSlot

Next Steps Variables
• DoitVariable for nicer code in #DoItIn: methods

• Undeclared Variables

• programmer interaction in read/write, not compile!

• better behaviour for test-first development

• Implement ThisProcessVariable in Pharo10

• Use WeakSlot to simplify some code

Next Steps Fluid Classes

• Finish the last problems (see issue tracker), make it the
default

• Experiments with Meta Data for Classes

• Tag abstract classes

• Experiment with Pragmas for classes

• Compiler, compiler plugging, compiler options

More..

• Extend the MetaLink Model to allow MetaLinks on
Variables (first code is there already)

• More Experiments about Slot Composition

• Implement Default value once, use it on ClassVariable,
InstanceVariableSlot and WeakSlot

• First prototype, but it turned out to be too complex

Thanks…

• This is the work on *many* contributors from the Pharo
Community

• Thanks for lots of interesting discussions, ideas, and
code!

Help Wanted

• We are always interested in improvements!

• Pharo 10 is under active development

• 30-40 Pull Requests integrated per week

• Your Improvements are Welcome!

https://github.com/pharo-project/pharo

Questions?

