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Goal/Outline

 Hook and Template
 printString/printOn: case
 copy case
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Remember...

 Sending a message is making a choice
 A class defines one possible choice
 Self-sends are plans for reuse (e.g., defines a hook):

◦ i.e., a place where subclasses can inject variations
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The template method
 A template method specifies a skeleton with hooks
 Hooks are places to be customized by subclasses
 Hooks may or may not have a default behavior
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Principle

foo
bar

A

foo
C

^ 10

^ self foo

B

^ 42

aC bar
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Studying the printString template method

Example of printString

>>> (Delay forSeconds: 10) printString
'a Delay(10000 msecs)'
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printString template method

Object >> printString
"Answer a String whose characters are a description of the receiver."
^ self printStringLimitedTo: 50000

Object >> printStringLimitedTo: limit
| limitedString |
limitedString := String

streamContents: [ :s | self printOn: s ]
limitedTo: limit.

limitedString size < limit ifTrue: [ ^ limitedString ].
^ limitedString , '...etc...'
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printOn: A default hook
>>> Node new printString
a Node

>>> Apple new printString
an Apple

Default behavior:

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that identifies the
receiver."

| title |
title := self class name.
aStream
nextPutAll: (title first isVowel ifTrue: [ 'an ' ] ifFalse: [ 'a ' ]);
nextPutAll: title
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Hook refinement

>>> (Delay forSeconds: 1) printString
a Delay(1000 msecs)

Reusing and extending default behavior:

Delay >> printOn: aStream
super printOn: aStream.
aStream
nextPutAll: '(';
print: millisecondDelayDuration;
nextPutAll: ' msecs)'
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Hook redefinition

>>> true not printString
false

Redefinition in False:

False >> printOn: aStream
aStream nextPutAll: 'false'
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Hook redefinition
>>> 1 to: 100
(1 to: 100)
>>> 1 to: 100 by: 3
(1 to: 100 by: 3)

Redefinition in Interval:
Interval >> printOn: aStream
aStream
nextPut: $(;
print: start;
nextPutAll: ' to: ';
print: stop.
step ~= 1
ifTrue: [ aStream nextPutAll: ' by: '; print: step ].
aStream nextPut: $)
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Another template method: Object copy

Copying objects is complex:
 graph of connected objects
 cycles
 each class may want a different copy strategy

A simple solution for simple cases: copy/postCopy
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Object » copy

Object >> copy
"Answer another instance just like the receiver.
Subclasses typically override postCopy.
Copy is a template method in the sense of Design Patterns.
So do not override it. Override postCopy instead. P
ay attention that normally you should call postCopy of your superclass too."

^ self shallowCopy postCopy

Object >> shallowCopy
"Answer a copy of the receiver which shares the receiver's instance variables.

Subclasses that need to specialize the copy should specialize the postCopy hook
method."

<primitive: 148>
...
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Default hook

Object >> postCopy
"I'm a hookmethod in the sense of Design Patterns Template/Hook Method.
I'm called by copy.
self is a shallow copy, subclasses should copy fields as necessary to
complete the full copy"

^ self
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postCopy: Refinement

Collection subclass: #Bag
instanceVariableNames: 'contents'
classVariableNames: ''
package: 'Collections−Unordered'

Bag >> postCopy
super postCopy.
contents := contents copy

 contents is a Dictionary
 postCopy recursively invoke copy on the dictionary
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Dictionary » postCopy: Deeper copy

Dictionary >> postCopy
"Must copy the associations, or later store will a�ect both the original and the copy"
array := array

collect: [ :association |
association ifNotNil: [ association copy ] ]
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Conclusion

 Hooks and Template is a very common design pattern
 Template method sets the context
 Hooks specify variations
 A self-send message defines a hook
 Sending a message to another object opens space for dispatch (see Strategy

Design lecture)
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