
Advanced Object-Oriented Design

Hooks and Template
One of cornerstone of OOP

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal/Outline

 Hook and Template
 printString/printOn: case
 copy case

2022 2 / 18

Remember...

 Sending a message is making a choice
 A class defines one possible choice
 Self-sends are plans for reuse (e.g., defines a hook):

◦ i.e., a place where subclasses can inject variations

2022 3 / 18

The template method
 A template method specifies a skeleton with hooks
 Hooks are places to be customized by subclasses
 Hooks may or may not have a default behavior

2022 4 / 18

Principle

foo
bar

A

foo
C

^ 10

^ self foo

B

^ 42

aC bar

2022 5 / 18

Studying the printString template method

Example of printString

>>> (Delay forSeconds: 10) printString
'a Delay(10000 msecs)'

2022 6 / 18

printString template method

Object >> printString
"Answer a String whose characters are a description of the receiver."
^ self printStringLimitedTo: 50000

Object >> printStringLimitedTo: limit
| limitedString |
limitedString := String

streamContents: [:s | self printOn: s]
limitedTo: limit.

limitedString size < limit ifTrue: [^ limitedString].
^ limitedString , '...etc...'

2022 7 / 18

printOn: A default hook
>>> Node new printString
a Node

>>> Apple new printString
an Apple

Default behavior:

Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that identifies the
receiver."

| title |
title := self class name.
aStream
nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a ']);
nextPutAll: title

2022 8 / 18

Hook refinement

>>> (Delay forSeconds: 1) printString
a Delay(1000 msecs)

Reusing and extending default behavior:

Delay >> printOn: aStream
super printOn: aStream.
aStream
nextPutAll: '(';
print: millisecondDelayDuration;
nextPutAll: ' msecs)'

2022 9 / 18

Hook redefinition

>>> true not printString
false

Redefinition in False:

False >> printOn: aStream
aStream nextPutAll: 'false'

2022 10 / 18

Hook redefinition
>>> 1 to: 100
(1 to: 100)
>>> 1 to: 100 by: 3
(1 to: 100 by: 3)

Redefinition in Interval:
Interval >> printOn: aStream
aStream
nextPut: $(;
print: start;
nextPutAll: ' to: ';
print: stop.
step ~= 1
ifTrue: [aStream nextPutAll: ' by: '; print: step].
aStream nextPut: $)

2022 11 / 18

Another template method: Object copy

Copying objects is complex:
 graph of connected objects
 cycles
 each class may want a different copy strategy

A simple solution for simple cases: copy/postCopy

2022 12 / 18

Object » copy

Object >> copy
"Answer another instance just like the receiver.
Subclasses typically override postCopy.
Copy is a template method in the sense of Design Patterns.
So do not override it. Override postCopy instead. P
ay attention that normally you should call postCopy of your superclass too."

^ self shallowCopy postCopy

Object >> shallowCopy
"Answer a copy of the receiver which shares the receiver's instance variables.

Subclasses that need to specialize the copy should specialize the postCopy hook
method."

<primitive: 148>
...

2022 13 / 18

Default hook

Object >> postCopy
"I'm a hookmethod in the sense of Design Patterns Template/Hook Method.
I'm called by copy.
self is a shallow copy, subclasses should copy fields as necessary to
complete the full copy"

^ self

2022 14 / 18

postCopy: Refinement

Collection subclass: #Bag
instanceVariableNames: 'contents'
classVariableNames: ''
package: 'Collections−Unordered'

Bag >> postCopy
super postCopy.
contents := contents copy

 contents is a Dictionary
 postCopy recursively invoke copy on the dictionary

2022 15 / 18

Dictionary » postCopy: Deeper copy

Dictionary >> postCopy
"Must copy the associations, or later store will a�ect both the original and the copy"
array := array

collect: [:association |
association ifNotNil: [association copy]]

2022 16 / 18

Conclusion

 Hooks and Template is a very common design pattern
 Template method sets the context
 Hooks specify variations
 A self-send message defines a hook
 Sending a message to another object opens space for dispatch (see Strategy

Design lecture)

2022 17 / 18

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

