Advanced Object-Oriented Design

A double dispatch
starter

S. Ducasse, G. Polito, P. Tesone, and L. Fabresse

Phar@

http://ww



http://www.pharo.org

Goals

¢ In the quest of dispatch
¢ No conditionals!
e implementing:

>>> (Stone new vs: Paper new)
#paper

5 _
2 Stone Paper Scissors 2 /27



Goals

\
-

$ .
2 Stone Paper Scissors 3/27



Stone Paper Scissors: one Test

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

5 _
2 Stone Paper Scissors 4 /27



The inverse too

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Paper new vs: Stone new) equals: #paper

5 _
2 Stone Paper Scissors 5/27



Let us start

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

Stone >>vs: anotherTool
A

7 Stone Paper Scissors 6 /27



Hint O

e The solution does not contain an explicit condition (No if, no checks)
e Remember sending a message is making a choice: it selects the right method

5 _
2 Stone Paper Scissors 7 /27



Hint 1: 3 classes

e Stone
e Paper
® SCissors

3
W2/ Stone Paper Scissors 8/ 27



More hints

e When we execute the method vs: we know the receiver of the message
e So we have already half of the solution
e What if we introduce another method playAgainstStone to make another choice?

5 _
2 Stone Paper Scissors 9 /27



Defining Paper » playAgainstStone

Stone >>vs: anotherTool
A .. playAgainstStone

Paper >> playAgainstStone
A

$ .
2 Stone Paper Scissors 10 /27



Defining Paper » playAgainstStone

Stone >> vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
A

5 _
2 Stone Paper Scissors 11/27



Paper playAgainstStone defined

Stone >> vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
>> A #paper

5 _
2 Stone Paper Scissors 12 /27



Stone new vs: Scissor new

Works for

>>> Stone new vs: Paper new
#paper

But not for

>>> Stone new vs: Scissor new
#stone

e How to fix this?
e Easy!

5 _
2 Stone Paper Scissors 13 /27



Supporting aScissor as argument

Stone >> vs: aScissor
A aScissor playAgainstStone

e So we should implement playAgainstStone on Scissor

Scissors >> playAgainstStone
A

5 _
2 Stone Paper Scissors 14 /27



Other playAgainstStone definitions

Scissors >> playAgainstStone
A #stone

Stone >> playAgainstStone
A #draw

$ .
2 Stone Paper Scissors 15 /27



Complete code for Stone as receiver

Stone >>vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
A #paper

Scissors >> playAgainstStone
A #stone

Stone >> playAgainstStone
A #draw

7 Stone Paper Scissors 16 /27



Stepping back

e We know that a method is executed on a class (here Stone)

e We send another message to the argument to select another method (here
playAgainstStone)

® Two messages to be able to select a method based on its receiver AND
argument

5 _
2 Stone Paper Scissors 17 /27



Full Scissors code

Scissors >>vs: anotherTool
A anotherTool playAgainstScissors

Scissors >> playAgainstScissors
A #draw

Paper >> playAgainstScissors
A #scissors

Stone >> playAgainstScissors
A #stone

2 : ,
2 Stone Paper Scissors 18 /27



Full Paper code

Paper >>vs: anotherTool
A anotherTool playAgainstPaper

Scissors >> playAgainstPaper
A #scissors

Paper >> playAgainstPaper
A #draw

Stone >> playAgainstPaper
A #paper

2 : ,
2 Stone Paper Scissors 19 /27



Solution overview

SPSElement

vs:
playAgainstScissors
playAgainStone
playAgainPaper

Stone

Paper

Scissors

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

Stone Paper Scissors 20/ 27




Double dispatch

e Two messages: vs: and one of playAgainstPaper, playAgainstStone or,
playAgainstScissors

e First the system selects the correct vs:
e Second it selects the second method

$ .
2 Stone Paper Scissors 21 /27



Remark

e In this toy example we do not need to pass the argument during the double
dispatch

e But in general this is important as we want to do something with the first
receiver (as in Visitor DP)

Scissors >> playAgainstPaper
A #scissors

will just be

Scissors >> playAgainstPaper: aScissors
A #scissors

5 _
2 Stone Paper Scissors 22 /27



With an argument

SPSElement

vs:
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone Paper Scissors
vs: anElement vs: anElement vs: anElement
playAgainstScissors: anElement playAgainstScissors: anElement playAgainstScissors: anElement
playAgainStone: anElement playAgainStone: anElement playAgainStone: anElement
playAgainPaper: anElement playAgainPaper: anElement playAgainPaper: anElement

Paper >> vs: anotherTool
A anotherTool playAgainstPaper: self

5 _
2 Stone Paper Scissors 23 /27



Extending it...

LIZARD

$ .
& Stone Paper Scissors 24 /27



Extensible

® You can extend Stone, Paper, Scissors with Spock and Lizard without
changing any line of existing code.

e Implement it!

5 _
2 Stone Paper Scissors 25 /27



Conclusion

e Powerful
e Modular
e Just sending an extra message to an argument and using late binding

$ .
2 Stone Paper Scissors 26 / 27



A course by

S. Ducasse, G. Polito, and Pablo Tesone

©10Ie)

V4

: informatiques g”mathématiques

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/



https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

