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Goals

¢ In the quest of dispatch
¢ No conditionals!
e implementing:

>>> (Stone new vs: Paper new)
#paper
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Stone Paper Scissors: one Test

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

5 _
2 Stone Paper Scissors 4 /27



The inverse too

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Paper new vs: Stone new) equals: #paper
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Let us start

StonePaperScissorsTest >> testPaperlsWinning
self assert: (Stone new vs: Paper new) equals: #paper

Stone >>vs: anotherTool
A
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Hint O

e The solution does not contain an explicit condition (No if, no checks)
e Remember sending a message is making a choice: it selects the right method
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Hint 1: 3 classes

e Stone
e Paper
® SCissors
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More hints

e When we execute the method vs: we know the receiver of the message
e So we have already half of the solution
e What if we introduce another method playAgainstStone to make another choice?
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Defining Paper » playAgainstStone

Stone >>vs: anotherTool
A .. playAgainstStone

Paper >> playAgainstStone
A
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Defining Paper » playAgainstStone

Stone >> vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
A
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Paper playAgainstStone defined

Stone >> vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
>> A #paper
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Stone new vs: Scissor new

Works for

>>> Stone new vs: Paper new
#paper

But not for

>>> Stone new vs: Scissor new
#stone

e How to fix this?
e Easy!
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Supporting aScissor as argument

Stone >> vs: aScissor
A aScissor playAgainstStone

e So we should implement playAgainstStone on Scissor

Scissors >> playAgainstStone
A
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Other playAgainstStone definitions

Scissors >> playAgainstStone
A #stone

Stone >> playAgainstStone
A #draw
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Complete code for Stone as receiver

Stone >>vs: anotherTool
A anotherTool playAgainstStone

Paper >> playAgainstStone
A #paper

Scissors >> playAgainstStone
A #stone

Stone >> playAgainstStone
A #draw
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Stepping back

e We know that a method is executed on a class (here Stone)

e We send another message to the argument to select another method (here
playAgainstStone)

® Two messages to be able to select a method based on its receiver AND
argument
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Full Scissors code

Scissors >>vs: anotherTool
A anotherTool playAgainstScissors

Scissors >> playAgainstScissors
A #draw

Paper >> playAgainstScissors
A #scissors

Stone >> playAgainstScissors
A #stone
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Full Paper code

Paper >>vs: anotherTool
A anotherTool playAgainstPaper

Scissors >> playAgainstPaper
A #scissors

Paper >> playAgainstPaper
A #draw

Stone >> playAgainstPaper
A #paper
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Solution overview

SPSElement

vs:
playAgainstScissors
playAgainStone
playAgainPaper

Stone

Paper

Scissors

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper

vs: anElement
playAgainstScissors
playAgainStone
playAgainPaper
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Double dispatch

e Two messages: vs: and one of playAgainstPaper, playAgainstStone or,
playAgainstScissors

e First the system selects the correct vs:
e Second it selects the second method
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Remark

e In this toy example we do not need to pass the argument during the double
dispatch

e But in general this is important as we want to do something with the first
receiver (as in Visitor DP)

Scissors >> playAgainstPaper
A #scissors

will just be

Scissors >> playAgainstPaper: aScissors
A #scissors
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With an argument

SPSElement

vs:
playAgainstScissors: anElement
playAgainStone: anElement
playAgainPaper: anElement

Stone Paper Scissors
vs: anElement vs: anElement vs: anElement
playAgainstScissors: anElement playAgainstScissors: anElement playAgainstScissors: anElement
playAgainStone: anElement playAgainStone: anElement playAgainStone: anElement
playAgainPaper: anElement playAgainPaper: anElement playAgainPaper: anElement

Paper >> vs: anotherTool
A anotherTool playAgainstPaper: self
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Extending it...

LIZARD
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Extensible

® You can extend Stone, Paper, Scissors with Spock and Lizard without
changing any line of existing code.

e Implement it!
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Conclusion

e Powerful
e Modular
e Just sending an extra message to an argument and using late binding
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