
Advanced Object-Oriented Design

Objects vs. Data
an API perspective studying Point

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goals

 Difference between an object and a data structure
 APIs and encapsulation play an important role
 Looking at two concrete implementations of Point: in Java and Pharo
 Understanding the impact of strong API

2022 2 / 17

Java Points - Getters and setters

 Point getLocation(): returns the location of this point (to be polymorphic with
Component. A location is just a point.)

 void setLocation(double x, double y): sets the location of this point to the
specified double coordinates.

 void setLocation(int x, int y): changes the point to have the specified location.
 void setLocation(Point p): sets the location of the point to the specified location.
 double getX(): returns the X coordinate of this Point2D in double precision.
 double getY(): returns the Y coordinate of this Point2D in double precision.

2022 3 / 17

Java Points - the ’rest’

 boolean equals(Object obj): whether or not two points are equal.
 void move(int x, int y): moves this point to the specified location in the (x,y)

coordinate plane.
 void translate(int dx, int dy): translates this point, at location (x,y), by dx along the

x axis and dy along the y axis so that it now represents the point (x+dx,y+dy).
 String toString(): returns a string representation of this point and its location in

the (x,y) coordinate space.

Inherited from Point2D
 distance() and clone()

2022 4 / 17

Analysis

 A poor data structure, not an object
 Super limited interface
 Points do not define behavior beside move, translate and distance!

2022 5 / 17

An example in Java

How to make a robot walk a distance from its current direction (in degrees).

public class Bot {
int tilt = 0;
Point position = new Point(0,0);

public void go(int distance){
position = new Point(
(Math.round(Math.cos(Math.toRadians(tilt))) * distance + position.x()),
(Math.round(Math.sin(Math.toRadians(tilt))) * distance + position.y()))) ;
}

}

2022 6 / 17

Analysis (2)

 Have to recreate explicitly a point
 Arithmetic of Points is defined outside of them!

◦ Points cannot sum themselves
◦ Points cannot shape themselves (rounded, ...)

 When an object exposes a shallow API, it favors logic duplication in clients!

2022 7 / 17

Bot » go: in Pharo
In Java

public void go(int distance){
position = new Point(
(Math.round(Math.cos(Math.toRadians(tilt))) * distance + position.x()),
(Math.round(Math.sin(Math.toRadians(tilt))) * distance + position.y())) ;
}

}

In Pharo

Bot >> go: aDistance
position := position + ((tilt degreeCos @ tilt degreeSin) * aDistance) rounded

 Use Point’s addition, multiplication, and rounding
 Use Number’s sin and cos

2022 8 / 17

Points in Pharo

Rich API (selected part):
 normalized, normal, transposed, reflectedAbout:
 distanceTo:, squaredDistanceTo:
 crossProduct:, dotProduct:
 \ - *, reciprocal,/, +, min // abs max
 >= > <= min:max: min: < closeTo: closeTo:precision: max: =
 negated, translateBy:, scaleBy:, scaleTo:, scaleFrom:to:, adhereTo:,
 triangleArea:with:, to:intersects:to:, to:sideOf:, isInsideCircle:with:with:, sideOf:
 rectangle:, extent:, corner:

2022 9 / 17

Points in Pharo (Continued)

 degrees, theta,
 onLineFrom:to:, angleWith:, angle, rotateBy:about:, rotateBy:centerAt:,
bearingToPoint:,

 roundUpTo:, ceiling, truncated, truncateTo:, roundTo:, floor, roundDownTo:,
rounded,

 quadrantOf:, le�Rotated, nearestPointAlongLineFrom:to:, flipBy:centerAt:,
nearestPointOnLineFrom:to:, dotProduct:, squaredDistanceTo:,
insideTriangle:with:with:, directionToLineFrom:to:, sign, octantOf:, rightRotated,

 fourNeighbors, grid:, eightNeighbors, fourDirections

2022 10 / 17

Simple example

Point >> crossProduct: aPoint
"Answer a number that is the cross product of the receiver and the
argument, aPoint."

^ (x * aPoint y) − (y * aPoint x)

 Obvious, but still useful
 No need to duplicate it in clients

2022 11 / 17

Simple example: comparing points

< aPoint
"Answer whether the receiver is above and to the le� of aPoint."

^ x < aPoint x and: [y < aPoint y]

2022 12 / 17

Example: More challenging
Point >> degrees
"Answer the angle the receiver makes with origin in degrees. right is 0; down is 90."
| tan theta |
^ x = 0
ifTrue: [y >= 0

ifTrue: [90.0]
ifFalse: [270.0]]

ifFalse: [tan := y asFloat / x asFloat.
theta := tan arcTan.
x >= 0
ifTrue: [y >= 0
ifTrue: [theta radiansToDegrees]
ifFalse: [360.0 + theta radiansToDegrees]]

ifFalse: [180.0 + theta radiansToDegrees]]

Nobody wants to be forced to reimplement it.

2022 13 / 17

Point arimethic

 Points know how to *, +, /, ... themselves
 We can compose points, rectangles, and numbers

drawString: aString at: aPoint font: aFontOrNil color: aColor
self
drawString: aString
in: (origin + aPoint extent: self clipRect extent)
font: aFontOrNil
color: aColor

2022 14 / 17

Analysis

 In Pharo Points are more than a data structure
 They define advanced behavior
 Functionality is not in clients
 Clients benefit and reuse behavior!

2022 15 / 17

What you should know

 Objects are not data structures
 Objects are more than structure
 Objects are about behavior and services they offer
 An object should encapsulate logic and lets its client reuse such logic!

2022 16 / 17

A course by

S. Ducasse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

