Advanced Object-Oriented Design

Tests

Why testing is Important?

S. Ducasse

Phar(®

http://www.pharo.org

http://www.pharo.org

e Why tests are important?
e What are their advantages?
e What are the techniques to write good tests?

3
20 2/ 20

Why testing?

Tests are your life insurance

Increase trust that a change did not break something
Reduce the fear of changes

Support code understanding

Tests do not avoid breaking your system

But they show what you broke!

3
s 20

Remember...

A unit test that is not automated does NOT EXIST!

3
200 4720

Automated tests are your life insurance

e QOur brain is too small to remember everything

e Our brain focuses on our last action

e You write a test once and you execute it million times

e Programming is modeling the world and the world is changing

3
s | 20

Automated tests ensure the software can evolve

e Tests make you bold in regards to changes
e Tests lower the fear of breaking

o You can try and run the tests to get an idea
o You can explore alternatives
o You can understand that you misunderstood something

3
G | 20

Test positive properties (1)

Find bugs when they appear

e Improve customer trust

Reproduce complex scenarii

e Guarantee old bugs are caught if reappear
Isolate a problem

3
7 | 20

Some characteristics of a good test suite

Check extreme cases (e.g., null, 0 and empty)

Check complex cases (e.g., exceptions, network issues)
1 test for each bug (at least)

Good coverage

Check abstractions

Check units independently

3
200 8/20

Understanding code: APl and result

testConvert
self assert: Color white convert equals: '#FFFFFF'.
self assert: Color red convert equals: '#FF0000'.
self assert: Color black convert equals: '#000000'

A\

9/20

fromString: and convert interplay

testFromStringlsCoherentWithConvert
| table aColorString |
table = #(IO| Ill l2| |3| |4| l5| |6| |7| |8| |9| |A| IBI ICI IDI IEI lFl)'

table do: [:each |
aColorString :='#', each, each, '0000'.
self assert: ((Color fromString: aColorString) convert sameAs: aColorString)].

2 10/20

Understanding code

You do not have to know how numbers are implemented to understand that this
bitShift: is working.

testBitShift
self assert: (2r11 bitShift: 2) equals: 2r1100.
self assert: (2r1011 bitShift: -2) equals: 2r10.

3
BN | 20

Understanding code

You do not have to know how numbers are implemented to understand that this
bitShift: is working.

testShiftOneLeftThenRightGetsOne
"Shift 1 bit left then right and test for 1"

1to: 100 do: [:i |
self
assert: ((1 bitShift: i) bitShift: i negated)
equals: 1].

3
21 12/20

Understanding code ;/

A\

Color >> convert

8 20

s

s:="#000000' copy.

s at: 2 put: (Character digitValue: ((rgb bitShift: -6 — RedShift) bitAnd: 15)).

s at: 3 put: (Character digitValue: ((rgb bitShift: -2 — RedShift) bitAnd: 15)).

s at: 4 put: (Character digitValue: ((rgb bitShift: =6 — GreenShift) bitAnd: 15)).
s at: 5 put: (Character digitValue: ((rgb bitShift: -2 — GreenShift) bitAnd: 15)).
s at: 6 put: (Character digitValue: ((rgb bitShift: —6 - BlueShift) bitAnd: 15)).
s at: 7 put: (Character digitValue: ((rgb bitShift: -2 - BlueShift) bitAnd: 15)).
As

Understanding test ;)

ColorTest >> testAsHexString
| table aColorString |
self assert: Color white asHexString equals: 'FFFFFF'.
self assert: Color red asHexString equals: 'FF0000'.
self assert: Color black asHexString equals: '000000'.

$
21 14/20

Limit dependency to elements not under test

7

Imagine that we want to test a transformation of a piece of code

¢ |f we depend on the compiler to get the test input

e |t may break when the transformation is wrong, but also each time the compiler
changes something!

Better have a setup that is independent of the compiler
e Manually build the test input and store it in a test setup

Think about API even in the test setup

15/ 20

Positive and negative tests

7

Positive

e [f | do the normal stuff,
e |t passes!
e Example: You can log in with the correct credentials

Negative

If I do not behave correctly,

It breaks!

Example: You must not be able to load with incorrect credentials
Example: It should raise an exception if given 0

16/ 20

Test positive properties (2)

Give simple and reproducible examples
Executable snippets

lllustrate the API

Give up-to-date documentation

Check the conformity of new code

Offer a first client to new code

e Force a ’customizable’ design

3
7/ 20

Characteristics of a good test suite

Deterministic

Self-explained

Simple/Unit/Short: with few assertions (not 10th not hundred)
Change less frequently than the rest:

o Test the API not the implementation
o Limit dependency to other elements

Good code coverage

3
21 18/20

Conclusion

e Tests are important
e In particular in dynamically-typed languages
e Help deliver complex projects

3
21 19/20

A course by

S. Ducasse, G. Polito, and Pablo Tesone

©10Ie)

V4

: informatiques g”mathématiques

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

