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About Coupling
• Why coupled classes is fragile design?
• Law of Demeter
• Thoughts about accessor use
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The Core of the Problem
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The Law of Demeter

You should only send messages to:
an argument passed to you 
instance variables
an object you create
self, super
your class

Avoid global variables
Avoid objects returned from message sends other 
than self
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Correct Messages

someMethod: aParameter
	
 self foo.
	
 super someMethod: aParameter.
	
 self class foo.
	
 self instVarOne foo.
	
 instVarOne foo.
	
 aParameter foo.
	
 thing := Thing new.
	
 thing foo
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In other words
• Only talk to your immediate friends. 
• In other words:

• You can play with yourself. (this.method())
• You can play with your own toys (but you can't take them 

apart). (field.method(), field.getX())
• You can play with toys that were given to you. (arg.method())
• And you can play with toys you've made yourself.  (A a = 

new A(); a.method())
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Halt!
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To not skip your intermediate
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Solution
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Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2
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Law of Demeter’s Dark Side

Class A
	
   instVar: myCollection

A>>do: aBlock
	
      myCollection do: aBlock
A>>collect: aBlock
	
      ^ myCollection collect: aBlock
A>>select: aBlock
	
      ^ myCollection select: aBlock
A>>detect: aBlock
	
      ^ myCollection detect: aBlock
A>>isEmpty
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About the Use of Accessors

Some schools say: “Access instance variables using 
methods”

But 
Be consistent inside a class, do not mix direct access and 
accessor use
First think accessors as protected methods that should 
not be invoked by clients
Only when necessary put accessors in accessing protocol
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Example

Scheduler>>initialize
	
 self tasks: OrderedCollection new. 

Scheduler>>tasks
	
 ^ tasks

But now everybody can tweak the tasks!
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Accessors

Accessors are good for lazy initialization

	
 	
 Scheduler>>tasks
	
 	
    tasks isNil ifTrue: [task := ...].
	
 	
    ^ tasks

BUT accessors methods should be Protected by 
default at least at the beginning
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Accessors open Encapsulation

The fact that accessors are methods doesn’t 
support a good data encapsulation. 
You could be tempted to write in a client: 

	
 	
 ScheduledView>>addTaskButton
	
 	
 	
 ...
	
 	
 	
 model tasks add: newTask

What’s happen if we change the representation of 
tasks? 
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Tasks

If tasks is now an array it will break

Take care about the coupling between your objects 
and provide a good interface!
	
 Schedule>>addTask: aTask
	
 	
 	
 tasks add: aTask
	

ScheduledView>>addTaskButton
	
 	
 	
 ...
	
 	
 	
 model addTask: newTask
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About Copy Accessor

Should I copy the structure?

Scheduler>>tasks
    ^ tasks copy

But then the clients can get confused...

Scheduler uniqueInstance tasks removeFirst
and nothing happens!
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Use intention revealing names

Better

Scheduler>>taskCopy  or copiedTasks
    “returns a copy of the pending tasks”

     ^ task copy
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Provide a Complete Interface

Workstation>>accept: aPacket
	
 	
 aPacket addressee = self name
	
 	
 	
 …

It is the responsibility of an object to offer a 
complete interface that protects itself from client 
intrusion.
Shift the responsibility to the Packet object
Packet>>isAddressedTo: aNode
	
 ^ addressee = aNode name

Workstation>>accept: aPacket
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