
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

RMod

Design Points - Law of
Demeter

Stéphane Ducasse --- 2005

1

S.Ducasse RMod

About Coupling
• Why coupled classes is fragile design?
• Law of Demeter
• Thoughts about accessor use

2

S.Ducasse

RMod

The Core of the Problem

3

S.Ducasse

RMod

The Law of Demeter

You should only send messages to:
an argument passed to you
instance variables
an object you create
self, super
your class

Avoid global variables
Avoid objects returned from message sends other
than self

4

S.Ducasse

RMod

Correct Messages

someMethod: aParameter
	
 self foo.
	
 super someMethod: aParameter.
	
 self class foo.
	
 self instVarOne foo.
	
 instVarOne foo.
	
 aParameter foo.
	
 thing := Thing new.
	
 thing foo

5

S.Ducasse

RMod

In other words
• Only talk to your immediate friends.
• In other words:

• You can play with yourself. (this.method())
• You can play with your own toys (but you can't take them

apart). (field.method(), field.getX())
• You can play with toys that were given to you. (arg.method())
• And you can play with toys you've made yourself. (A a =

new A(); a.method())

6

S.Ducasse

RMod

Halt!

7

S.Ducasse

RMod

To not skip your intermediate

8

S.Ducasse

RMod

Solution

9

S.Ducasse

RMod

Transformation
Engine

+ carburator

engine.carburetor.fuelValveOpen = true

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
+fuelValveOpen

carburetor.fuelValveOpen = true

Engine
- carburator
speedUp()

engine.speedUp()

Car
- engine
+ increaseSpeed()

Carburetor
- fuelValveOpen

+ openFuelValve

carburetor.openFuelValve() fuelValveOpen = true

Step 1

Step 2

10

S.Ducasse

RMod

Law of Demeter’s Dark Side

Class A
	
 instVar: myCollection

A>>do: aBlock
	
 myCollection do: aBlock
A>>collect: aBlock
	
 ^ myCollection collect: aBlock
A>>select: aBlock
	
 ^ myCollection select: aBlock
A>>detect: aBlock
	
 ^ myCollection detect: aBlock
A>>isEmpty

11

S.Ducasse

RMod

About the Use of Accessors

Some schools say: “Access instance variables using
methods”

But
Be consistent inside a class, do not mix direct access and
accessor use
First think accessors as protected methods that should
not be invoked by clients
Only when necessary put accessors in accessing protocol
	

12

S.Ducasse

RMod

Example

Scheduler>>initialize
	
 self tasks: OrderedCollection new.

Scheduler>>tasks
	
 ^ tasks

But now everybody can tweak the tasks!

13

S.Ducasse

RMod

Accessors

Accessors are good for lazy initialization

	
 	
 Scheduler>>tasks
	
 	
 tasks isNil ifTrue: [task := ...].
	
 	
 ^ tasks

BUT accessors methods should be Protected by
default at least at the beginning

14

S.Ducasse

RMod

Accessors open Encapsulation

The fact that accessors are methods doesn’t
support a good data encapsulation.
You could be tempted to write in a client:

	
 	
 ScheduledView>>addTaskButton
	
 	
 	
 ...
	
 	
 	
 model tasks add: newTask

What’s happen if we change the representation of
tasks?

15

S.Ducasse

RMod

Tasks

If tasks is now an array it will break

Take care about the coupling between your objects
and provide a good interface!
	
 Schedule>>addTask: aTask
	
 	
 	
 tasks add: aTask
	

ScheduledView>>addTaskButton
	
 	
 	
 ...
	
 	
 	
 model addTask: newTask

16

S.Ducasse

RMod

About Copy Accessor

Should I copy the structure?

Scheduler>>tasks
 ^ tasks copy

But then the clients can get confused...

Scheduler uniqueInstance tasks removeFirst
and nothing happens!

17

S.Ducasse

RMod

Use intention revealing names

Better

Scheduler>>taskCopy or copiedTasks
 “returns a copy of the pending tasks”

 ^ task copy

18

S.Ducasse

RMod

Provide a Complete Interface

Workstation>>accept: aPacket
	
 	
 aPacket addressee = self name
	
 	
 	
 …

It is the responsibility of an object to offer a
complete interface that protects itself from client
intrusion.
Shift the responsibility to the Packet object
Packet>>isAddressedTo: aNode
	
 ^ addressee = aNode name

Workstation>>accept: aPacket

19

