BIINRIA E’
o® About Coupling The Core of the Problem g
RMod @ - Why coupled classes is fragile design{
- Law of Demeter [ e ] provier
M M doSomething getProvider(]
Desi gn Points - Law of - Thoughts about accessor use ) IR
provider getProvider().doSomethingf)
Demeter .
provider indirectProvider doSomething
Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/
Stéphane Ducasse --- 2005
Stéphane Ducasse S.Ducasse 2 o @ S.Ducasse s
: o ‘
The Law of Demeter i ® Correct Messages i ® In other words o
® Only talk to your immediate friends.
You should only send messages to: someMethod: aParameter o In other words:
an argument passed to you self foo. ® You can play with yourself. (this.method())
instance variables super someMethod: aParameter. ® You can play with your own toys (but you can't take them
an object you create self class foo. apart). (field.method(), field.getX())
self, super self instVarOne foo. ® You can play with toys that were given to you. (arg.method())
your class instVarOne foo. e And you can play with toys you've made yourself. (Aa =
. . new A(); a.method())
Avoid global variables aParameter foo.
Avoid objects returned from message sends other thing := Thing new.
than self thing foo
S.Ducasse 4 S.Ducasse s S.Ducasse 6
™ . . . E. . ™
Halt! D: To not skip your intermediate % Solution b
Violations: Dataflow Diagram OO Following of LoD
class A {public: void m(); P p(); B b; }; m n
class B {public: C c; }; foo2
; s foc
class C {public: void foo(); }; foo0 1b J:I EI,;(.)
class P {public: Q q(); }; N P
class Q {public: void bar(); }; A, 710020 «
void A::m() { 4:bar2()”
this.b.c.foo(); this.p().q().bar();} i) beiZ “:’ EI bar()
3:p0 q0
P Q
S.Ducasse 7 S.Ducasse 8 S.Ducasse 9




Law of Demeter’s Dark Side

Class A
instVar: myCollection

A>>do: aBlock

myCollection do: aBlock
A>>collect: aBlock

A myCollection collect: aBlock
A>>select:aBlock

A myCollection select: aBlock
A>>detect: aBlock

A myCollection detect: aBlock
A>>isEmpty

S.Ducasse "

"od @

About the Use of Accessors )

Some schools say:“Access instance variables using
methods”

But
Be consistent inside a class, do not mix direct access and
accessor use
First think accessors as protected methods that should
not be invoked by clients
Only when necessary put accessors in accessing protocol

S.Ducasse [}

Accessors

Accessors are good for lazy initialization

Scheduler>>tasks
tasks isNil ifTrue: [task := ...].
A tasks

BUT accessors methods should be Protected by
default at least at the beginning

S.Ducasse 14

Rvod @

Transf i °
ranstormation
"mod @
[ Engine | Car
+fuelValveOpen + carburator - engine
] L ] +increaseSpeed|
Step 1
[Engne | I—Ta—
+uelValveOpen ~carburator |——~engine |
[ J speedUp() + increaseSpeed()
‘ carburetor.fuelValveOpen = true engine.speedUp()
Step 2
Engine
~engine
+ increaseSpeed)
fuelValveOpen = e carburetor.openFuelValve() engine. speedu
S.Ducasse 10
@
Example
Rmvod @
Scheduler>>initialize
self tasks: OrderedCollection new.
Scheduler>>tasks
A tasks
But now everybody can tweak the tasks!
S.Ducasse 3
@
Tasks
*mod @

If tasks is now an array it will break

Take care about the coupling between your objects
and provide a good interface!
Schedule>>addTask: aTask
tasks add: aTask

ScheduledView>>addTaskButton

model addTask: newTask

S.Ducasse 16

About Copy Accessor

Should | copy the structure?

Scheduler>>tasks
A tasks copy

But then the clients can get confused...

Scheduler uniquelnstance tasks removeFirst
and nothing happens!

S.Ducasse 17

~od @

. ®
Accessors open Encapsulation o
The fact that accessors are methods doesn’t
support a good data encapsulation.
You could be tempted to write in a client:
ScheduledView>>addTaskButton
model tasks add: newTask
What's happen if we change the representation of
tasks?
S.Ducasse 15
. . . @
Use intention revealing names X

Better

Scheduler>>taskCopy or copiedTasks
“returns a copy of the pending tasks”

A task copy

S.Ducasse 18



Provide a Complete Interface

Workstation>>accept: aPacket
aPacket addressee = self name

It is the responsibility of an object to offer a
complete interface that protects itself from client
intrusion.
Shift the responsibility to the Packet object
Packet>>isAddressedTo:aNode

A addressee = aNode name
Workstation>>accept: aPacket

S.Ducasse 19

o0
wvod @




