
Stéphane Ducasse

Stéphane Ducasse
stephane.ducasse@inria.fr
http://stephane.ducasse.free.fr/

RMod

Inheritance Semantics and
Method Lookup

1

S.Ducasse RMod

Goal
Inheritance
Method lookup
Self/super difference

2

S.Ducasse

RMod

Inheritance
Do not want to rewrite everything!
Often we want small changes
We would like to reuse and extend existing behavior

Solution: class inheritance

Each class defines or refines the definition
 of its ancestors

3

S.Ducasse

RMod

Inheritance

New classes
Can add state and behavior:

color, borderColor, borderWidth,
totalArea

Can specialize ancestor behavior
intersect:

Can use ancestor’s behavior and state
Can redefine ancestor’s behavior

area to return totalArea

4

S.Ducasse

RMod

Inheritance in Smalltalk

Single inheritance

Static for the instance variables
At class creation time the instance variables are collected
from the superclasses and the class. No repetition of
instance variables.

Dynamic for the methods
Late binding (all virtual) methods are looked up at run-
time depending on the dynamic type of the receiver.

5

S.Ducasse

RMod

Message Sending

 receiver selector args

Sending a message = looking up the method that
should be executed and executing it

Looking up a method: When a message (receiver
selector args) is sent, the method corresponding to
the message selector is looked up through the
inheritance chain.

6

S.Ducasse

RMod

Method Lookup

Two steps process

1: The lookup starts in the CLASS of the RECEIVER.

2: If the method is defined in the method dictionary, it is
returned.

Otherwise the search continues in the superclasses of the
receiver's class. If no method is found and there is no
superclass to explore (class Object), this is an ERROR

7

S.Ducasse

RMod

Lookup: class and inheritance

8

Object

Node

accept:

name

sendt:

node1

msg

1

2

go to the class

look in

the classes

S.Ducasse

RMod

Some Cases

9

Object

Node

accept:

name

minna

accept:

Workstation

accept:

send:

1

2

Object

Node

accept:

name

minna

name

Workstation

accept:

send:

2

1

S.Ducasse RMod

A

foo

bar

B

foo ^ 50

^ 10

self foo

aB

instance of

Method Lookup starts in Receiver Class

10

A new foo

B new foo

A new bar

B new bar

S.Ducasse RMod

A

foo

bar

B

foo ^ 50

^ 10

self foo

aB

instance of

Method Lookup starts in Receiver Class
aB foo

(1) aB class => B
(2) Is foo defined in B?

(3) Foo is executed -> 50

aB bar
(1) aB class => B

(2) Is bar defined in B?
(3) Is bar defined in A?

(4) bar executed
(5) Self class => B

(6) Is foo defined in B
(7) Foo is executed -> 50

11

S.Ducasse

RMod

self **always** represents the receiver

• A new foo
• ->
• B new foo
• ->
• C new foo
• ->
• A new bar
• ->
• B new bar
• ->
• C new bar

12

A

foo

bar

C

foo ^ 50

^ 10

self foo

aC

instance of

B

S.Ducasse

RMod

self **always** represents the receiver

• A new foo
• -> 10
• B new foo
• -> 10
• C new foo
• -> 50
• A new bar
• -> 10
• B new bar
• -> 10
• C new bar

13

A

foo

bar

C

foo ^ 50

^ 10

self foo

aC

instance of

B

S.Ducasse RMod

When message is not found
• If no method is found and there is no superclass to explore

(class Object), a new method called #doesNotUnderstand: is
sent to the receiver, with a representation of the initial
message.

14

S.Ducasse RMod

Graphically…

Object

Node

accept:

name

sendt:

node1

print:

Error!!!

1

2

15

S.Ducasse RMod

…in Smalltalk
• node1 print: aPacket

– node is an instance of Node
– print: is looked up in the class Node
– print: is not defined in Node > lookup continues in Object
– print: is not defined in Object => lookup stops	
 + exception
– message: node1 doesNotUnderstand: #(#print aPacket) is

executed
– node1 is an instance of Node so doesNotUnderstand: is looked

up in the class Node
– doesNotUnderstand: is not defined in Node => lookup

continues in Object
– doesNotUnderstand: is defined in Object => lookup stops	
 +

method executed (open a dialog box)

16

S.Ducasse RMod

Graphically…

Object

Node

accept:

name

sendt:

node1

print:

open debugger

doesNotUnderstand:

1

2

3

4

5

17

S.Ducasse RMod

Roadmap
Inheritance
Method lookup
Self/super difference

18

S.Ducasse RMod

How to Invoke Overridden Methods?
• Solution: Send messages to super
• When a packet is not addressed to a workstation, we just want to

pass the packet to the next node, i.e., we want to perform the
default behavior defined by Node.

	
Workstation>>accept: aPacket
 (aPacket isAddressedTo: self)
 ifTrue:[Transcript show: 'Packet accepted by the Workstation ',
self name asString]
	
 ifFalse: [super accept: aPacket]

• Design Hint: Do not send messages to super with different
selectors than the original one. It introduces implicit dependency
between methods with different names.

19

S.Ducasse RMod

The semantics of super
• Like self, super is a pseudo-variable that refers to the

receiver of the message.
• It is used to invoke overridden methods.

• When using self, the lookup of the method begins in the
class of the receiver.

• When using super, the lookup of the method begins in the
superclass of the class of the method containing the
super expression

20

S.Ducasse RMod

super changes lookup starting class
• A new foo

• A new bar

• B new foo

• B new bar

• C new foo

• C new bar

A

foo

bar

C

foo ^ 50

^ 10

self foo

aB

instance of

B

bar
^ super bar

+ self foo

21

S.Ducasse RMod

super changes lookup starting class
• A new bar
• -> 10
• B new bar
• -> 10 + 10
• C new bar
• -> 50 + 50

A

foo

bar

C

foo ^ 50

^ 10

self foo

aB

instance of

B

bar
^ super bar

+ self foo

22

S.Ducasse

RMod

super is NOT the superclass of the receiver

Suppose the WRONG
hypothesis: “The semantics of
super is to start the lookup of a
method in the superclass of the
receiver class”

23

S.Ducasse

RMod

super is NOT the superclass of the receiver

mac is instance of ColoredWorkStation
Lookup starts in ColoredWorkStation
Not found so goes up...

accept: is defined in Workstation
lookup stops
method accept: is executed

Workstation>>accept: does a super
send
Our hypothesis: start in the super of the
class of the receiver
=> superclass of class of a ColoredWorkstation
is ... Workstation !

24

S.Ducasse

What you should know
• Inheritance of instance variables is made at class

definition time.
• Inheritance of behavior is dynamic.
• self **always** represents the receiver.
• Method lookup starts in the class of the receiver.
• super represents the receiver but method lookup

starts in the superclass of the class using it.
• Self is dynamic vs. super is static.

25

