
Class Naming and Privacy
in Smalltalk
A single remedy for two design and reuse problems

Nik Boyd
S
malltalk lacks mechanisms for defining private class-
es and private methods. Without private classes, class
naming conflicts can occur. Without private methods,

encapsulation suffers. While global name spaces can help
resolve class naming conflicts, first-class subsystems with
private classes can resolve both problems.

Once a Smalltalk developer has learned the essentials
of object-oriented design and programming, new issues
regarding object system design and systematic reuse
begin to surface. There are two factors that contribute to
design and reuse problems in Smalltalk—both related to
visibility: 1) all classes are visible to (and usable by) all
other classes—Smalltalk has a single global name space;
and 2) all the methods of a class are visible to (and usable
by) its clients, in spite of the fact that some of its methods
may be intended for the private use of the class.

This article considers these issues and proposes a sin-
gle remedy for both problems, without changing the
Smalltalk language and with relatively minor changes to
the development environment.

The Name Space Problem
Because classes are globals in Smalltalk, they are visible to
all other classes (as well as the programmer). This visibil-
ity is excessive. It can contribute to information overload
for novice (as well as experienced) Smalltalk program-
mers. It can also cause class-naming conflicts when
teams of developers integrate class libraries that have
been developed separately.

Few Smalltalk environments include facilities and
tools for integrating and organizing large libraries of
Smalltalk classes, though some environments and third-
party products provide tools for organizing Smalltalk
source code into more manageable units (e.g., packages,
applications, and the like). While these facilities help to
reduce the number of classes immediately visible to a
programmer, they do not eliminate the problem of having
a single name space.

Adding prefixes to class names has become the com-
mon practice for dealing with this limitation. This prac-
tice helps prevent conflicts for commonly used names.
November/December 1996 http://www
However, while class-name prefixes prevent potential
name conflicts, they degrade the readability and under-
standability of the class names. Understanding degrades
further when the prefixes abbreviate what should be
meaningful subsystem names.

Previous Approaches to Name Space Partitioning
There are only a few workable approaches to partitioning the
Smalltalk class name space. Modular Smalltalk1 addressed
some of the issues related to the name-space problem.
However, Modular Smalltalk redefined some of the funda-
mental characteristics of the language and its development
environment.

While clear benefits can be gained from a static version
of the Smalltalk language—that is, better performance at
runtime—it remains unclear whether some of the existing
benefits of Smalltalk might be sacrificed (such as dynam-
ic and rapid application development). Perhaps the best
of both worlds can be integrated into some future
Smalltalk environments. Smalltalk MT looks promising in
this regard.

Meanwhile, other commercial Smalltalk implementa-
tions still show the early origins of Smalltalk as an inter-
preted language. Objects and classes are defined and con-
structed dynamically using messages. These messages are
compiled and evaluated in the context of an image-based
object memory.

Global Behavior Pools vs. First-Class Subsystems
Another proposal for dealing with the name space problem
was explored.2 This proposal used global pool dictionaries
to supplement the name space provided by the System
Dictionary. The article showed how pool dictionaries
(which usually contain system constants) could be extend-
ed to hold classes. Then, other classes could subscribe to
these behavior pools and use the classes defined in such
pools—by including the pool names in the poolDictionaries:
portion of their class definitions.

While this proposal does help partition the class name
space, the pools themselves are still global, and the class-
es defined in such pools are still public in the sense that
11.sigs.com

CLASS NAMING & PRIVACY
they are still global. Such a pool-based facility is similar to
C++ namespaces and the hierarchical namespaces
provided in QKS’ SmalltalkAgents. They provide separate
domains for class names without considering whether
those classes might need to be encapsulated in an object
system design.

In contrast, first-class subsystems support the defini-
tion of truly private behaviors. Thus, subsystem classes
support the organization and encapsulation of clusters of
related classes. This facility is similar to the C++ nested
class. Private classes are nested within the scope of a sub-
system class, which serves as the public interface for the
private classes it contains. A subsystem class can provide
or restrict access to the private classes it contains, based
on the needs of the subsystem design.

As in C++, global behavior pools and subsystems can
complement each other for resolving class name con-
flicts, and for providing behavior encapsulation. However,
the remainder of this article focuses on the benefits of
subsystems and support for their implementation in
Smalltalk.

The foundations for implementing first-class subsys-
tems in Smalltalk were established in the February 1993
issue of The Smalltalk Report, 3 in which subsystems were
called “modules.” The terms “subsystem” and “private
class” serve to better describe the intentions underlying
this technology, and will be used throughout the remain-
der of this article.

SUBSYSTEMS AND PRIVATE CLASSES
A Modeling Notation for Private Classes
Subsytems are useful for partitioning the behavior of
object systems. Objects are nothing less than small sys-
tems, and systems are nothing more than large objects.

There is no conceptual difference between the responsibili-
ties of a class, a subsystem of classes, and even an applica-
tion; it is simply a matter of scale, and the amount of rich-
ness and detail in your model.4

For these reasons, it would be convenient to have an
object model notation that shows the relationship
between objects and systems. The notations that have
been proposed previously have been internal rather than

Object

Some

Private Class

Some

Subsystem

Figure 1. A Subsystem aggregates a Private Class.
12 http://www
external (for example, they depict subsystems by nesting
entities graphically). Such internal notations do not scale
well graphically when they are applied to the design of
large systems, especially when subsystems are nested (for
example, when a subsystem class contains a private sub-
system class).

First-class subsystems fully contain their private class-
es, including their definitions. Thus, private classes can be
said to be parts of their (public) subsystem class (they are
aggregated at the meta level). For this reason, the rela-
tionship between a private class and its containing sub-
system class will be depicted using a variant of the OMT
notation for aggregation.

In Figure 1, Some Subsystem is a first-class subsystem
within which Some Private Class is defined. The object mod-
els used in further discussions will depict such meta-level
aggregations of private classes using a special diamond
(as shown in Figure 1).

Defining Subsystems and Private Classes
In addition to introducing a new graphical notation for
depicting the design relationship between subsystems
and private classes, this article introduces new message
formats for defining subsystem classes and their private
classes in Smalltalk.

“Define a new subsystem.”
SomeSuperclass
subsystem: #SomeSubsystem

Object

Financial

Manager

Balance

Inquiry

Transaction

Account

Funds

Transfer

Funds

Deposit

Funds

Withdrawal

Figure 2. Financial Management Subsystem.
The Smalltalk Report.sigs.com

instanceVariableNames: ‘...’
classVariableNames: ‘...’
poolDictionaries: ‘...’ !

Notice that subsystem classes support instance variables,
class variables, and pool dictionaries, just like ordinary
classes. Subsystems are first-class objects. A subsystem
class is just like any other class, except that its classPool
may contain private classes in addition to the usual class
variables. These details will be discussed further in the
Implementation section.

Hereafter, in order to simplify the class definitions, the
message portions after the subclass name will be elided.
However, please remember that the entire list of message
arguments is intended and supported for all such abbre-
viated class definitions. For example, the following partial
message shows the abbreviated form of a subsystem def-
inition.

“Define a new subsystem.”
SomeSuperclass
subsystem: #SomeSubsystem ... !

A private class can begin the lineage of a private class hier-
archy within a subsystem. Such a private base class must be
defined differently from the other private classes derived
from it. In particular, such a private base class must identi-
fy not only its superclass, but also the subsystem that con-
tains it. The following partial message shows the abbreviat-
ed form of such a private base class definition.

“Define a private base class.”
AnotherSuperclass
subclass: #SomePrivateClass
in: SomeSubsystem ... !

Of course, private classes can also be private subsys-
tem classes.

Object

B

Façade

A

C

Figure 3. Object Model for a Façade.
November/December 1996 http://www
“Define a private subsystem class.”
AnotherSuperclass
subsystem: #SomePrivateSubsystem
in: SomeSubsystem ... !

Once a private class hierarchy has been introduced in a
subsystem, the private base class and all the subsequent-
ly derived private subclasses can be located relative to the
base of the private class hierarchy. The following partial
message shows the abbreviated form for defining derived
private classes.

“Define a private subclass.”
SomeSubsystem @ #SomePrivateClass
subclass: #SomePrivateSubclass ... !

“Define a private subsystem.”
SomeSubsystem @ #SomePrivateClass
subsystem: #SomePrivateSubsystem ... !

Visibility Rules for Classes and Subsystems
The visibility and scoping rules for private classes are sim-
ilar to those found in C++ for nested classes. The classes
defined outside a subsystem are visible to the private
classes defined inside a subsystem, while the private class-
es defined inside a subsystem are not (immediately) visi-
ble to the classes defined outside a subsystem. Also, the
classes defined within a given scope of visibility are visible
to each other. Thus, the private classes defined inside a
subsystem are visible to each other, just as the classes
defined in the System Dictionary are visible to each other.

Classes defined outside a subsystem may be used
directly by name in the methods of classes inside a sub-
system. Class names are resolved by looking first in the
local scope, and then progressing outward through the
enclosing scopes until the named class is found.

The binary message @ serves a role similar to that of
the scope resolution operator :: in C++. It can be used to
locate a private class relative to its enclosing scope(s).
Compare the following Smalltalk and C++ expressions:

Smalltalk (SampleManager @ #SamplePrivateClass)
C++ (SampleManager :: SamplePrivateClass)

DESIGNING OBJECT-ORIENTED SOFTWARE SYSTEMS
Subsystems provide a coherent way to design and organize
Smalltalk classes that collaborate closely. Several examples
of subsystem designs are included in the book, DESIGNING

OBJECT-ORIENTED SOFTWARE,5 where the organization of a sub-
system for managing transactions against financial
accounts is described. Figure 2 shows how this subsystem
may be modeled using the new notation for meta-level
aggregation.

The class definitions for the financial management
classes include the following:

Object
subsystem: #FinancialManager ... !
13.sigs.com

CLASS NAMING & PRIVACY
class

nil

class

class

class

Class MetaClass

Behavior
Undefined

Object

Object

class

MetaClass

class

Object

Figure 5. Baseline Behavior Classes.

Object

Class Filer

Private Filer

privateFiler

Figure 4. ClassFiler as a Façade.
14 http://www
Object
subclass: #Account in: FinancialManager ... !

Object
subclass: #Transaction in: FinancialManager ... !

FinancialManager @ #Transaction
subclass: #BalanceInquiry ... !

FinancialManager @ #Transaction
subclass: #FundsDeposit ... !

FinancialManager @ #Transaction
subclass: #FundsWithdrawal ... !

FinancialManager @ #Transaction
subclass: #FundsTransfer ... !

Subsystems and the Façade Pattern
First-class subsystems can be used to implement the
Façade pattern.

The Façade pattern provides a unified interface to a set of
interfaces in a subsystem. The Façade pattern defines a high-
er-level interface that makes the subsystem easier to use. 5

Depending on the needs of clients, designers can either
expose or hide the services provided by the private classes
hidden behind the Façade.

Figure 3 shows a Façade class, which uses instances of
two private classes and an instance of one public class
(defined outside the subsystem). Each instance of the
Façade class owns an instance of one of the private class-
es, while that instance owns an instance of the other pri-
vate class, which in turn owns an instance of the public
class.

This model also serves as an example of the visibility
and scoping rules. The Façade can see classes A, B, and C.
Classes A and B can see class C (which is public), but class
C cannot see classes A and B (which are private).

Private Methods and Client Contracts
Smalltalk systems use classes to encapsulate the structure
and state of objects. However, while Smalltalk classes
encapsulate the state of their instances, they do not encap-
sulate their behavior. All the methods of a class are effec-
tively public.

Traditionally, a Smalltalk developer indicates that a
method is intended for the private use of the implement-
ing class, using the notation Private at the beginning of the
method comment. This convention requires the client
developer to inspect the source code of the method, in
order to discover whether a method is intended for public
usage.

In systems that support method organization (i.e., pro-
tocols), the method developer can organize the method in
a protocol whose name indicates that the methods are
private. However, Smalltalk does not enforce the privacy
The Smalltalk Report.sigs.com

November/December 1996
Software developers need language
facilities that provide design options.

This is one of the reasons that C++
has evolved so much over

the past several years.
indicated by either of these conventions. So, client devel-
opers sometimes use the private methods anyway, and
thereby create dependencies that the class designer did
not intend to permit or support.

In Smalltalk, it is not always clear what such privacy
means anyway. For example, should subclasses be
restricted from using private methods they inherit from
their superclasses? While C++ provides explicit access
control mechanisms for public, protected, and private
members, Smalltalk does not provide any mechanisms
for access control.

It can be argued that
the traditional notions of
access in object-oriented sys-
tems are simplified ways of
specifying the class of the
clients that are permitted to
use the methods of a server
class. Table 1 suggests how
access relates to clients.

This table formalizes
a notion that has appeared repeatedly in the literature on
object-oriented design: promised behavior. The classes
that collaborate closely within a subsystem often exhibit
promised behavior, especially when the classes in the sub-
system form contractual agreements regarding their ser-
vices. Thus, it would be advantageous to object system
designers if object-oriented languages incorporated and
enforced access mechanisms, based on client specifica-
tions to establish such formal contracts. Object-oriented
languages would improve their ability to model such con-
tracts if they were extended beyond the traditional support
for only private, protected, and public access (which are
supported by languages like C++ and Java). Indeed, private,
protected, and public access mechanisms can be con-
ceived of as specific kinds of promised contracts as shown
in Table 2 (with respect to a given server class).

Note that in Table 2 public methods are promised to nil
because the class Object and all other root classes are
I
T
s
V
t
a
c
f
B
m

Access Implied Client Specification
private only the implementing class
protected. . . . the implementing class and all derived classes
promised. . . . some specific collaborating class (which need

not be related by inheritance)
public. . . . any class (without regard for inheritance)

Access Equivalent Contract
ServerClass private ServerClass promisedTo: ServerClass only

ServerClass protected ServerClass promisedTo: ServerClass any

ServerClass public ServerClass promisedTo: nil

Table 1 represents how access relates to clients.

Table 2 represents private, protected, and public mechanisms.
http://www
derived from nil—all the root classes have no superclass.
Thus, public methods are available to any other defined
method, whether the method is defined in a class derived
from Object, or any other root class.

Private Classes for Private Methods
The following discussion describes how you can use pri-
vate classes to implement private methods— even without
direct language support for private methods. First, build
the public interface using an instance of a subsystem class.

The subsystem instance con-
tains a single instance vari-
able, and the instance vari-
able contains an instance of a
private class. The private
class contains those methods
you want hidden. When the
public class (the subsystem)
is instantiated, it creates and
holds an instance of the pri-
vate class. Each of the public

methods (in the public class) uses the private methods
supplied by the instance of the private class. Figure 4
shows this arrangement using an object model.

The class definitions for this Façade include the following:

Object
subsystem: #ClassFiler
instanceVariables: ‘privateFiler’
classVariables: ‘’
poolDictionaries: ‘’ !

Object
subclass: #PrivateFiler
in: ClassFiler
instanceVariables: ‘behavior’
classVariables: ‘’
poolDictionaries: ‘’ !
.sigs.com
mplementation
his section outlines how the facility for defining
ubsystems and private classes can be added to
isual Smalltalk. We will focus on those aspects of

he Behavior classes that change when subsystems
re added. First, note how the baseline Behavior
lasses are organized in Figure 5. Behavior inherits
rom Object. Class and MetaClass inherit from
ehavior. Object class inherits from Class. The other
etaclasses of the subclasses of Object inherit from

Object class.
Generally speaking, the class and metaclass inher-
itance hierarchies parallel each other. Thus, for
example:

Point superclass == Object
Point class superclass == Object class.

However, there is an anomaly at class Object, where
15

CLASS NAMING & PRIVACY
Object superclass == nil
Object class superclass == Class.

Subsystems and private classes require some minor alter-
ations to these baseline relationships. As noted previous-
ly, each subsystem is a class. While an ordinary class uses

class

class

Class

"Subsystem"

MetaClass

Private Class Private

MetaClass

Object

class

Behavior

MetaClass

class

Object

nil

class

class

Undefined

Object

Figure 7. Behavior Extensions for Private Classes.

classPool

classPool

class

Subsystem

Dictionary

Private

MetaClass

Class Dictionary

Private Class

"Subsystem"

Class

Figure 6. Class vs.“Subsystem” Class.
16 http://www
a Dictionary for its classPool, a subsystem class uses a
Subsystem Dictionary. Each Subsystem Dictionary pro-
vides a unique domain for the private classes and class
variables of the subsystem. Private class names are
mapped to Private Classes, while class variable names are
mapped to class variables. Figure 6 provides a model of
these relationships.

Each Private Class knows its class (a Private MetaClass).
Each Private MetaClass knows its subsystem (a subsystem
class). Thus, indirectly, each Private Class knows the
enveloping subsystem class. Given the foregoing relation-
ships, Figure 7 shows the relationships for the new
Behaviors.

In particular, note how

Object class superclass == PrivateClass.

This relationship replaces the normal baseline relation-
ship, where

Object class superclass == Class.

Because each private metaclass knows the subsystem
to which it belongs, the compiler can identify the scopes
that enclose the private behaviors (class and metaclass).
This simplifies changes to the compiler interface to
extend the visibility rules and resolve class names into
classes.

CONCLUSION
Benefits of Subsystems and Private Classes
Software developers need language facilities that provide
design options. This is one of the reasons that C++ has
evolved so much over the past several years. Some of the
recent additions (nested classes, templates, namespaces,
and runtime type information) show progress toward fea-
tures found in pure object-oriented systems like
Smalltalk, and even some advances over features in
Smalltalk.

Two of these C++ features directly address the class
naming problem in complementary ways: namespaces
and nested classes (i.e., private classes). This article has
considered how support for private classes can be added
to Smalltalk in conjunction with first-class subsystems.
Subsystem classes provide an additional design dimen-
sion beyond that provided by ordinary classes.
Subsystems and their private classes permit you to:

• resolve class name conflicts with separate name
spaces;

• integrate separately developed class libraries;
• organize collaborations between classes into first-

class subsystems;
• implement the Façade pattern; and
• define private methods only visible to those in a

public interface (subsystem) class.

References
1. Wirfs-Brock, A., Wilkerson, B., “An Overview of Modular

Smalltalk,” OOPSLA Conference Proceedings, ACM, September
1988.

S

The Smalltalk Report.sigs.com

2. Beaton, W., “Name Space in Smalltalk/V for Win32,” The Smalltalk

Report 4(1), SIGS Publications, New York, NY, September 1994.
3. Boyd, N., “Modules: Encapsulating Behavior in Smalltalk,” The

Smalltalk Report 2(5), SIGS Publications, New York, NY, February 1993.
4. Wirfs-Brock, R., Wilkerson, B.,Weiner, L., DESIGNING OBJECT-

ORIENTED SOFTWARE, Prentice-Hall, Englewood Cliffs, NJ, 1990.
5. Gamma, E., Helms, R., Johnson, R., Vlissides, J., DESIGN PATTERNS:

ELEMENTS OF REUSABLE OBJECT-ORIENTED ARCHITECTURE, Addison-
Wesley, Reading, MA, 1995.

TRADEMARKS
Visual Smalltalk is a trademark of ParcPlace-Digitalk, Inc.
SmalltalkAgents is a trademark of Quasar Knowledge
System, Inc.
Smalltalk MT is a trademark of Object Connect, SARL

Nik Boyd has been developing object systems since 1987, when
he founded 3rd Person Software (formerly known as XoteryX). In
1993, he released Package Manager/V through The Smalltalk
Store. During 1996, he released Package Librarian/V. His experi-
ence with OOP includes work with several ParcPlace-Digitalk
Smalltalk versions and platforms, as well as work with C++. His
research interests focus on tools and techniques that support
object-oriented software engineering. Nik may be contacted at
74170.2171@CompuServe.com.
November/December 1996 17http://www.sigs.com

