
Controlling VisualWorks’NewSpace
A space for everything in its space

John M. McIntosh
4

The objective of a memory-
management system is to

aggressively do GC work on
a small area of memory.
R
ecent discoveries made while building a system that
worked as a server instead of as a typical GUI applica-
tion have led me to write this article. During the test-

ing phase, I was surprised to see that the image grew from
a starting size of about 8 MB to roughly 18 MB before it
stopped requesting memory from the operating system.
This behavior lead to the questions: Why does it grow? Why
does it stop growing? A manual garbage collection usually
returned the response that 8 MB of memory had been
freed. Most puzzling. Although the
image didn’t grow continuously, I
thought I had understood how it
used memory, and now was forced
to take a closer look at the problem.
This article is the first of a series
explaining how Garbage Collection
(GC) is done in VisualWorks.

My starting point was extensive
reading of the ParcPlace-Digitalk
manuals and examination of the image. I ran across the
MemoryPolicy class comment, which states: “A typical mem-
ory policy might be to run the Incremental Garbage
Collector (IGC) in the idle loop, in low-space conditions,
and periodically in order to keep up with the OldSpace
death rate.” Light bulbs! My application does not fit the
regular pattern of GUI applications! Idle times are a rarer
event for server applications, since they do not enjoy
human interface pauses. Instead, they might service many
users, and always have a high-activity level. Armed with
my apparent lack of memory-management knowledge, I
embarked on a journey to discover exactly how Smalltalk
deals with memory beyond the Scavenge.

GARBAGE COLLECTION
To understand how the MemoryPolicy class interacts with
the image, one first needs to step back and understand
how garbage collection works. Some background informa-
tion can be found in Kent Beck’s “Garbage Collection
Revealed,” The Smalltalk Report, Vol. 4, No. 5, Feb. 1995,
which talks about VisualSmalltalk, and gives the reader a
http://www
detailed introduction into GC theories. More information
can be found on the Web at ftp://ftp.netcom.com/
pub/hb/hbaker/home.html, which contains access to a
number of papers on GC theories. Hewitt and Lieberman’s
paper “Lifetimes of Objects,”1 and David Ungar’s classic
paper “High Performance Smalltalk Systems,”2 also lay
groundwork for the GC logic used by current commercial
Smalltalk systems. These papers point to a key discovery:
namely, that most objects are short lived. In fact, 80 to 98

percent of objects die shortly after
birth. The survivors generally live for
a long time.
With this observation in mind, a
typical Smalltalk system divides
memory into two areas: NewSpace
for object creation and OldSpace for
long-lived objects. The objective of
a memory-management system is
to aggressively do GC work on a

small area of memory. This activity can be done within the
pause time between keyboard keystrokes, so the impact
on the user isn’t noticed. From time to time, checking all
objects in a multimegabyte image for survivors is done, by
using an incremental GC that runs when the system isn’t
doing more important work. Running short on memory
will trigger more drastic measures to find and remove
dead objects, before declaring a critical memory shortage.
An application that doesn’t match well with the expected
behavior will suffer from pauses, and possibly use exces-
sive swap space as the OldSpace GC logic attempts to fix a
problem that might be solvable within the domain of the
NewSpace GC logic.

NEWSPACE GC LOGIC
NewSpace is really three areas, with a tenuring extension3

to make four. These areas are used as a base for the
garbage-collection algorithm. ‘Eden’ is where objects are
first allocated, or born. The next two areas are Survivor
spaces. One contains live objects, while the other is empty,
being used during an event called “The Scavenge.” A
The Smalltalk Report.sigs.com

fourth space, ‘LargeSpace’, is used to handle large objects
as a modification to the original algorithm, and attempts
to reduce the movement of large byte objects between
Survivor spaces. Strings that exceed roughly 1K are created
in LargeSpace with a link to Eden.

In a small VW 2.5 Windows NT image, the sizes of the
various spaces are:

THE SCAVENGE
When Eden fills to the Eden byte-used threshold, the
VirtualMachine (VM) invokes an event called a scavenge.
The verb “to scavenge” is aptly defined in the Webster’s
New Collegiate Dictionary as: “to remove (as dirt or refuse)
from an area, or to salvage from discarded or refuse mate-
rial.” During a scavenge, the VM locates all objects in Eden
and the active SurvivorSpace reachable by the systems
roots, and copies them into the empty SurvivorSpace.
Once the scavenge examines Eden and the original active
SurvivorSpace, those spaces now only contain dead
objects, and are deemed empty. Memory allocation starts
again, with objects being placed into Eden.

As you can see, survivor objects are shuffled between
the two SurvivorSpaces on each scavenge, with new
objects being added from Eden. Objects that die in

Eden 204,800 bytes
Survivor Space A 40,960 bytes
Survivor Space B 40,960 bytes
Large Space 204,800 bytes
November/December 1996 http://www

P
er

Figure 1. This figure shows restricted image growth, and allocation-rate impro
SurvivorSpace are not copied during the scavenge, and
overall growth is based on how good or bad your applica-
tion is in creating and holding new objects. You will notice
that 40K or so of memory isn’t very big, so once the num-
ber of bytes in SurvivorSpace reaches the defined thres-
hold, the scavenger will tenure objects from
SurvivorSpace to OldSpace until there is room in the
SurvivorSpace.

OLDSPACE
OldSpace is many memory segments that combine to
form a virtual chunk of contiguous memory. This leads to
the external behavior shown to the hosting operating sys-
tem. A VW image will grow by chunks; once the memory
is allocated from the hosting operating system, it is not
returned. Images never shrink, they just grow. Great, but
with all that activity hidden in the VM, can NewSpace
garbage collection be controlled? Certainly. In fact, you
need to control garbage collection to solve a problem
known as the ‘Early Tenuring Issue’—the result of an
application holding objects for a few hundred millisec-
onds too long.

When this happens, objects are tenured into OldSpace
too early and promptly die, thus defeating the generation
scavenging logic. This shifts NewSpace GC work to the
OldSpace GC logic. To show how this happens, let us create
an object that will artificially hold items and cause the early
tenuring problem. We will then alter the size of
SurvivorSpace to observe how it will affect performance.
Source code will follow this article. To alter the size of
NewSpace, you must use ObjectMemory class>>sizesAtStartUp:
SurvivorSpace size times default size

ce
nt

ag
e b

et
te

r th
an

 de
fa

ul
t

ca
se

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8

A

B
C128 Bytes

256 Bytes

512 Bytes
5.sigs.com

vements against default NewSpace size of 40K.

CONTROLLING VISUALWORKS
SurvivorSpace size times default size

rc
en

ta
ge

 be
tte

r th
an

 de
fa

ul
t

ca
se

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8

A

B

C

128 Bytes

245 Bytes

512 Bytes

Figure 2. This figure depicts unrestricted memory growth.
e
and ObjectMemory class>>thresholds: to change the default
sizes and thresholds, which were chosen by ParcPlace. The
sizesAtStartUp: method allows me to alter the amount of
memory VW allocations for each memory area at startup.
The thresholds: method dictates the thresholds for Eden,
Survivor, and LargeSpace.

Two conditions were tested. Since memory is not free,
I limited the amount of memory that the image could
allocate for one of the tests. The other had full freedom to
extend the image. For both tests, I altered the size of
NewSpace from two times the default size up to eight

times the default size. These changes allowed us to
observe the effects of a survivor space that varied from
80K to 320K.

The EarlyTenureTest object allocates an Array of 500 ele-
ments. For a certain number of seconds, a loop is per-
formed, where a new String object of a given size is allocat-
ed and placed in the Array, starting at element one. The
index is incremented, and a new string is allocated into the
next element. When the last element of the Array is
reached, it starts again at element one. If the SurvivorSpace
isn’t large enough to contain the full working set of the

P

OldSpace is many memory
segments that combine to form

a virtual chunk of
contiguous memory.
6 http://www
Array and it’s components, some of these strings will be
tenured into OldSpace.

To show how the image behaves under different condi-
tions, and how OldSpace GC really impacts performance,
we first restrict the image’s size to 8MB.

In Figure 1, we see allocation-rate improvements
against the default NewSpace size of 40K. EarlyTenureTest
instances are created using a string size of 128, 256, and 512
bytes. These instances require a working set size of at least
64K, then 128K, and finally 256K bytes. On reviewing Figure
1, it is clear that the 128-byte allocation rate improves by
about 80%, when we go to a Survivor size of 2x (see point
A). For the 256-byte instance, the SurvivorSpace needs to
go to 4x before the allocation peak (see point B). Finally, for
the 512-byte instance, we peak at a SurvivorSpace size of
7x, with an improvement of almost 200% to the allocation
rate (see point C). The impressive improvement for the
512-byte instance happens when we avoid expensive
OldSpace GC work. In all three cases, there is a net
improvement in the overall work done by the application.
Figure 2 shows what happens if memory growth is not
restricted.

Although the increase in memory-allocation rates is
not as impressive as in our first case, image growth is
affected. Using the default size, the image grows from
8MB to 13MB. Changing the size to 7x keeps the image at
8MB, and improves allocation performance from 25% to
almost 60%. Again, points A, B, and C show the plateaus
where we get the best allocation improvement for the
128-, 256-, and 512-byte instances. Image growth may be
free, but allowing it means managing a larger OldSpace,
and this can ultimately impact performance.

For both free-growth and restricted-growth situations,
.sigs.com The Smalltalk Report

the ending memory-allocation rate is roughly the same,
once we reach seven times the default SurvivorSpace size.
The image in both cases stabilizes at a dynamic footprint
of about 8MB. A larger SurvivorSpace improves memory
allocation throughput and reduces image growth. More is
better—a “win/win” situation.

In many cases, changing the size of SurvivorSpace
means tenuring problems can be traded for slightly

more time spent on NewSpace GC work. Many of the
thresholds decided by ParcPlace-Digitalk for VW date
from 1990, and CPU performance, have greatly
increased since then. One can easily increase the
amount of memory that the scavenger needs to exam-
ine, without noticing any effects on response time; and
as our examples show, you can improve your applica-
tion’s performance by 200%!

Of course, your application may not have a small work-
ing set. Even so, some tests are worth doing. Consider
altering your SurvivorSpace allocation by a factor of 10x,
and observe the final dynamic memory footprint and
time needed to complete a certain task.

This article addresses only NewSpace GC work. In an
upcoming issue, I will discuss how memory is allocated,
and what happens if you don’t have sufficient memory on
hand when you ask for another MB (or two) of that elusive
resource.

SUPPORTING CODE
From VisualWorks(R), Release 2.5 on September 26, 1995:

Object subclass: #EarlyTenureTest
instanceVariableNames: ‘holdTooLong counter

allocationSize trackAllocations logStream canStop
waitSync ‘

classVariableNames: ‘’
poolDictionaries: ‘’
category: ‘JMM-Memory-Paper’!

EarlyTenureTest comment:

©1996 John M. McIntosh, All Rights Reserved.
johnmci@ibm.net.

An object that creates the EarlyTenure problem so we
can examine NewSpace behavior:

Instance Variables:

holdTooLong <Array> holder for strings of
size allocationSize

A larger SurvivorSpace improves
memory allocation throughput and

reduces image growth.
counter <Integer> iterates over the array to place
elements

allocationSize <Integer> holds current allocation size
for Strings

trackAllocations <Integer> hold total number of alloca
tions

logStream <Stream> log of information about
test cycle

canStop <Boolean> true when I can stop

waitSync <Semaphore> used to sync workand
result log

Note: to test this you must invoke the sizesAtStartup:, then
quit and save your image. After restart of the image,
invoke thresholds: to reset the NewSpace memory thresh-
old. You may need to adjust sizesAtStartup: if your installa-
tion has already altered some of the other memory space
sizes.

ObjectMemory sizesAtStartup: #(1.0 7.0 1.0 1.0 1.0 1.0).
ObjectMemory thresholds: #(0.96 0.95 0.90)’!

!EarlyTenureTest methodsFor: ‘actions’!

createElement
self holdTooLong at: self incrementCounter

put: (String new: self allocationSize)!

incrementCounter
self trackAllocations: self trackAllocations + 1.
^counter := counter >= self defaultCounter

ifTrue: [1]
ifFalse: [counter + 1]!

runForThisManySeconds: aNumber
“Fork the delay timer, fork the work, when done return

the logStream contents”

self forkTimer: aNumber.
self forkAllocation.
self waitSync wait.
^self logStream contents!

writeSize
“Print the time, memory footprint, scavenges and total

allocations for our records”

self logStream nextPutAll: Time now printString;
space;
nextPutAll: ObjectMemory

dynamicallyAllocatedFootprint printString;
space;
nextPutAll: ObjectMemory current numScavenges

printString;

CONTROLLING VISUALWORKS
space;
nextPutAll: trackAllocations printString;
cr! !

!EarlyTenureTest methodsFor: ‘defaults’!

defaultCounter
^500!

defaultPriority
^Processor userBackgroundPriority!

defaultSize
“Do not change over 1000 bytes “
^512! !

!EarlyTenureTest methodsFor: ‘accessing’!

allocationSize
^allocationSize isNil

ifTrue: [allocationSize := self defaultSize]
ifFalse: [allocationSize]!

allocationSize: aNumber
allocationSize := aNumber!

canStop
^canStop!

canStop: aFlag
canStop := aFlag!

holdTooLong
^holdTooLong!

holdTooLong: anArray
holdTooLong := anArray!

logStream
^logStream!

logStream: aStream
logStream := aStream!

trackAllocations
^trackAllocations!

trackAllocations: aNumber
trackAllocations := aNumber!

waitSync
^waitSync!

waitSync: aSync
waitSync := aSync! !

!EarlyTenureTest methodsFor: ‘initialize-release’!
8 http://www.s
initialize

holdTooLong := Array new: self defaultCounter.
counter := 0.
logStream := WriteStream on: (String new: 1024).
canStop := false.
trackAllocations := 0.
waitSync := Semaphore new! !

!EarlyTenureTest methodsFor: ‘forks’!

forkAllocation

[self writeSize.
[self canStop] whileFalse: [self createElement].
self writeSize.
self waitSync signal]

forkAt: self defaultPriority!

forkTimer: aNumber

[(Delay forSeconds: aNumber) wait.
self canStop: true]

forkAt: self defaultPriority + 1.! !
“— — — — — — — — — — — — — — — — — — “!

EarlyTenureTest class
instanceVariableNames: ‘’!

!EarlyTenureTest class methodsFor: ‘instance creation’!

new
^super new initialize! !

!EarlyTenureTest class methodsFor: ‘Example’!

example
^self new allocationSize: 128; runForThisManySeconds:

15.! !

References
1) Lieberman, H., and Hewitt, C., “A Real-Time Garbage Collector Based

on the Lifetimes of Objects,”CACM 26,6, June 1983, pp 419-429.

2) Ungar, D. M., “Generation Scavenging: A Non-disruptive High-

Performance Storage Reclamation Algorithm,” Proceedings of

the {ACM SIGSOFT/SIGPLAN} Software Engineering Symposium

on Practical Software Development Environments, June 1984, pp

157-167.

3) Ungar, D. M., and Jackson, F., “An Adaptive Tenuring Policy for

Generation Scavengers,” ACM Transactions on Programming

Languages and Systems, Vol. 14, No 1, January 1992, pp 1-27.

S

John McIntosh is an independent Smalltalk consultant. After
eight years of building client/server applications, he discovered
Smalltalk. It was love at first sight! He is currently building Web
applications for a Silicon Valley company. He can be contacted by
phone at 800-477-2659 or by email at johnmci@ibm.net.
The Smalltalk Reportigs.com

