
The Smalltalk Idioms

Kent Beck

Object-Oriented Recursion
U
nderstanding recursion is a watershed in the life of
most software developers. The idea that you define
a computation, not in terms of other computations,

but in terms of itself, is a mind bender for most people. I
can remember carefully drawing stack frames with their
own local storage and program counter and painstaking-
ly following the progress of factorial and depth-first bina-
ry tree traversal. It was only when I found an obscure lit-
tle book in the science library that explained how to
transform recursion into iteration and vice versa, that I
really felt I understood recursion. Even then, it was
months before I could reliably use it as a programming
technique.

Such a powerful technique must be an important part
of programming objects, right? Well, yes and no.
Combining recursion with objects is powerful, more pow-
erful than its procedural counterpart, but you have to
manage it differently to make effective use of it.

TAKE ONE
Rule 1: Send the recursive message to different objects.
Procedural recursion is defined as a procedure that calls
itself with different parameters. At some point, you have to
reach the base or degenerate case of the recursion, at which
time you do not call the procedure further (not if you want
the program to terminate, anyway). Factorial implemented
with procedural-style recursion looks like this:

Object>>factorial: aNumber
^aNumber = 1

ifTrue: [1]
ifFalse: [aNumber * (self factorial: aNumber - 1)]

In this version of #factorial: the receiver of the message
plays no particular role. The existence of the receiver of a
message as the implicit first parameter motivates the first
change in the use of recursion with objects. Rather than
invoke what is in essence a subroutine over and over on
the same object with different parameters, object-orient-
ed recursion invokes the same routine, but with different
objects as the receiver. The object-oriented version of
factorial doesn’t need an additional parameter. The
receiver of the message is the number to be “factorialed.”
September 1996 http://www
Number>>factorial
^self = 1

ifTrue: [self]
ifFalse: [self * (self - 1) factorial]

The resulting code is simpler by one argument, but other-
wise looks much like the procedural version.

WE PAUSE FOR A BIT OF MATHEMATICS
To illustrate the other difference between procedural and
object-oriented styles of recursion, we will turn to Peano’s
Axioms of Arithmetic. Zero is represented as “zero. ” Other
positive numbers are defined as nested invocations of the
function “succ” (for “successor”). For example, three is
represented as:

succ(succ(succ(zero)))

Given this definition of numbers, we can now define addi-
tion recursively. The base case of the recursion is adding
any number to zero, equals that number:

Case 1: add(X, zero) = X

Thus, adding zero and three results in three:

add(succ(succ(succ(zero))), zero) = succ(succ(succ(zero)))

The recursive case of the definition says that adding X to
a number which is the successor of Y is the same as
adding X to Y, then getting the successor of the sum.

Case 2: add(X, succ(Y)) = succ(add(X, Y))

Algebraically, this is the same as saying:
X + (1 + Y) = 1 + (X + Y)

Adding two to one results in the following invocations:

add(succ(zero), succ(succ(zero))) = succ(add(succ(zero), succ(zero))) by case 2
succ(add(succ(zero), succ(zero))) = succ(succ(add(succ(zero), zero))) by case 2
succ(succ(add(succ(zero), zero))) = succ(succ(succ(zero))) by case 1

Lo and behold, 2 + 1 = 3!

AXIOMS TO OBJECTS
We can turn Peano’s Axioms into objects by making a

successor object, which is linked to its predecessor. A
27.sigs.com

SMALLTALK IDIOMS
linked list of three successors represents the number
three. The end of the list will be represented by nil.

Class: Succ
superclass: Object
instance variables: pred

We can provide a Constructor Method for Succ that
returns the Peano version of an Integer:

Succ class>>fromInteger: anInteger
^anInteger = 0

ifTrue: [nil]
ifFalse: [self of: (self fromInteger: anInteger - 1)]

We create the successor of a Peano number by creating a
new instance of Succ and setting its predecessor to the
number.

Succ class>>of: aPeanoNumber
^self new setPred:aPeanoNumber

Succ>>setPred: aPeanoNumber
pred := aPeanoNumber

We compute the predecessor of a Peano number by
simply returning the value of the instance variable
“pred.”

pred
^pred

We compute the successor by tacking on another succes-
sor object:

succ
^Succ of: self

For debugging purposes, we can define a printing method
that shows us the receiver in Peano format.

Succ>> printOn: aStream
aStream nextPutAll: ‘succ(‘.
self pred isNil

ifTrue: [aStream nextPutAll: ‘zero’]
ifFalse: [self pred printOn: aStream].

aStream nextPutAll: ‘)’

Three now prints as three nested invocations of “succ”:

(Succ fromIneger: 2)+ (Succ fromInteger: 1) succ(succ(succ(zero)))

Given the definitions of #pred and #succ, we can turn the
axioms of arithmetic into a method. Because we are
explicitly checking for the base case of the recursion, the
code is not quite a direct translation of the original
axioms.

+ aPeanoNumber
|subTotal|
subTotal:= self pred isNil

ifTrue: [aPeanoNumber]
ifFalse: [self pred+ aPeanoNumber].

^ subTotal succ

Adding two and one result in our now famous three:
(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(zero)))
28 http://www
Take Two
Rule 2: Represent the base case of the recursion by a dis-
tinct object. Now we are finally ready to examine the sec-
ond difference between procedural and object-oriented
recursion. Procedural recursion relies on explicits checks
for the base case of the recursion. The previous code
shows this style in the #+method, where an explicit con-
ditional checks for a nil argument.

Every time I use recursion in the beginning, and dis-
tressingly often thereafter, I forget to check the base
case. You can use objects and messages to make such
errors less likely, and to simplify the code at the same
time.

The key is not to rely on the generic undefined object
to stop the recursion. Instead, you create your own
“undefined object,” then make sure it responds to the
same messages as the object representing the recursive
case.

To apply this principle here, we have to first replace nil
with a new object, Zero.

Class: Zero
superclass: Object
instance variables: <none>

Rather than returning a nil when we want to represent a
zero, we return an instance of our new object instead:

Succ class>>fromInteger:anInteger
^anInteger=0
ifTrue: [Zero new]
ifFalse: [self of: (self fromInteger: anInteger - 1)]

Adding a Zero and any number results in that number:

Zero>>+ aPeanoNumber
^aPeanoNumber

Adding a successor to a number now need not check for nil:

Succ>>+ aPeanoNumber
^(self pred + aPeanoNumber) succ

Once again, we can add two and one to get three:

Figure 1. The number three, represented as objects.

Peano Objects for “3”

Succ
pred Zero

Succ
pred

Succ
pred
The Smalltalk Report.sigs.com

SMALLTALK IDIOMS
(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(a Zero)))

Notice that the zero prints out a little differently than
before. We can easily fix that:

Zero>>printOn: aStream
aStream nextPutAll: ‘zero’

And we can get rid of the code in Succ that checks for nil.
I love bug fixes that involve removing code!

Succ>>printOn: aStream
aStream nextPutAll: ‘succ(‘
self pred printOn: aStream.
aSteam nextPutAll: ‘)’

Now two plus one prints correctly again:

(Succ fromInteger: 2) + (Succ fromInteger: 1) succ(succ(succ(zero)))

The addition code looks much more like the original
mathematics (taking postfix notation into account):

Case 1: add(zero, X) = X
Case 2: add(succ(X), Y) = Y = succ(add(X, Y))

Zero>>+ aPeanoNumber
^aPeanoNumber

Succ>>+ aPeanoNumber
^(self pred + aPeanoNumber) succ

We have been able to use polymorphism to write code
that communicates more clearly, because it translates
more directly from the original source. The code is more
like a specification and less like a computer program.

The Two Ways
We have seen two ways in which object-oriented recur-
sion differs from procedural recursion. First, rather than
invoke the same procedure with different arguments,
object-oriented recursion represents the invocations
themselves as objects, sending the same message to dif-
ferent objects.

In our example, this corresponded to creating a new
object to represent one invocation of the successor func-
tion. Most recursive routines don’t require this (somewhat
30 http://www
unnatural) step. If the recursive routine is operating over
a recursive data structure (trees or lists, for example), the
objects are likely to be there already.

The second difference between procedural and

object-oriented recursion is in the use of a special-pur-
pose object to represent the base case of the recursion.
Polymorphism’s ability to capture decision making in
what would otherwise be a simple procedure call comes
to the fore in this technique. The resulting code commu-
nicates, clearly even in the absence of explicity condi-
tionals.

You might ask, “Why don’t you use Smalltalk’s built-in
special object, nil, to represent the base case of the recur-
sion?” After all, in the example above, we could implement
#+ in UndefinedObject just as we did in Zero and the code
would work fine. The problem is that all developers share
the same UndefinedObject. If everyone added a handful of
methods to it, the result would be thousands of methods on
UndefinedObject, in other words, chaos. The chances of such
code communicating clearly, are slim, even if there weren’t
accidental disagreements about what UndefinedObject>>+
should do.

If you’d like to play around with recursion, you may
want to extend the code above. Try implementing #- or
#*. I found implementing negative numbers (hint, you
need a Pred class) to be quite challenging.

Kent Beck has been discovering Smalltalk idioms for twelve years
at Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338.4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (Compuserve).

S

“object-oriented recursion represents
the invocations themselves as objects,

sending the same message
to different objects.”
The Smalltalk Report.sigs.com

