
How to display an object
as a string:
TypeConverter and PrintConverter

Bobby Woolf
I
N PART 1 of this article, I described the need for each
object to generate a short string that identifies itself.
VisualWorks provides two messages to do this:

printString and displayString. printString displays the object
to a developer, so it specifies the object’s class. displayString
displays the object to a user, so it should not specify the
object’s class. In Part 2, I’ll talk about two classes for con-
verting an object to a String: TypeConverter and
PrintConverter.

TYPECONVERTER
TypeConverter is a class that was introduced in VisualWorks
1.0. It is a kind of ValueModel, a model that contains a sin-
gle aspect called “value.” The converter’s subject is itself a
ValueModel, so the converter enhances its subject by
adding conversion behavior while preserving its value-
model behavior.1 This is an example of the Decorator pat-
tern.2

The conversion behavior that a TypeConverter adds is
the ability to convert its subject’s value from one type to
another, and back again. This assumes that the two
types are convertible and the conversion is bi-direc-
tional.

The primary type that TypeConverters convert to is Text,
which is just a fancy string. ParcPlace has already imple-
mented the algorithms numberToText, dateToText, objectToText,
and so on.

TypeConverter has two advantages over printString and
displayString:

• A TypeConverter does not just display the object as a
string; it converts the object to its String (actually Text)
equivalent.

• A TypeConverter can convert the String equivalent back
into the original type.

TypeConverter was introduced to support InputFieldView.
An input field’s value might be any type of object. The
field needs to display the object as a string, a task that
displayString can do. However, if the user types in a new
16 http://www
string, the field needs to convert that string back into its
value’s type. The standard message for converting a string
into an object is readFromString:.

A TypeConverter encapsulates displayString and
readFromString: together so that a source type can be con-
verted into a String and back again. In the process, it
remembers the target’s type—whether the new object
should be a Number, a Date, etc. It also checks for excep-
tional conditions, such as the original object being nil or
times, when empty-string from the user should be con-
verted into nil. Since TypeConverter encapsulates all of this
behavior into a single object, it can easily be reused any
time this conversion is needed.

AN EXAMPLE
Here’s an example of how a TypeConverter can be used.

Let’s say you’ve stored somebody’s age, and that it’s acces-
sible through a ValueModel called ageHolder. Age is a Number,
but you need to display it in a field. If the user types in a
new age, you need to convert it back into a Number. This
code shows the two value-models you’ll need:

| ageHolder ageAsStringHolder |
ageHolder:=10as Value.
ageAsStringHolder :=

TypeConverter onNumberValue: ageHolder.
Transcript cr; show: ‘age’’s type is ‘,

ageHolder value class displayString.
Transcript cr; show: ‘ageAsString’’s type is ‘,

ageAsStringHolder value class displayString.
The transcript shows that ageHolder contains a
SmallInteger, and ageAsStringHolder contains a Text. The
input field’s model would be ageAsStringHolder. Any code
needing to access the age in its unconverted form would
go through ageHolder.

PRINTCONVERTER
The problem with TypeConverter, displayString, and

printString is that they all assume that there’s only one way
to show a particular object as a string. This “one-size-fits-
all” approach is often insufficient. A Date can be printed
The Smalltalk Report.sigs.com

September 1996
“A TypeConverter encapsulates
displayString and

readFromString: together.”
many different ways: December 25, 1990; 25-DEC-90;
Christmas Day. A Time has several choices: 4:00 P.M.;
16:00:00; etc. A Number can be printed with leading and/or
trailing zeros: 1; 1.00; and so on. TypeConverter can’t handle
these formatting choices. As long as it converts to the
right type, it’s done. Subtleties about what exactly the
resulting type should look like have to be handled some-
where else.

PrintConverter is essentially a TypeConverter that has been
optimized to display objects to the user as strings. Whereas,
a TypeConverter can convert from any type to any other type
and back again, and PrintConverter
only converts to strings. Like
displayString, PrintConverter doesn’t
even convert the object to its string
equivalent; it just displays the object
as a string. Like a TypeConverter, a
PrintConverter can convert an input
string back into the original object’s
type.

The major advantage PrintConverter has over both
TypeConverter and displayString is that it can format the
string it displays. You do this by specifying the type of
source object to be converted, but also by specifying the
format of the resulting string. For example,

PrintConverter for: #date

will create a PrintConverter that will display a Date using the
default format. On the other hand,

PrintConverter
for: #date
withFormatString: ‘d-mmm-yy’

will create a PrintConverter that will display a Date using the
format specified.

The other advantage of the way PrintConverter works is
that a single converter can be used to display a number of
objects of the same type with the same format. To display
a list of twenty Dates with the format ‘d-mmm-yy,’ you
only need one PrintConverter for the whole list. As the list
prints each Date, it runs the Date through the PrintConverter,
which returns the formatted string for that Date. To per-
form a similar conversion using TypeConverters, you would
need twenty TypeConverters, one for each Date.

Ironically, the only widgets that use PrintConverters are
input fields, combo boxes (which, of course, contain input
fields), and those data sets that contain input fields and/or
combo boxes. SequenceView (the List widget) doesn’t use
PrintConverter. So if you develop a PrintConverter that formats
Dates in a special way that you like, you can use that format
to display a list of Dates, in a DataSetView but not a
SequenceView. To use that format in a List widget, you have to
implement a method, such as Date>>displayStringSpecialWay,
and set the SequenceView’s displayStringSelector to
displayStringSpecialWay.3 So now you have the same format
implemented in a special instance of PrintConverter for Dates
and a special method in Date. I would prefer to only imple-
ment this code in one place, not two.
http://www
WHERE PRINTCONVERTER IS USED
You’re already using PrintConverters, even if you don’t real-
ize it. In the Painter, when you specify the properties for
an Input Field, two of the properties on the Basics page
are Type and Format. What you’re specifying is the source
object’s type (String, Symbol, Text, Number, etc.) and its for-
mat ((@@@) @@@-@@@@, 0.00, etc.). This is all of the
information needed to set up a PrintConverter. When you
open the window, as the Builder creates the Input Field, it
also creates a PrintConverter with the properties you have
specified. Combo Box and Data Set have similar properties

that specify the PrintConverter to
use.
As you create your own objects
that need to be displayed as
strings, I suggest you create new
PrintConverters to display them.
Let’s say you have a Money class.
You want to be able to display a

Money object in an Input Field and get a new one from the
user by having him type it within the field.

1. You would need to implement PrintConverter>>initForMoney.
Use the corresponding methods for Date, Number, and String
as examples of how to implement your methods.

2. Modify PrintConverter class>>for: to add #money onto
that big, long case statement.

To make your new Money PrintConverter accessible from the
Properties Tool:

3. Modify InputFieldSpec class>>typeMenu to add ‘Money’
-> #money.

Now the Properties Tool will allow you to specify the type of
a value for an Input Field as Money. This will also be avail-
able for Combo Box and Data S et widgets.

Modifying the list of formats for one of ParcPlace’s types
is also simple. See the methods in InputFieldSpec class>for-
mats. For example, to add another string format, modify
the method InputFieldSpec class>>defaultStringFormats.

Unfortunately, specifying special formats for your new
Money PrintConverter is not very easy. You would need to
implement MoneyPrintPolicy as a subclass of PrintPolicy.
That ultimately involves implementing MoneyPrintPolicy
class>>nextTokenOn: and MoneyPrintPolicy>>print:on:policy:, a
task which is not for the faint of heart.

READFROMSTRING:
Earlier I mentioned that TypeConverter (and PrintConverter)
use readFromString:. If you don’t know what this method
does, you’ll need to learn so you can implement your own
converters.

Object class>>readFromString: is sort of the opposite of
Object>>printString. The implementor in Object really only
works if the string contains a literal or a store-string (see
Object>>storeString).4 However, implementors in more
17.sigs.com

18

DISPLAY AN OBJECT AS A STRING
•
d
p

•
r
b

•
r

“PrintConverter is essentially a
TypeConverter that has been

optimized to display objects
to the user as strings.”
specialized classes work well because they can assume
that the string represents an instance of that class. For
example, Object doesn’t know what to make of “April 5,
1982,” nor do most classes, but Date is able to make it into
a Date.

Just like printString uses printOn: to do most of the work,
readFromString: lets readFrom: do everything. Thus you’ll
never subimplement readFromString:, but you should
implement readFrom: in your own classes. Ideally,
readFromString: should reverse the process of printString
and displayString and should also recognize any format-
ting that a PrintConverter might throw in. For example, if
the printString for a particular Person is “John Smith,” you
will need to implement Person class>>readFrom: to inter-
pret that string as a Person with that name.

GLOBALIZATION
Globalization (internationalization), a feature added in
VisualWorks 2.5, adds a whole new twist to displaying an
object as a string. In order to know what string to display
and how to interpret a new string, you have to know what
language the user speaks and what
formatting conventions he uses.
This has not been an issue prior to
this upgrade, because we always
assumed (often inaccurately) that
the user speaks American English.

First, ignore globalization when
implementing printString (printOn:),
storeString and readFromString:. These
methods are for developers. Since
Smalltalk is written in American English, the methods can
assume that they should use that language. In addition I
think these methods need to be simple and highly reliable;
globalization is an unnecessary complication.

Second, ignore globalization when implementing
displayString as well. Just as printString should be simple, so
should displayString. Use displayString as a quick-and-sim-
ple way to display an object to the user. When this
becomes too complicated, such as when globalization is
necessary, use a PrintConverter instead.

Third, TypeConverters don’t need globalization either. A
TypeConverter is only responsible for converting an object’s
type to or from a string. As long as the object is a String,
any effort to format it or translate it into another language
is unnecessary. These are responsibilities better fulfilled
by a PrintConverter.

Finally, a PrintConverter should use globalization when
performing its conversion. Look at the ones that
ParcPlace has already implemented for Date, Time, and
Timestamp. Their toPrint and toFormat blocks use “Locale
current ...” and TimestampPrintPolicy to display a string
appropriate for the current location. Similarly, the toRead
blocks use “Local, current ...” and TimestampPrintPolicy to
read a string from the user. As I mentioned earlier,
implementing your own subclass of PrintPolicy is diffi-
cult.

A PrintConverter that uses globalization does not use
http://www
readFromString: to convert a string back into an object.
readFromString: does not use globalization, so it is not
appropriate for this purpose. Instead, a globalized
PrinterConverter uses a LocaleSensitiveDataReader to convert
a location-specific string back into an object. Just as
PrintPolicy displays an object in a location-specific way,
LocaleSensitiveDataReader does the opposite. If your own
subclass of PrintPolicy displays an object in a location-
specific way, you’ll need to implement a subclass of
LocaleSensitiveDataReader to read it back.

CONCLUSIONS
Here are the main points in this article:

• Unlike printString and displayString, a TypeConverter can
convert a string back into an object again.

• A TypeConverter is useful for converting an object to a
String, but doesn’t display it as a string very well.

• PrintConverter is designed to display an object to the
user as a string. It makes displayString into a first class
object.

 PrintConverter is able to format the
isplay string the way the user
refers.

 A PrintConverter uses
eadFromString: to convert a string
ack into an object.

 All classes should implement
eadFromString: (via readFrom:) to

convert their print-strings and
display-strings back into an instance.

• A PrintConverter should use the globalization framework
to format the string for the current location.

I hope you now see that displaying an object as a string is
often not a trivial matter. VisualWorks provides several
protocols and frameworks to help you. If you learn how to
use them well, I think you’ll find your system a lot easier
to use.

References
1. Coplien, James O. and Schmidt, Douglas C., Editors. PATTERN

LANGUAGES of PROGRAM DESIGN. Addison-Wesley, 1995.
“Understanding and Using the ValueModel Framework in
VisualWorks Smalltalk” by Bobby Woolf.

2. Gamma, Erich, Helm, Richard, Johnson, Ralph, and Vlissides,
John. DESIGN PATTERNS: ELEMENTS of REUSABLE OBJECT-ORIENTED

SOFTWARE, Addison-Wesley 1995.

3. Kohl, William and Howard, Tim “VisualWorks List Components”
The Smalltalk Report, June 1994.

4. LaLonde, Wilf R. and Pugh, John R. INSIDE SMALLTALK, Vol. 1.,
Prentice-Hall, 1990, Section 6.2.9, “Read/Write Operations:
PrintStrings and StoreStrings.”

Bobby Woolf is a senior member of technical staff at
Knowledge Systems Corp. in Cary, North Carolina. He mentors
Smalltalk developers in the use of VisualWorks, ENVY, and
Design Patterns. Comments are welcome at woolf@acm.org. or
at htpp://www.ksccary.com.

S

The Smalltalk Report.sigs.com

