
Managing Objects

Documents on the Web
Barbara YatesJan Steinman
O , we launched this column with an essay
on project documentation. We followed up in
September 1995 with some code sketches for imple-

menting a hyperliterate documenting system for Visual-
Works under Envy.

Now the World Wide Web has taken the planet by
storm. This is both a crisis and an opportunity. Those who
ignore the Web risk ending up as roadkill on the infobahn.
On the other hand, those who approach the Web with a
thoughtless, knee-jerk reaction are just as likely to fail.

The latter approach can significantly reduce produc-
tivity. “MegaCorp’s goal is to have all project documenta-
tion available on the Web,” sounds nice, until it is fol-
lowed with “therefore, all programmers will immediately
attend HTML training, so they can create their documen-
tation for the Web.” This makes it very difficult to fulfill
our first principle of hyperliterate programming:

The documentation for a thing must be on the same
conceptual level as that thing.

The developers will have to “shift mental gears” to get
out of Smalltalk mode and into HTML mode. Knuth’s
initial concept of literate programming required pro-
grammers to learn and use a complex textual mark-up
language, which muddled their conceptual space. Even-
tually, tools for LaTeX emerged, but literate programming
never quite reached the masses, largely because of the
cognitive dissonance between coding programs and cod-
ing documentation.

“No problem, we’ll invest in Web authoring tools to
make the HTML part easy.” This also kills productivity,
which is now a victim of ignoring our second principle of
hyperliterate programming:

The documentation for a thing must constantly and
accurately describe that thing.

If developers are leaving Smalltalk to write Web pages,

Jan Steinman and Barbara Yates are co-founders of Bytesmiths,
a technical services company that has been helping compan-
ies adopt Smalltalk since 1987. Between them, they have more
than 22 years of Smalltalk experience. They can be reached
at Barbara@Bytesmiths.com or Jan@Bytesmiths.com, or via
http://www.bytesmiths.com.
20 http://www
no matter how good their Web authoring tools, neither
their code nor their documentation is going to be as good
as it would be if they combined the two activities in one
environment. One or the other will suffer, and it is almost
always the documentation that is not “constantly and
accurately” describing the code.

In reality, the only principle of hyperliterate program-
ming that Web authoring partially fulfills is the third one:

The documentation for a thing must be accessible; by
creators, their peers, reusers, reviewers, end-user docu-
menters, and the merely curious.

But wait, who does Web authoring give improved ac-
cess to? Certainly not the creator or their peers, who must
now have both Smalltalk and a Web browser running in
order to do their job. Probably not reusers, once they
make the initial Web query and then need deeper access.
Probably not all reviewers, some of whom will want de-
tailed information from within Smalltalk.

So, Web authoring provides increased access to end-
user documenters and the merely curious, at the expense
of the two usage roles most involved with development—
creators and their peers!

Finally, our fourth principle of hyperliterate program-
ming states:

The documentation for a thing must be measurable,
quantitatively and especially qualitatively.

Anyone who can type “du -s” in the root directory of a
UNIX Web tree will get a gross measure of the documen-
tation, but what will that tell us? Web authoring is inap-
propriate for hyperliterate programming because it is
file-based—you will need an entire new suite of tools to
do quantitative and qualitative analysis. If you’ve got a
perl guru in your group, that might work, but why not
leverage the Smalltalk talent you’ve been carefully grow-
ing? It’s unlikely that files of HTML code will ever be mea-
sured as part of a repository-centric metrics program.

THE WEB IS AN EXPORT TARGET
Just because we don’t believe “Web authoring” is appro-
priate for hyperliterate Smalltalk development doesn’t
mean we think the Web useless. “Web authoring” means
The Smalltalk Report.sigs.com

the creation of Web documents by humans, which is great
if you want to create a “cool site” or impress others with
your HTML prowess, but it is at odds with the principles
of hyperliterate programming, which require keeping
documentation as close to the code as possible, in terms
of granularity of concept, as well as physical location.

The knee-jerk problems happen when some vice-pres-
ident says “We gotta get on the Web!” and the ripple effect
causes otherwise bright people to do stupid things, such
as dictate that all Smalltalk documentation will be in
HTML.

Fortunately, HTML is easy to generate from your
Smalltalk-resident documentation. If you followed the
implementation sketch for Smalltalk hypertext we pre-
sented in September 1995, you already have a good start.

That implementation used a special emphasis for Vis-
ualWorks Text that allowed it to treat Smalltalk expres-
sions specially. This was but a small step from “real”
hypertext. We have since extended so it has a notion of
both an anchor, or visible text with human-meaningful
presentation, and an action, which is a block of Smalltalk
source code. To distinguish this, we call it a “clickAction.”

VisualWorks has been criticized for being divorced
from platform capabilities, but its Text class provides an
abstraction for styled text that is much more powerful
than thoughtlessly abdicating all presentation to platform
widgets. Text has an efficient tagged-character facility that
allows you to associate arbitrary objects with runs of char-
acters. Three common tag types are:

• A simple emphasis Symbol, such as #bold or #italic,
• a compound emphasis Array of other emphases, such

as #(#bold #italic),
• a parameterized emphasis Association between a

Symbol and an arbitrary object.
This last capability is used for things like colored text and
different fonts or font sizes.

We defined a new parameterized emphasis for Text
that contains the Symbol #clickAction associated with
Smalltalk source code for a block. We made changes to
ParagraphEditor so that double-clicking one of these
“clickActions” causes the block to be evaluated—instant
hypertext! To enable this, you need a “global method” that
can discriminate clickActions:

Object
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? Hardly!!”

^false

SequenceableCollection
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? I do if any of my contents does.”

^self
detect: [:object | object isClickAction]
transform: [:ignored | true]
ifNone: [false]
June 1996 http://www
CharacterArray
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? Strings and Symbols are never
considered active emphases. This override keeps the
superclass method from examining each of my
Characters to see if they are hyper links.”

^false

Association
isClickAction

“When used as an emphasis in a Text, do I function as
a hyper link? I do if my key is #clickAction, in which
case my value better be block-like, but I don’t check
that here.”

^#clickAction == key

Text
hasClickAction

“Do I contain any hyper links?”

^runs values
detect: [:emph | emph isClickAction]
transform: [:ignored | true]
ifNone: [false]

hasClickActionAt: characterIndex
“Do I have a hyper link at the given
<characterIndex>?”

^(self emphasisAt: characterIndex) isClickAction

You may notice the strange method #detect:transform:-
ifNone:, which is like #detect:ifNone:, except that when the
first block answers true, the value is passed through the
second block. We discovered that we usually use the result
of #detect:ifNone: this way, and so made it a bit easier to do:

Collection
detect: booleanBlock transform: transformBlock ifNone:
exceptionBlock

“Evaluate <booleanBlock> with each of the receiver’s
elements as the argument. Pass the first element for
which <booleanBlock> evaluates to true through
<transformBlock> and answer the result, or answer
the evaluation of <exceptionBlock> if no elements
assert <booleanBlock>.”

^transformBlock value: (self detect: booleanBlock
ifNone: [^exceptionBlock value])

You should combine one or more simple presentation
emphases with a clickAction for it to display differently,
rather than deciding that all clickActions are going to be
presented a particular way. We defined a simple empha-
sis #link as a blue underlined style, to make it familiar
to those with Web experience. We don’t have room for
that code today, but you’ll need to make new instance
creation methods for both CharacterAttributes and Text-
Attributes.
21.sigs.com

MANAGING OBJECTS
BUT WHERE’S THE HTML?
Once you have the foundations—a proper object model
for hypertext—spitting out HTML is almost trivial. We use
a distributed responsibility pattern familiar to anyone
who has examined how #printString works:

Object
asHtml

“Answer a representation of myself that is suitable for
use in a Web page. Subclasses should not override this
method; rather, they should override htmlOn:.”

| stream |
stream := (String new: 100) writeStream.
self htmlOn: stream.
^stream contents

Object
htmlOn: aStream

“Place on <aStream> a representation of myself that is
suitable for use in a Web page. The default
representation for objects is a #storeString
representation in ‘code’ style. Answer <aStream>.”

^aStream nextPutAll: ‘<CODE>’;
store: self;
nextPutAll: ‘</CODE>’;
yourself

At this point, different objects are free to render them-
selves into HTML as they see fit. Of course, the one we’ve
been concentrating on is Text, and so we have the requi-
site big, ugly method. Much of this complication is be-
cause of the desire to preserve some of the presentation of
lines that begin with tabs. Since HTML presentation is
normally driven by emphasis rather than content, treat-
ing tabs as presentation required an awkward, double-
pass treatment:

Text
htmlOn: aStream

“Place on <aStream> a representation of my contents
suitable for use in a Web page. Answer <aStream>.

For each emphasis found, write beginning and ending
HTML tags.
For each special HTML Character, write the appropriate
HTML character entity.
For lines beginning with tabs, write the proper
indented definition list.”

| turnOff |
turnOff := (String new: 16) writeStream.
^self class subscriptOutOfBoundsSignal

handle: [:ex |
aStream nextPutAll: turnOff contents.
ex returnWith: aStream]

do: [| here tabLevel prevTabLevel thisEmphasis
endEmph char characterEntity |

“Handle initial tabs properly.”
22 http://www.s
Tab == self first ifTrue: [^(Text with: CR), self
htmlOn: aStream.].

here := 1.
prevTabLevel := tabLevel := 0.
“Repeat the following until I have no more data.”
[here >= self size ifTrue: [^aStream].

“For each emphasis, build up a proper tag and an
untag.”

thisEmphasis := self emphasisAt: here.
thisEmphasis class == Array ifFalse:
[thisEmphasis := Array with: thisEmphasis].
1 to: thisEmphasis size do: [:i | | emph tags |

tags := (emph := thisEmphasis at: i)
isClickAction

ifFalse: [HtmlTags at: emph ifAbsent:
[HtmlNoTag]]
ifTrue: [emph value asHref -> ‘’].

aStream nextPutAll: tags key.
turnOff nextPutAll: tags value].

“For lines that begin with one or more tabs, build
a proper level of indentation.”

endEmph := here + (self runLengthFor: here).
[here < endEmph] whileTrue:

[char := self at: here.
char == CR ifTrue:

[tabLevel := 0.
[tabLevel := tabLevel + 1.
Tab == (self at: here + tabLevel)]
whileTrue: [].
tabLevel := tabLevel - 1.
tabLevel = prevTabLevel ifFalse:

[char := Tab. “to suppress <P>”
(prevTabLevel - tabLevel) abs
timesRepeat:

[aStream nextPutAll: (tabLevel >
prevTabLevel ifTrue: [‘<DL>’] ifFalse:
[‘</DL>’])]].

tabLevel > 0 ifTrue: [aStream nextPutAll:
‘<DD>’].
prevTabLevel := tabLevel].

“For each character with a given emphasis,
write the character or its HTML-legal
equivalent.”

characterEntity := HtmlCharacterEntities at:
char ifAbsent: [].
characterEntity == nil

ifTrue: [aStream nextPut: char]
ifFalse: [aStream nextPutAll:
characterEntity].

here := here + 1].
aStream nextPutAll: turnOff contents.
turnOff reset.
here := endEmph] repeat.

aStream]
The Smalltalk Reportigs.com

If you simply feed this method to Smalltalk, it will com-
plain bitterly, because we’ve added new class variables
to Text. We don’t like to change the definition of classes,
but luckily, you don’t need to if you’re only adding class
variables. We have all this code in a common ENVY
application called HyperTextBytesmiths, with a #loaded
method that adds the needed class variables to Text on
the fly, and of course, a #removing method that removes
those class variables when we’re done:

HyperTextBytesmiths
characterEntityTable

“Answer a Dictionary that associates non-ASCII
characters with their HTML character entities.”

^IdentityDictionary new
at: Character cr put: ‘<P>’;
at: Character tab put: ‘’;
at: $” put: ‘"’;
at: $& put: ‘&’;
at: $< put: ‘<’;
at: $> put: ‘>’;
at: (Character value: 160) put: ‘ ’;
at: (Character value: 161) put: ‘¿’;
at: (Character value: 162) put: ‘¢’;
at: (Character value: 163) put: ‘£’;
at: (Character value: 165) put: ‘¥’;
at: (Character value: 167) put: ‘§’;
at: (Character value: 171) put: ‘«’;
at: (Character value: 176) put: ‘°’;
at: (Character value: 177) put: ‘±’;
at: (Character value: 181) put: ‘µ’;
at: (Character value: 182) put: ‘¶’;
at: (Character value: 183) put: ‘·’;
at: (Character value: 187) put: ‘»’;
at: (Character value: 210) put: ‘®’;
at: (Character value: 211) put: ‘©’;
at: (Character value: 225) put: ‘Æ’;
at: (Character value: 225) put: ‘Æ’;
at: (Character value: 233) put: ‘Ø’;
at: (Character value: 241) put: ‘æ’;
at: (Character value: 249) put: ‘ø’;
at: (Character value: 251) put: ‘ß’;
yourself

loaded
“Add to TextConstants.”

TextConstants
at: #HtmlNoTag put: ‘’->’’;
at: #HtmlTags put: self tagTable;

at: #HtmlCharacterEntities put: self
characterEntityTable

removing
“Take away what I added to TextConstants.”

TextConstants
June 1996 http://www.
removeKey: #HtmlNoTag ifAbsent: [];
removeKey: #HtmlTags ifAbsent: [];
removeKey: #HtmlCharacterEntities ifAbsent: []

tagTable
“Answer a Dictionary that associates a Text emphasis
symbol with an Association of two Strings; the key is a
tag used to turn on the emphasis, the value is used to
turn off the emphasis.”

^IdentityDictionary new
at: #bold put: ‘’ -> ‘’;
at: #underline put: ‘’ -> ‘’;
at: #Heading1 put: ‘<H1>’ -> ‘</H1>’;
at: #Heading2 put: ‘<H2>’ -> ‘</H2>’;
at: #Heading3 put: ‘<H3>’ -> ‘</H3>’;
at: #Heading4 put: ‘<H4>’ -> ‘</H4>’;
at: #Heading5 put: ‘<H5>’ -> ‘</H5>’;
at: #Heading6 put: ‘<H6>’ -> ‘</H6>’;
at: #italic put: ‘<I>’ -> ‘</I>’;
at: #strikeout put: ‘<S>’ -> ‘</S>’;
yourself

Now we can generate HTML from any Text, but it is
necessarily “embeddable” HTML only suitable for the
“body” part of a Web page. We have numerous ways of
producing a complete page, but the most useful way
works from any ParagraphEditor, because it is the foun-
dation text editing class in VisualWorks. (The Stream
implementation of #htmlFor: is left as an exercise for
the reader!)

ParagraphEditor
htmlOn: aStream

“Place on aStream a representation of my contents
suitable for use in a Web page.”

^aStream
nextPutAll: ‘<HTML><HEAD><TITLE>’;
print: sensor window label;
nextPutAll: ‘</TITLE></HEAD><BODY>’;
htmlFor: self text;
nextPutAll: ‘</BODY></HTML>’; cr;
yourself

CONCLUSION
The Web can be a powerful communication tool, but
like all tools, it can be misused. Just as a screw driver or
an ice pick can kill a person, mandating inappropriate
use of the Web can kill a project.

We’ve demonstrated some techniques for exporting
off-line HTML from your “hot” Smalltalk documenta-
tion. Next month, we’ll show you how to serve your hot
documentation “on-line,” so that a Web browser can
view up-to-the-minute project documentation. This
should be enough to silence any VP who comes storm-
ing in, shouting “What are you guys doing about the
Web?” `
`

23sigs.com

