
ISTrn511talk1
tiltors

JohnPughandPaulWhite
CodetonUrrivewffy&JJreObj~tPe@e

;IGS Publications Advisory Board
TomAtwood,ObjectDesign
FranfoisBancilhon,02Terhnokgia
GradyBooth,Rrrtiona/
GeorgeBosworth,Oigita/k
JesseMichaelChonoles,ACCofA4rzrtihMoriettrz
StuartFmst,SflEf150ftworeTOOIJ
AdeleGoldberg,Przrrf%reSytenr~
lLJordanKriendler,IBM(onsuftirrgGroup
Tomlove,Corrdtant
BerhandMeyer,/5E
MeitirPage-Jones,Woy/mmf$Wemr
CliffReeve>IBM
BjameStmustrup,,4T&Tkf/&rbs
DaveThoma!,ObjectTechnologyhrterrmtional

me Smalltalk Report
tihorial Board

JimAnderson,Digitalk
AdeleGoldberg,PrrrcP/oceSystemr
ReedPhillips
MikeTaylor,Digito/k
DaveThomas,Objectlechrmlogylrrternotionol

:olumnists
JayAlmamde
KentBeck,firrt(/m$SotWre
JuanitaEwin$Digito/k
GregHendley,Know/erfgefystem~COrp
ilm Howard,FJfProtorolkrc
AlanKnight,JheObjwtkop/e
WTltiamKohl,ibthWe//brtematform/
Marklorenz,Mtwos Soffwore,Inc.
EricSmith,f(nowkvlge$memr @
RebecsaWirJs-BmckDigita/k

;IGS Publications Group, Inc.
RichardP.Friedman,Founder,P~iderrt,andCEO
HalAvery,GmupPubfisher

:ditor4al/Production
KristinaJoukhadar,EditorialOhector
Eti5aVarian,ProductionManager
AndreaCammarata,ArtDirestor
Eliibeth A.Up~AssosiateManagingEditor
Margarettlmti,AdveriisirrgProductionCoordinator

circulation
Bmce$hriver,Jr.,CirsulationDirector
JohnR.Wengler,~rculationManager

4dvertlsing/Marketing
GaryPortieAdvertisingManager,Ea$tCoast/Canada/Europe
JeJfSmith,AdvertisingManager,CentralU.S.
MishaelW.Pedr,AdvetiisingRepresentative
KristineViksnins,ExhibitSalesRepresentative

212.242.7447(v),212.242.7574(f)
DianeFuller&Associates,5al~Rep~entative,WestCoast

408.255.2991(v),4D8.255.2992(f)
SarahHamilton,DirertorofPmmotionsandResearch
WendyDhrbokowitz,PmmotiorrsManagerforMagazines
CarenPolner,SeniorPromotionsGraphicDesigner

\dministratlon
MarghwkaR.Mondr,GeneralManager
DavidChatterpaul,SeniorAccountingManager
JamesAmerruvor,BusinessManager
MicheleWatkins,Assistanttothe president

~SIGS
PUBLICATIONS

.tiblishers of JOURNALOF0Brr3cr-OmN’rEo
PROGRAMMING,OBJECTMAGAZINE,C++ RIWOIrT,THE
ShWLTALKREPORT,THEX JOURNAL,RIPORTON
DBIECZANALYSIS&DESIGN,and Ommcr SPEKTMJM
[GERMANY)

July-August 1995 Vol 4 No 9

Features

Remembranceof thingspast:
LayeredarchitecturesforSmalltalkapplications
Kyle Brown
Using a layered architecture and building from the”inside out” promotes good design,
reduces application complexity, and encourages reuse.

Segregatingapplicationanddomain
Tim Howard
The author introduces the domain adaptor architecture, a specialization of the application
model architecture that is designed to work specifically with domain objects.

8

Columns

Deep in the Heart of Smalltalk 13
ParameterizedCompile~ Making code reusable
BoiI Hinlde and Ralph E. Johnson
Motivated by a desire to implement a new breakpoint
mechanism, the authors revise Smalltalk’s compiling

subsystem to improve its flexibility.

Smalltalk Idioms
A modest meta proposal
Kent Beck
Introducing a MetaObject class lessens the risks of meta programming.

Project Practicalities d
Rules to live by
Mark Lorenz
How to resolve or, better yet, avoid some problems frequently encountered in
O-O development.

19

22

Departments
Editors’Comer
Recruitment

Managing Objects 26
Managing project documents
Jan Steh’fmanand Barbara Yates
Techniques for managing base image changes when projects
require changes to a vendor’s code.

2
28

The 5malltalh Report [lS5N# 1056-7976) is published 9 times a year, monthly except in Mar-Apr, July-Aug, and Nov-Dee, Pubfkhed by
51G5 Publications Inc.. 71 West 23rd St.. 3rd Floor. New York, NY 10010.0 Coovrioht 1995 bv 51G5 Publications All riahts resewed.
Frepmduction of this material by electronic tramrnission, Xer.n or any other “rns%d will k- treated as a willful viola;on OFthe US
Copyright law and isFlatly prohibirsd, Material maybe reproduced with express permission fmm the publisher. 5econd Classpostage
Pending at NV,NY and additional Mailing ofices. Canada Post International Publications Mail Product SalesAgreement No. 2903B6.

Individual subscription rates 1 year (9 issueshdomestic SE% Mexico and Canada $114, Foreign $129; Institutional/Library rates
domestic $199, Canada & Mexico $224, Foreign $239, To submit articles, please send electronic files on disk to the EdiIors at E85
Meadowlands Drive #5o9, Ottawa, Ontsrio X2C 3N2, Canada, m via Internet to streport@objectpeople.on.ca.Preferred formats for figures
are Mac or DOS EP5,TfF,or GIF formats,Always send a paper copy of your manusaipt, including camem-ready copiesof your figures (laser
output is fine).

P05TMA5TEFt Send domestic address changes and subscription orders tmllw Smalltalk Report, P.O.Box 5050, Brentwoad,TN 37024 -
5050. For service on current domestic subscriptions call 1.000.361.1279 or fax 615.370.4645. Emaibsubscriptions@sigs.com.For foreign
subscription orcers and inquiries phone +44[0)1 E5E.435302. PRINTED IN THE UNITED STATES.

July-August1995 1

John Pugh Paul White
2

BEFORE WE TM ABOUTTHETOPICon every Small-
talker’s mind these days, the ParcPlace-Digitalk
merger, we would like to give a warm welcome to

Ralph Johnson and Bob Hirdde, our new columnists.
Ralph and Bob will be taking us “Deep in the Heart of
Smalltalk,” a column for Smalltalk afficianados who
want to learn more of the inner workings of parts of
the Smalltalk system where few people dare to tread.

As most of you are surely aware by now, Digitalk
and ParcPlace have merged to form a new company
that, at least for now, will be

them? Wdl one be
other a more de
sold as providing
stresses cross-pla
there will be only
ing ones, or som
that leave their co

Beyond the la
are other issues. W
ing tool (which

known as ParcPlace-Digitalk Inc. Probably the most
This obviously represents a
major shift of power in the commonly asked question
Smalltalk market. Although it has been “will there
certainly doesn’t match the
world significance of many of the continue to be two
major takeovers and mergers
that have been occurring in the separate Smalltalks?”
software industry such- as the
IBM/Lotus buyout, it does leave those of us in the
software development trenches scratching our collec-
tive heads.

Although it came as quite a surprise to many
(including us), it would be hard to not admit that the
writing was on the wall. There were telltale signs such
as Digitalk not joining the new Smalltalk Industry
Council (STIC) and deciding not to have their devel-
opers conference this year. And there certainly were
many rumours that Digitalk was a takeover target,
although names such as Microsoft and HP were far
more commonly referenced as suitors than ParcPlace.

This merger leaves some obvious questions. Similar
to the IBM/Lotus deal, Digitalk and ParcPlace appear
to have quite different corporate cultures, with differ-
ent philosophies with respect to engineering, cus-
tomer support, product development, and marketing.
Moreover, their two products represent quite different
implementations of the Smalltalk language, Although
their base class libraries are very similar, most of the
facilities that allow Smalltalk to communicate with
the outside world are implemented in quite different
ways. The user interface architectures, for example,
are quite different.

Probably the most commonly asked question has
been “will there continue to be two separate Smdl-
talks?” But no matter what the answer is to this ques-
tion, many other questions remain. If there are two sep-
arate products, how will they differentiate between

what are the im
such as WindowB
etc? Both compan
uine desire to br
products; where

Having listed s
should be quick t
ous positives to th
the bringing toget
the programming
Smalhalk world,
panies has never
ate synergy from
immense. Each
parts of the clie
puzzle that the
opportunity to bu
formidable comp

The new com
vision for the
Developers Confe
I’m sure it will pro
ious corporate cl
their development
move opens up
community We c
and wish good lu
organizations.

Enjoy the issue
come the “low-end product and the
luxe version? Or will one product be
tight host integration where the other
tform portability? If they do decide
one product, will it be one of the exist-
ething brand new? And where does
llective installed base of customers?
nguage and platform facilities there

ill Digitalk’s Team/V team programm-
ironically was originally designed to

run in the ParcPlace environ-
ment) become the standard for
both Smalltalks, or will ENVY
remain the configuration man-

agement tool of choice for
ParcPlace and many Digitalk
users? This is a significant issue
for existing clients, because
switching from one facility to the
other is ;O simple task. Similarly,

plications for third-party products
uilder, Repertoire, Object Explorer,

ies have separately expressed a gen-
ing VARS on board to support their
does this merger leave them?
o many questions to be answered, we
o point out that there are some obvi-
e merger. The most tangible benefit is
her of some of the very best minds in

language business, let alone the
The engineering talents of both com-
been in doubt, and if they can gener-

this merger, the opportunities are
company has solutions for difficult
nt/sewer application development
other lacks. Together, they have the
ild a product line that is an even more
etitor in the client/server arena.
pany has promised to present their
future at their upcoming (joint!)
rence in San Jose at the end of July,
ve to be a lively event, with many anx-
ients wanting to know the future of

tool, Only time will tell whether this
new opportunities for the Smalltalk
ertainly wish this new endeavour well,
ck to our many friends at both these

!

The Smalltalk Report

Introducing Argos
The only end-to-end objectdevelopmentand deploymentsolution

An integratedobjeetmodelingtoolprovidesmodel-driven
&wel@m71tforenwprise--ldapplications [

AUobjectTTU&lSare rmmagd in a sharedreposiu~,
supportingteam dfwekspment and traceabdi~

I

‘--E4
160 .“ +
120 .7..iT..9—------
00

w
30” Q

~[.....
I
T

description:IBM
narnn alphat+mw
numh3r0fP.tm.s: 1.

~
.r..—.,—..!._.....-...

- Pcnue+ddragand drop “enzymes” make application
&d@nen.tintuitive

Compreksiw setofwk!gets,incl* huiness
graphs, mukimh, and othersmakeapphcatkm A
devhpment emyad powafd

VERSANT ArgosTh’ is the only application development
environment (ADE) that makes it easy to build and deploy
powerful, enterprise-wide object applications. Easy because
Argos features an embedded modeling tool and Small talk
code generation that ensure synchronization between your
models and applications. Powet%d because Argos supports
fill traceability and workgroup development through a
shared repository.

Argos automatically generates multi-user database applications
that run on the industry-leading VHLSXNT ODBMS. Argos
deals with critical issues such as locking and concurrency

VERSANT
The Database For Objects TM

I Pamda 1- 1% If I -.., - mll

control transparently. And only Argos is packaged as a
completely visual ADE built on ParcPlace VisualWorks=.

Leading organizations — in industries from telecommunications
to finance — are using Argos to deliver business-critical
applications. Find out how Argos can help you deliver your
critical applications in weeks, instead of years.

1380 WNOWRoad ● Menlo Park, CA 94025 ● (415) 329-7500

01994 byVcmnt Obcu TLvhIInl.gy.VE1l.SAS’~,\W1.SiiNl’ ?.rgmandThe 11.dwc ForOhjccrsArcrrdcmark olVmvn ohjmr TcchnolqqC.rpmtion. .41 mhcrcumpmynmnmd Ih,gmarcrcgkrcrd trdemmh$ol’theindi!idudcmnpniw

Remembrance of things past:
Layered architectures for Smalltalk
applications

Kyle Brown
DIDN’T YOU AIWAYS HATE IT when your father
started off a sentence with “in my day...?” I know

that it always irritated me, and as an adolescent I
swore that I would never succumb to the temptation to
start a sentence that way myself. Well, teenage oaths not
withstanding, I’m going to do it anyway.

When I first learned Smalltalk, a little over six years
ago, I was taught by my mentor SarnAdams that Smalltalk
applications are built in layers (see Fig. 1). Having come
from an engineering background where I was strongly
influenced by the layered architecture of the 0S1 seven-
layer communication model, this seemed only fitting and
proper. Layered architectures promote good software
design by separating concerns of one layer from another,
reducing the complexity of the application of a whole,
and encourage reuse both within the elements of a layer,
and between layers (for a discussion of layered architec-
tures in computer networks, see Tannenbauml).

SMALLTALK APPLICATION LAYERS
The four layers that I was taught comprise a good
Smalltalk application are:
1, The GUI layer. This is the layer where the physical
window and widget objects live. Any new user interface
widgets developed for this application (an activity that
seems to have been more common several years ago than
today) would also be put in this layer. In almost all cases
today, this layer is completely generated by a window-
builder tool.
2. The Mediator layer. This layer is partially generated by
the window-builder and partially coded by the developer.
The primary classes of this layer have been variously
called “ViewManagers” or “ApplicationCoordinators” in
Digitalk’s Smalltalk products, and “ApplicationModels” in
Parcplace’s products. This layer mediates between the
various user interface components on a GUI screen and
tmnslates the messages that they understand into mes-
sages understood by the objects in the domain model.
3. The domain model layer, This is where the real “meat”
of the application resides, An object-oriented analysis
and design should result in a set of classes that primarily
reside in this layer. Examples of the type of objects in this
layer would include Orders,Employees, Sensors, or whatev-
er is appropriate to your problem domain.
4

4. The infrastructure layer. This is where the objects that
represent connections to entities outside the object world
reside. Examples of objects from this layer include
SQLTables,3270Tenninals, SerialPorts, and the like.

Now that you’ve seen the description of these architec-
tural layers, you might be saying to yourself, “Well, of
course; I always build my applications like that.” If so, the
rest of this article might seem familiar to you. On the
other hand, if you’re scratching your head and going “But
why... ” or, even worse, smacking your forehead and
declaring “Why didn’t I see that!” then please read on. I
assure you your projects will benefit.

Something that stood out to me during the recent
Smalltalk Solutions conference is how rarely novice
Smalltalk programmers see their applications as divided
into layers. I believe that this is a result of the wonderful
new tools that the Smalltalk vendors have provided to us
over the past few years.

Back in the old days, Smalltalk programmers would lov-
ingly handcraft each of their classes one at a time. You don’t
really gain an appreciation of how difficult it is to build a
new graphics class or a database framework until you’ve
coded one yourself. However, in the modern point-and-
click world, building a complex order-entry screen seems
as simple as drawing the GUI using your window-builder
of choice, telling it to generate the resulting Smdltalk class-
es, then hooking those classes into the database by using
the vendor-supplied database connectivity classes.

While the new tools have vastly increased our produc-
tivity as programmers, it has become easy to lose sight of
the bigger picture. While it is possible to completely code
an application without ever creating a new class of your
own, it is not necessarily desirable. Part of the appeal of
object-oriented programming is the ability to create
reusable classes that represent your problem domain. In
that way a month or a year from now when you (or some-
one else in your organization) is getting ready to work on
the next application, you can pull those classes off the shelf
and use them as is, or specialize them through subclassing.
It is this reusability that gives O-O programmers the pro-
ductivity advantage over their 3GL programmer peers.

Let’s say you’ve just coded an order-entry screen the
way I described above (see Fig. 2). Six months later your
customer comes up to you and says “I’ve decided that I
The Smalltalk Reporl

F@h

Code
Quality

Low

Maximize Reuse

Many things are needed to have reusable software.
However, if developers cannot understand
available software, it is not going to be reused.

Reusable Reusable software requires readily available, high
Component

QQ

quality documentation.

And the easiest way for Smalltalk developers to get
Non-reusable quality documentation is with Synopsis. Install it
Components and see immediate results!

Features of Synopsis

. Documents Classes Automatically
Low

Documentation
Km

. Builds Class or Subsystem Encyclopedias

Quality . Moves Documentation to Word Processors

+ Packages Encyclopedias as Help Files

Products

m
Synopsis for IBM Smalltalk $295 Team $395 -

8912 Oxbridge Court, Suite 300, Raleigh NC 27613 Synopsis for Smalltalk/V and Team/v $295
Phone 919-647-2221 Fax 919-676-7501 Synopsis for ENVY/Developer for Smalltalk/V $395
don’t like this GUI you’ve built I want a drag-and-drop
interface, Oh, and by the way, we’re changing from a
relational database to an ODBMS next week. Can I have
the changes by Friday?” At this point you might be tear-
ing out your hair and considering looking into a promis-
ing new career in food service. Or, if you had instead
coded your application into layers, you could be taking
it all in stride, saying “OK, first I’ll have to redraw the
GUI; tiat’11 only take a little while; then I can start think-
ing about the rest of the problem.”

RULES FOR PROPERLAYERING
So, now that I’ve convinced you that layering your appli-

I Domain Model layer I
Infrastructure layer

F. —– . -—––, ,. –,, ,.––.. – ,

rlgure I. 3mamalK appllcarlon layers.
July-Au#just1995
cation is a good idea, how do you actually go about it? At
KSC we believe that applications are like sandwiches, We
follow the approach of building a Smalltalk application
inside out we begin with the hamburger and work our
way out to the bun.

The primary focus of your effort in a non-trivial
Smalltalk application should be in defining what domain
objects you have, then building and testing them. We have
found that if you begin with a statement of what your
problem is, and then develop an O-O model using a
behavioral OOA&D methodology you can usually get a
good handle on the domain layer of your system. For
instance, if you are building an order management and

-. +.... ,., ,rlgure 2. tvmssmg aomaln moael.
5

I LAYEREDARCHITECTURES
inventory system, you might discover objects like Order,
Warehouse, and Goodand investigate how they interact with
each other. You can then proceed from a design model to
building a prototype of these objects. The key here is to
discover how the objects interact, and how you can take
advantage of the paradigm to make your objects more
understandable and reusable. The domain layer should be
developed, as much as possible, without undue consider-
ation as to how the database will be implemented, or how
the GUIS w-illlook. While these considerations are impor-
tant to the application as a whole, they should not be
allowed to “pollute” the purity of your object model.

After you have built and tested your prototype object
model, you can then begin to work your way out to the
layers surrounding the domain model in Figure 1. Let’s
begin by looking at the development of the
ApplicationModellayer. As I stated earlier, this layer should
be primarily for mediating between the different ele-
ments on your GUI, and translating messages from the
GUI into messages understood

other. It should not
ties of either, but ma

In general, your
dumb, and small. By
an ApplicationModel
fat), the methods th
late and mediate, ra
and that the Applica
have little state, or fe
Remember that the
face to the world th
your application. Re
state of the applicatio

A common exam
Mediator layer and do
validation of values
designers will immed
the mediator layer
quences that decision

by your domain model. It should
Just remember to considerfollow the intents of the

Mediator pattern and the the implications of each design
Adapter pattern from Gamma.2

In a nutshell, a Mediator is an decision to determine
object that “encapsulates how a

if it violates proper layering...set of objects interact.”2~ P-273
An example of this kind of medi-
ation is that an ApplicationModel may disable a set of but-
tons or menu items based upon the state of other buttons
or menu items, The ApplicationModel keeps these widgets
from knowing about each other, and promotes good fac-
toring of the design. It doesn’t make much sense to
involve the domain layer in these, purely user-interface
actions, so the Mediator also insulates the two from each
other.

An Adapter“converts the interface of a class into anoth-
er interface clients expect.”2~ P-139 GUI Widgets have one
interface that they respond to-they are concerned with
the state of their selection, what they are displaying, etc.
On the other hand, the domain model is concerned with
a different sort of interfac%it is concerned with the state
of Orders, or how Employees are related, etc. An
ApplicationModel should adapt the one interface to the

Infrastructure layer

r .—
‘Q~B~ke~s T–––––––lI I

Communications I
Brokers

I SQL Classes 1 Communications I
Classes

I I I——— ——— ——— ——— ——

Figure 3. Infrastructure microlayering.

other hand, the GUI
the validation this w
incorrect value is en
being accepted. The
well-defined path of
the responsibility all

Another example
bility between the M
in the representation
results in a calculation
display the line item
costs, should the ca
ApplicationModelclass
items? While you c
ApplicationModel,it w
Orderitself to do this
cost would be avail
such as a paper rep
orders, Following the
distribution of resp
reusable objects.*

Finally let’s take
end; between the do
of your application.
by now that it is an a

* Wirfs-Brock3 contains
distributed behavior.
6

attempt to take over the responsibili-
ke their communication smooth.

ApplicationModels should be thin,
these characterizations I mean that

should have few methods (thin vs.
emselves should serve only to trans-
ther than control (dumb vs. smart),
tionModel objects themselves should
w instance variables (small vs. large).
task of a GUI should be to present a
at reflects the state of the objects in
sist the temptation to represent the
n in the GUI itself.
ple of cooperation between the
main model objects would be in the
entered into a GUI. Many novice

iately code all validation logic into
, without considering the conse-

makes. If the information that you
want to validate is held in an
object in the domain model,
does it really make sense for the

‘angechecksand‘tier ‘alida-
tions to be made in different
object in another layer? The prin-
ciple of encapsulation indicates
that the behavior should accom-
pany the information. On the

must represent the visual aspects of
ould include warning the user if an
tered or preventing the value from
two objects should cooperate along a
communication rather than stuffing
in one objector the other,
of improper distribution of responsi-
ediator layer and the domain model is

of calculations, or intermediate
. If your application calls for you to

s in an order, and the sum of their
lculation of that sum reside in the
, or in the Orderthat contains the line
an code the calculation into the
ould be more reasonable to allow the
calculation. In that way, the summed
able to other presentation options;
ort, or a summary report of many
se rules leads to objects with a better
onsibilities, which results in more

a look at the division on the other
main model and the infrastructure
I think it’s become abundantly clear
bsolute no-no for the Mediator layer

a good discussion of the benefits of well-
The Smalltalk Report

Are you maximizingyour Smalltalkclass reuse? Now you can with...

Mlm from ARS

‘ adds multipleinheritanceto VisualWorksTMSmalitalk , ,,,~&@w ~~

● providesseamless integrationthat requiresno new syntax

● installsintoexistingimages with a simplefile-in
● is writtencompletely in Smalltalk

“Y ‘+

Leading methodologies (OMT CRC, Booth, OOSE)
advocate multiple inheritance to facilitate reuse. Smalltak’s
/ack of multiple inheritance suppofi impedes the direct
application of these methodologies and limits class reuse. ‘T?
Ml is a valuable tool which enables developers to apply ;fjld~l~;;;j
advanced design techniques that maximize n?use.

~ .,,*,.;

1.&Y&AppJledReasoning Systems Corporation (ARS) Is an innovative devaJopar of high
quality Smalltalk development tools, applimtion frameworks, Intelligent soflwara
systems, and relalsd servkas thatprovide advanced solutlons to oomplaxproblema.

SmaRtalk Products ● Consulting ● Education ● Mentorlng

Phons: (919) 781-7997 ● Fax (919) 781-4414
E-mail: info@ arscorp.com

Introductory Price: $195
To order Ml or for more informationon AIW’S family of productsand
setvices, please call 1-800-260-~ ore-mail lnfo@aracorp.com.
—

to communicate directly with the infrastructure layer,
but what is appropriate communication between the
domain and infrastructure layers? In general terms, the
communication should preseme encapsulation bound-
aries. A “microlayering” approach might work out best
(Fig. 3). Just as novices are tempted to put all their logic
in their Mediator code, an equally naive approach is to put
all the database knowledge into the domain classes
themselves, or (slightly better) in their metaclasses.

A better approach to building connections between
domain and infrastructure layers is to budd a layer of
“helper” or “broker’’objects,t A “broker”* is an object that
serves as an adapter between the domain object that must
communicate to the outside world, and the communica-
tion medium, be it a network protocol, a mail protocol like
SMTF! or a relational database, Again, the primary advan-
tage here is the preservation of encapsulation; if you can
encapsulate the knowledge of a protocol or interface into
one set of (reusable) objects, and provide an adapter
between them and the domain layer, you will be better able
to change one without necessitating changes to the other.

t For an discussion of architectures for relational database interac-
tion, see Vasan.4

* By “broker,” I’m not referring to a CORBA-style Object Request
Broker [ORB).A broker is anv obiect that adatxs an obiect model
to a non-object-oriented procedural interface. Broke~s must, by
necessitv, know a little about each world to bridqethe gap
betwee~ them,
July-August 1995
FINAL NOTES
While applying a layered architecture to your applications
wilJ not be a panacea for all your software ills,”it may aUevi-
ate some of the more grevious symptoms. Just remember to
consider the implications of each design decision to deter-
mine if it violates proper layering or enhances the nmsabil-
ity of the individual classes by supporting the architecture

Acknowledgement
The author thanks Bobby Woolf for pointing out the prop-
er patterns that ApplicationModels should follow, and all
his peer reviewers at KSC for their help and advice.

References
1.

2,

3.

4.

Tannenbaum, A. COMPUTER NIWWORKS,Prentice Hall,
Englewood Cliffs, NJ, 1988, pp. 9-14.
Garnrna, Helm, Johnson, and Vlissides. DESIGNPATTERNS:
ELEMENTSOF REUSABLEOBJECT-ORIENTEDSOFTWARE,Addison-
Wesley Reading, MA,1995.
Wh-fs-Bock, R. Characterizing your application’s control style,
SMALLTALKSOLUTIONS’95 CONFERENGFNcrrss, NewYork, 1995.
Vaaan, R. Techniques for object and relational integration,
OBJECTMAGAZINE3(1):52-53, 60, 1993.

Kyle Brown is a Senior Member of Technical Staff at Knowledge
Systems Corp. He has been developing industrial applications in
Smalltalk for over five years. As part of his consulting practice, he
has built applications for Engineering, MIS, and scientific comput-
ing. Since joining KSC, Kyle has enjoyed teaching the principles of
reuse and good O-O design to a variety of clients through the KSC
Smalltalk Apprentice Program. He can be reached via email at
kbrown@ksccary.com.
7

Se~egating application and
domain

Tim Howard
THIS IS THE THIRD ARTICLE IN A SERIES of three
dedicated to the topic of segregating application
information and domain information in

VisualWorks application development. The first article
presented the case of why it is essential that an applica-
tion have a strict segregation between its application
information and its domain information. The second
article covered the implementation of domain objects,
which are the keepers of the domain information, This
third article discusses the application classes, which pro-
vide the user interface for the domain objects.

This article introduces what I refer to as the domain

adaptor architecture, which is a framework for building
applications in VisualWorks. This architecture is a spe-
cialization of application model architecture and is
designed to work specifically with domain objects. First I
will introduce the domain adaptor, which is a special type
of application model developed for viewing and editing a
domain object. Then I will discuss how domain adaptors
bind the user interface to the information in the domain
object. The full source code for the domain adaptor archi-
tecture, along with examples, is available from the
archives at the University of Illinois (st.cs.uiuc.edu).

DOMAIN ADAPTOR
In the second article of this series, I talked about domain
objects, the keepers of the domain information. These
domain objects do not exhibit model behavior nor do
they know how to present themselves in a user interface.
Now what we need is a special type of application model
architecture that allows us to easily build applications for
displaying and editing these domain objects. I refer to
this type of architecture as tbe domain aduptor architec-

ture because it adapts purely domain information to a
user interface. At the center of the domain adaptor archi-
tecture is the domain adaptor, A domain adaptor is a type
of application model that provides a user interface for a
domain object and allows the user to view and edit that
domain object.

Each class of domain adaptor is designed for a specific
class of domain object. For example, suppose we have the
domain class EmployeeReview, which describes all the
information for a single employee review. To view an
instance of such a class (a domain object) we might create
a type of domain adaptor called EmployeeReviewULThere
can be more than one domain adaptor class for each class
of domain object, but each class of domain adaptor is
8

designed specifically for only one type of domain object.
As an example, we can design EmployeeReviewUI,
ShortFormEmployeeReviewUI, and LongFonnEmployee-
ReviewIII to operate on an EmployeeReviewobject—each
presenting the employee review information in a different
way, Each domain adaptor operates on only one domain
object at a time. Continuing with our example, an instance
of EmployeeReviewUIwill present to the user one instance
of EmployeeReviewfor viewing and/or editing.

The domain object on which a domain adaptor oper-
ates is accessed and replaced using value model proto-
col—the messages value and value:. In our example, when
the user is done filling out the employee review in the
user interface, thereby populating the EmployeeReview
domain object, we can access that domain object by
sending value to the EmployeeReviewUIdomain adaptor.
We can then place this domain object in a database, add
it to a collection of such reviews, etc. When the user is
ready to read or edit the next employee review, we simply
send value: anEmployeeReview to the EmployeeReviewUI
domain adaptor. The domain adaptor then automatically
populates its user interface with the information in the
new domain object.

Because each type of domain adaptor is designed for a
specific type of domain object, it knows how to create a
new instance of that type of domain object in the event
that one is not provided at the time the user interface is
opened. In the employee review example, the code:

EmployeeReviewUIopen

will open a window on a new instance of EmployeeReview,
because one is not initially provided. If we already had a
populated instance of EmployeeReview,we would open an
interface on it with the following:

EmployeeReviewUIopenOn: anEmployeeReview.

The abstract implementation for all domain adaptors is
defined in DomainAdaptor:.DomainAdaptoris a subclass of
ExtemaLApplicationModeland defines two instance vari-
ables: domainChannel and domainIsChanging.

Because the superclass ExtendedApplicationModell is a
subclass of ApplicationModel, all domain adaptors are
application models and, therefore, define and operate
user interfaces. Furthermore, all domain adaptor classes
inherit the development features defined in
ExtendedApplicationModel. The domainChannel instance
variable is a ValueHolder that references the current
The Smalltalk Report

Oddly enough, a company with possibly the largest
and most deployable Smalltalk/00 worldorce is

virtually unknown - Until Now.

● On-Sik SrnaUtall@O Pmgmmmg“ &Mentming ● GUI Front-EndDesign/Buildto kgacy Systems
● On$ite CusmrnizedSrnaUtaIivOOTraining ● object Mcdelirtg,Analysis& Design
● 00DBMS Dcvelcptnem 0bjeci5mre, Gernmne & Versant ● SmaUdl@bject Mq@ng to Sybasc,Oracle & DB2

❑
✎✎✌
:}. Call (800) 789-6595w Him info@objectint.com.

Object/nte///gence CorporcrHon ● 9W Ridgefield Dr., Ste, 240 ● Ralelgh, NC 27609 ● (91 9)878-6695 Fax
domain object, The domainIsChanging instance variable is
a Boolean that is true when a change of domain is in
progress. The DomainAdaptorclass implementation can be
divided into three parts: domain object management,
aspect support protocol, and interface opening protocol.
Domain object management involves managing the
domah object itself, The aspect support protocol is a set
of methods that allow you to easily set up aspect models
that operate on the information in the domain object. The
interface opening protocol is an extension of the interface
opening protocol defined in ExtendedApplicationModel,
which allows a domain adaptor to be opened and initial-
ized to an existing domain object in a variety of ways.

&& dmnain
intbmration

Figure 1,Application model object diagram.
July-August 1995
In the first article of this series, I presented an object
diagram of an application model. For convenience, this
diagram is provided again in Figure 1. Figure 2 is the
object diagram for a domain adaptor. Notice that in
Figure 1 the domain information is logically related via
the application model. In Figure 2, however, the doman
information is logically related via the domain object,
Thus the domain information can be easily uncoupled
from the application information and placed in a data-
base, Likewise, another domain object, of the same type

applkatin

inh7m7ati0n

xdomain

object

integer string

Figure 2. Domain adaptor object diagram.
9

I SEGREGATINGAPPLICATION8 DOMAIN

can be retreived from the database and plugged back into
the domain adaptor. Accessing the domain object and
inserting a new domain obejct is as easy as sending the
messages value and value:, respectively.

ADAPTING THE DOMAIN INFORMATION
In designing a domain adaptor, our main goal is to define
aspect models that operate on the various aspects of
information in the domain object. When the various
interface components bind with these aspect models, the
result is a user interface that views and edits the informa-
tion in the domain object.

In the second article of this series, I categorized the
domti information into atomic objects (such as num-
bers, strings, and dates), collections, and other domain
objects. Consider an Applicant domain object used to
describe someone applying for a job and having the fol-
lowing instance variables:

Variable Type
name string
ssn string
references SortedCollechon of Strings
address Address

The Applicant domain object references objects of each of
the three categories of domain information. The name and
ssn instance variables are atomic in nature. The references
instance variable is a collection. The address instance vari-
able references yet another domain object, an Address
object, whose instance variables are defined as follows.

Variable Type
sheet string

aty string

state string

zip string

An object diagram for the Applicant domain object is
shown in Figure 3.

To provide a user interface for viewing and editing an
Applicant object, we need a special type of domain adap-
tov therefore, we define the class ApplicantUI as a subclass

c3D-”+ci2kll,
w-=

d
TiiiD

addrasm

8sreal

~ dk . .

w ‘“”6atrlng

Figure 3. Applicant object diagram,
10
of DomainAdaptor.Each class of domain adaptor needs to
implement the domahCLassinstance method, which indi-
cates the type of domain object for which the domain
adaptor is designed. In our example, we would define the
following in the protocol “domain accessing”:

dontain(lass
‘Applicant

We can also draw the user interface as is shown in Figure
4. The address portion of the user interface is not explicit-
ly drawn in this canvas but is actually a subcanvas, as will
be demonstrated shortly.

Now we need to define aspect methods for our domain
adaptor which bind the information in the domain object
to the various components in the user interface, First we
will consider the atomic object%sn-ings, dates, integers,
floats, and Booleans. Such information is usually present-
ed to the user using input fields, text editors, check boxes,
and radio buttons. VisualWorks already provides a mecha-
nism, the AspectAdaptor,by which we can adapt a domain
object’s atomic information such that it can be displayed
by these interface components. An AspectAdaptoris a value
model whose value actually belongs to some other
object—in our case, the domain object. When several
AspectAdaptorobjects operate on the same domain object,
it is convenient to keep that doman object in aValueHolder.
Fortunately each domain adaptor has such a ValueHolder,
its domahsChannelinstance variable. Because setting up an
AspectAdaptor can be somewhat complicated, the
DomahAdaptor class defines certain aspect support meth-
ods to set up the AspectAdaptor for us. In the applicant
example, we need an AspectAdaptorfor both the name and
ssn attibutes of the domain object, Therefore, in the

!ame: Skills

iSN:

n)

street:

City:

Zip:

Figure 4. ApplicantUl user interface.
The Smalltalk Repott

“aspects” protocol of the ApplicationUI class we define the
following two methods:

name
‘self aspectAdaptorFor: #name

ssn
‘self aspectAdaptorFo~ #ssn

Notice how simple these methods are. The method
aspecU@torFo~ a$mbol is defined in DomainAdaptorand it
automatically sets up an AspectAdaptor for the domain
object instance variable named by a$nnbol. The domain
adaptor’s domahthannel instance variable is used as tbe
subject channel for the AspectAdaptorso that whenever tbe
domain object in domainllmnnel is replaced with another,
the AspectAdaptoris automatically switched over to the new
domain object, and, furthermore, the corresponding inter-
face component is updated with the new information. A
useful variation of the aspectAdaptorFor method is the
aspecWaptorFor:changeMessage method, which will set up
the AspectAdaptorsuch that whenever its value is changed,
a change message is dispatched to the application model.

The AspectAdaptorworks very well for the atomic type
information, but what about the collections contahed by
our domain objects? Collections are typically presented to
the user in list components. For example, we want to dis-
play the applicant’s skills in a list component and also
allow the user to add and remove skills. What we need is a
collection version of the Aspect4daptor. We need some-
thing that will allow a domain adaptor not only to display
a domain object’s collection in a list component, but also
permit the user to add and remove elements from that
collection, Furthermore, when the current domain object
is replaced, this new type of adaptor must switch its focus
to the collection in the new domti object and have the
list component redraw itself with the new information.
For this purpose, I have created the CollecdonAdaptorclass.
DomainAdaptordefines aspect support protocol for setting
up a CollectionAdaptor. For example, to have our
ApplicantUI show the skills of an applicant, we would add
the following method to “aspects” protocol of ApplicantUI:

skills

‘self
collectionAdaptorFor:
collection: #skills

We can now easily adapt the

#skills

atomic objects and collec-
tions in our domain objects to the user interface managed
by the domain adaptor. But what about domain objects
that contain other domti objects? In ow example, our
Applicant object holds on to an Address object-which is
itself a domain object. Do we have an adaptor for it?Yes, its
called a domain adaptor! What kind of interface compo-
nent do we use to display an Address object? A subcanvas
managed by an Ad&essUI domain adaptor! The domain
adaptor architecture is fully recursive. Furthermore, all
July-Au@st 1995
three types of adaptors operate on value model protocol.
The messages value and value: access the domain informa-
tion from the adaptor whether that information is atomic,
a collection, or another domain object. In the applicant
example, we would add the following method to the
“aspects” protocol of ApplicantUI:

address
‘self domainAdaptorFoc #address modek AddressUI

This method automatically instantiates a domain adaptor
of the type AddresslJI, This AddressUIdomain adaptor will
operate on the Address object contained by our Applicant
object and display that Address object in a subcanvas.
AddressUI is just another domain adaptor originally

Street:

City:

Zip:

Fiaure 5.AddressUl user interface.
11

I Database Solution ~
I ~~.~n for Smalltdk I
I ~~~~~ A class library for ODBC I

I
Database Access I

I . ODBC 2.x support for 50+databases
■ PARTS Workbench visual &velopment components I

I
■ Native ODBC data type support
■ Online documentation, source included, no mntime fees I

I
. programming examples and sample application
.00 to RDBMS mapping f%unework,baaed on types & I

I
brokers? ideal for complex client-server applications

I comptible with OTI’S ENVY/Developer I

Iversions Available for Windows, Windows-NT I
I 0S/2, VisualAge and Visual Smalltallc/E

“simple but elegant ...” - Australian Gilt Securities I

I 1
1 Also available:
I So&talkClient Server Sol&on for SmaUtalk/V

A Windows Sockets Class Library
I

designed as a window interface for an Address object, as
shown in Figure 5.

It is important to emphasize that we are using another
domain adaptor, developed completely independently of
ApplicantUI and Applicant objects, but that can be easily
incorporated into the ApplicantUI domain adaptor. This
allows us to take either a bottom-up or top-down
approach to building user interfaces for our domain
objects. It also facilitates reuse because an AddressUI can
be used independently or incorporated into several other
applications requiring an address. As domain objects

Table 1. Adapting interface components to domain information.

Domain Interface Model Adaptor
Information Component
Type

Wing, Number, Input Field AspectAdaptor
Date

Text Text Editor AspectAdaptor

Symbol Radio Buttons AspectAdaptor

Boolean Check Box AspectAdaptor

OrderedColledon List CollectionAdaptor
SortedCollection

DomainObject Subcanvas DomainAdaptor

DomainObject Window DomainAdaptor
—

12
become aggregations of other domain objects, their cor-
responding domain adaptors are just mirror aggrega-
tions of other domain adaptors. In this way domain adap-
tors can be designed for even the most complicated
domain objects.

I would like to point out that all the aspect support pro-
tocol in DomainAdaptoris defined in such a way that our
aspect models do not need corresponding instance vari-
ables defined in the domain adaptor class. This provides
for a much cleaner class definition (see “Extending the
Application Model”). For a complete list of the aspect sup-
port protocol and how it is used, browse the class
DomainAdaptor.

Table 1 summarizes the types of domain information,
the corresponding interface component used to display
that information, and the adaptor used to connect the
domain information to the interface component.

SUMMARY
This article introduced the domain adaptor architecture,
which is a framework for building VisualWorks applica-
tions based on domain objects and a strict segregation of
application and domain information. The centerpiece of
the domain adaptor architecture is the domain adaptor—
an application model that knows how to operate on a
domain object. The domain adaptor keeps its domain
object in a ValuHolder referred to as the domain channel.
Each time the domain object is replaced by a new domain
object, the domain adaptor updates its interface with the
new information. A domain adaptor uses model adaptors
to bind information in its domain object to the interface
components. h AspectAdaptorbinds simple information
to input fields, check boxes, and radio buttons. A
CollectionAdaptor binds collections to list components.
Domain adaptors are themselves model adaptors and
bind contained domain objects to subcanvases, There is a
great deal more to the domain adaptor architecture than
can be presented in a single article. Not covered are such
topics as the role of dialogs, the interface opening proto-
col, chdd windows, buffered adaptors, and strategies and
guidelines. If you program in VisualWorks, I stongly
encourage you to obtain the source code and work the
examples. After only a few hours of exploration, the mer-
its of this approach to VisualWorks application develop-
ment will be quite evident. The full source code for the
domain adaptor architecture framework and examples
are available from the archives at the University of Illinois
(st.cs.uiuc.edu),

Reference
1. Howard, T. and B. Kohl. Extending the application model, THE

SMALLTALKRF.PORT3(7):1, 4-7, 1994.

Tim Howard is the President and cofounder of FH Protocol, Inc.
He is interested application development using O-O technolo-
gies in general, and using the language of Smalltalk in particular.
He can be reached at thoward@fhprotocol.com or by phone at
214,931.5319.
lhe Smalltalk Report

Acasestudyinmaking
codereusable
SOMETIMES YOU CAN TELL at the start of a project
that your code must be reusable. But more often,
you don’t realize that something needs to be

reusable unti you try to reuse it, and you end up uying to
add reusability to existing code. This is not easy, because
reusability is a result of the design of a system, not just the
result of some coding tricks. So, making code reusable
often requires changing its design significantly.

Recently we needed to reuse theVisualWorks compiler to
implement a new breakpoint mechanism. Unfortunately,
the compiler was not designed to be reused the way we
wanted. As a result, we had to rewrite it to be more para-
meterizable and easier to customize.

This column exposes some of the more arcane inner
workings of Smalltallc, and shows why it is both useful and
powerful to allow programmers reflective access to these
parts of the system. It also shows several common tech-
niques for making Smalltalk programs more reusable. The
solution described here is based on VisualWorks Version
2.o, although it can be adapted to previous versions of
Smalltalk-80.

THE PROBLEM
Our previous articlel described how to debug the behav-
ior of individual objects using lightweight classes. To
make debugging easier, and as something of a side pro-
ject, we also introduced breakpoints, a common feature
of modern programming environments that had so far
been represented in Smalltalk-80 only by its poor cousin,
the halt message. While the breakpoints we introduced
had several benefits over self halt—notably their indepen-
dence from the Change hat and their ease of addition and
removal-they also had several limitations. In particular,

Bob Hinkle is an independent Smalltalk consultant and writer. His
current focus is the improvement of existing tools and the cre-
ation of new tools to revitalize the Smalltalk environment. He can
be reached at hinkle@primenet, corn. Ralph Johnson learned
Smalltalk from the Blue Book in 1984. He wrote his first Smalltalk
program in the fall of 1985 when he taught his first course on
object-oriented programming and design. He has been a fan of
Smalltalk ever since. He is the only author of DESIGN PAITERNS:
ELEMENTS OF REUSABLE OSJECr-ORIEtWED SOWWARE to regularly pro-
gram in Smalltal~ and continues to teach courses on object-ori-
ented programming and desicmat the Universityof Illinois.
July-August 1995
the breakpoints could only be set at the ve~ beginning of
a method, and they were unconditional. We want to
implement breakpoints that can exist between any two
statements in any block and that can be either absolute or
conditional. Conditional breakpoints stop execution only
if some expression evaluates to true. This expression is a
general block of Smalltalk code evaluated in the context of
the breakpointed method, allowing access to method and
block parameters and temporaries.

These new requirements force changes to our previous
implementation. Because breakpoints can be conditional,
we must be able to insert an arbitrary block of code any-
where breakpoints are allowed, and provide an interface
for users to enter and edit breakpoint condition strings.
Because breakpoints can occur in the middle of a method,
we need a more general mechanism for installing brealc-
point code. We used to wrap a new breakpoint method
around the unchanged original method, but now we must
insert breakpoint code in the body of the breakpointed
method, Furthermore, the code we insert must not only
work correctly but also respect the source code map, so
that stepping through breakpointed methods in the debug-
ger works as the user expects. Finally because breakpoints
can occur within a method, their position must be indicat-
ed graphically in a method’s source. Combined with our
continued desire to insert breakpoints without affecting
the ChangeI@ this implies the need for two levels of source
code for breakpointed methods one to display in browsers,
and the other to store to and retrieve from disk.

While the current compiler, comprising Compiler,
Parser, and their co-workers, is very powerful, we have to
extend it significantly to overcome these various difficul-
ties. We need to change the compilation process, so we
can insert our breakpoint code into the method’s body
and produce methods with distinct display and stored
source texts. Extending an existing component this way is
a typical step in system building, and many of the tech-
niques for implementing design and redesign are equally
typical, falling into previously identified patterns (see
Gammaz for a catalog of common patterns in the object-
oriented world). We’ll apply patterns called Factory-
Method, Strategy, and Visitor, as well as a program refac-
toring technique we call Trail Splitting.
13

I DEEPIN THE HEARTOF SMALLTALK
THE SMALLTALKCOMPILER #methodClass and
Because most of the changes in this project center around tion, instances
the process of compiling code to produce new methods, MethodNodeHolde
we will examine how the compilation process currently #newCodeStieam,
works to see how it can be extended. The current process These implementa
involves six major steps: called FactoryMet

1.
2.

3.

4.

5.

6.

The user selects accept in the TesitViewof a Browser.
The Browser passes its current text to the currently
selected class using the message #compile: classified,
which forwards to ClassDescription>>compile: classi-
fied:notifying:.
The class creates a new Compiler—the new compiler’s
class is actually defined in the class method
#compilerClass, but this always returns Compiler-and

either to specify a
new instance. Eit
ridden in subclasse
new kinds of colla

Wile quite flex
tions. ProgramNod
Pattern:ifFailmeedS
always produce su

passesthe source text using the
message #compile: in:no~g:
ifhik, It is both usefil and powerfu
The Compiler initializes itself to allow programmers
and eventually calls the
method that does the work, reflective access to {the inne
#hnslate:noPattem:ifFailmeed-
SourceMap:handler:. workings] of the system.

(a) The Compiler creates a
Parser,which it uses to cre-
ate a parse tree from the source text. The Parser
works with a ProgramNodeBuilderto create this tree,
which consists of instances of the various sub-
classes of ProgramNode.

(b)The compiler creates a new CodeSheam and tells
the root of the parse Uee, using the #emitEffect:
message, to generate byte codes into the
CodeStream. The name scope for variables in the
parse tree is resolved using a subinstance of
NameScopecreated by the compiler.

(c) The resulting CompiledMethodis packaged into a
MethodNodeHolder, which is returned as the
result.

The Class obtains a CompiledMethod from the
MethodNodeHolder using the message #generate
(which is currently trivial, returning the
CompiledMethodfrom step 4(c)).
The Classupdates the Change Set, writes the source
text out to the Change List, sets the CompiledMethod’s
sourcePointer, and adds the new method to its
MethodDitionay.

Most of the work is done in step 4. Each substep of 4 is a
major production point, a place where an important
object is produced and returned to be used in the next
step. Step 4(a) creates the parse tree, step 4(b) creates the
byte code stmarn, and step 4(c) creates the method itself.
Nine classes of objects are instantiated in steps 4(a)
through 4(c) (counting parse we nodes as subinstances of
ProgramNode),and there is much built-in flexibility in the
process. The compiler’s and the parser’s classes are
specified in #compilerClass and #preferredParserClass,
respectively, Furthermore, new methods and blocks are
instantiated in CodeStream using the messages

will be stored in in
new kinds of collab
these variables to n
tion as a productio
with the three prod
may wish to transfo
duction line to aff
transform the inpu
third the bytecode
method itself. Our
duction points an
future articles we w
duction points and

REFACTORINGTH
Our new compiler,
mers to override
transformation sta
pilation process. I
ng each class of o
any subset of these
izations. Also, the
at each transforma
client. To support
requires a new col
es it should use an
formation-stage m
instance of the new

While these
meterizedCompih2
better to introduce
Smalltallq as the

aggregate, is alread
14
#blockClass sent to the compiler. In addi-
of CodeStream, NameScope, and

r are created by Compiler’s messages
#scopeForClass:, and #newMethodHolder.
tions are examples of a design pattern
hod, which works by using methods

class for instantiation or to produce a
her way, Factory Methods can be over-
s, making it relatively easy to intioduce

borators into a complex process.
ible already this process has some lhnita-
eBuilderis hard-coded into #hanslate:no-
ourceMap:handler,and ProgramNodeBuilders
binstances of ProgramNode.More impor-

l

r

tantly while Factory Methods are
helpful, they do require subclassing
to introduce new object types into
the compilation process. We will
make this process more flexible, so
that proganuners can define new
behavior at each production point,
by taking advantage of the fact that
classes are objects. The various class-
es used in the compilation process

stance variables of a new ~ompiler~so that
omtors can be easily introduced by setting
ew values. Finally if we think of compila-
n line, there are four stages intermingled
uction points of step 4. At each stage, we
rm the object(s) flowing through the pro-

ect compilation. In the first stage we can
t text, in the second the parse tree, in the
sh-cam, and in the fourth the compiled

breakpoint project exploits two of the pro-
d one of the intervening stages, and in
ill see uses for specializing the other pro-
h-ansformation stages.

E SMALLTALKCOMPILER
PararneterizedCompiler,allows program-

behavior at each production point and
ge, providing great flexibility in the com-
t achieves this flexibility by parametrizi-
bjects used during compilation, allowing

classes to be replaced with new special-
ParameterizedCompilerlets you intervene
tion stage by sending messages to its
this flexibility the ParametedzedCompiler

laborator, who supplies it with the class-
d responds (even if trivially) to tbe h-ans-

essages. This collaborator will be an
class MethodProducer.

tasks could be performed by Para-
ritself, there are several reasons why it’s

a new object instead. The Compilerin
entry point to the entire compilation

y a big, complex object, and adding new
lhe Smalltalk Report

Help Designer
for Visua/Workiw

Help Designer Is not just a programmerstool - now any team
member can create high quetky on-line help. This powerful
development tool Is rich in features, provides flexible set of tools,
and facMtatae the reuse of componentswlthln your applications.
Here Is what you get

~ ~

@ Help Editor ● Context-sensltlve hslp
* Help Viewer + Inllne and outllne
III Image Editor ● Tag Help

ill Text Editor ● Hypertext Ilnks and

m Help Manager references
ill Control Panel ● Popup definitions

● Help Custom Controls o Keyword searoh
History SUppOrt

FREE DEMO AVAILABLE 1 + Macro definitions
● Access to font, paragraph,

TO ORDER CALL 212-7654S62 and cofor attributes
● Embedded objscts

FAX REQUEST 212-765-5920
● Run-time editing mode
● Platform Independent help

files

Gp
GreenPoint, Inc.
77 West 55 Street, Suite 110
New Yoti, NY 10019
EMail:75070.3353 @CompuServe.com

Iiuulwti is n IIdmwk 0rPwPk4 SW-
responsibilities only makes it bigger and more complex
This makes it diffm.dt to understand in its own right, and
also difficult to extend with new interventions, because the
programmer must determine which methods and interac-
tions have to do with the core job of compiling and which
are designed to be specialized. Specialization becomes eas-
ier when the methods intended to be overridden are con-
centratedwithin tie locus of a single object. This is an appli-
cation of the Strategy pattern, which bundles algorithms in
different objects, allowing them to be varied independently
from their clients. Thus, different kinds of Behaviors can
exploit this flexibility to create theh own compilation algo-
rithms, by simply defining an extension of MethodProducer
that introduces new kinds of collaborators or new respons-
es to Wmsformation-stage messages, For example, the
lightweight classes of our previous articlel only need to
introduce a new kind of method that stores its source text
locally Supporting breakpoints requhes an altered parser
and a new method class, as well as manipulation of the
parse tree in the second transformation stage. In a future
project to add active variables, we’ll use a MethodProducer
with a specialized parser, a new ProgramNodeBuilderthat
provides anew kind of RograrnNode,and anew extension of
NameScope.Each of these examples can be handled by a
slightly modified MethodProducerthat, by interacting differ-
ently with ParametetiCompih2r, specializes compilation to
suit each particular kind of Behavior.

The class definitions for these two new cooperative
classes are as follows:

Object subclass: #MethodProducer
instanceVariableNames: ‘client’
cl.assVariableNames:“
poolllifionaries: “
catego~ ‘Parametrized Compiler’

SmalltalkCompiler subclass: #ParameterizedCompiler
imtanceVariableNernes: ‘producer parsertlass

builderClasscodeSheamClass nameScopeClass methodClass
block(lass holderClass’

classVariableNames: “
poolllictionaries:”
categogc ‘Parametrized Compiler’

Every class responds to the message #methodProducer by
returning the default MethodProducer for building the
class’ methods, just as they now define their default com-
piler class. This class-specific MethodProducer is responsi-
ble for creating anew compiler, and, if necessary for ini-
tializing the instance variables that specify what classes
are used during compilation and responding to messages
from the compiler at each transformation stage.

MethodRoducer and ParameterizedCompiler are intro-
duced into the standard compilation process by changing
the compiling messages in ClassDestiption and Behavior.
We redefine the method ClassDescription>>compile:classi-
fied:noMying: (mentioned in step 2 above) and add a new
method to which it will forward
July-Au@ 1995
I ,.. , ..-.
COmplle: COCleClaSSliIed: neadmg nomymg: requestor

‘self
compile: code
classified: heading
notifying: requestor
produce~ (self methodProducerFoflext code)

compile: code cl.assfied: heatig notifying: requestor
producer: producer

‘producer
compile: code
in: self
classiiled: heading
notifying: requestor

The actual MethodRoducer created in the first of the two
methods above is provided by implementing two addi-
tional methods in Behavior

methodproducer
‘MethodProducer new client self

methodProducerFoflext: aTextOrSting
‘self methodproducer

The first method instantiates a MethodProducer of a type
suitable for the class, and classes can override this
method to use new subclasses of MethodProducer.The sec-
ond method, while trivial now, lets a class use different
MethodProducers depending on the method and/or source
code to be compiled.
15

HOWTOCONTACTSIGSPUBLICATIONS
% submitmaterialsfor publkation
@Meproposals,outlines,and manuscripts;industrynew press
k-; productannouncements;Ietiersto lhe editor+end ia
~~~ PaulWhtie,Edfiors
@:=lK REPORT
~=nds Dfme,su~e 509
_~=$2c 3~2, canada
@b@~.~12 Fax:613.225,5943
m~-ople.on.(a
~~! j~mletant’a

& q“- andto ordera subscriptionrenew,
.@i&/@ress of anexistingsubscription

~ ,,5 ‘
~; >2<,,;,,,:”: ;_.

~vB: ,,,.!

16
MOVING CODE TO MethodProducer
The MethodProducer responds to #compile:in:classfied:
no-g: with a method similar to the old ClassDescription>>
compileclassfied:no@ing:.

compile: code in: aClass classified: aProtocolno@ing:
aRequestor ifPail: aBlock

I methodNode selector method I
sourceCode:= code.
Cursorexecute shovWhile: [

rnethodNode:= self ntiompiler
compile: code
in: aClass
notifying: aRequestor
HPaih aBlock.

selector:= methodNode selector.
method := methodNode generate.
self storeSource: code method method class: allass

selecto~ selector classified: aprotocol.
atis loadMethod: method selector:

selectorclassiiied: aprotocol].
‘selector

The differences between this method and the old Class-
Desc@on compilation method are the the underlined
messages. First, MethodProducer uses a Factory Method,
#hewCompiler,to create the compiler it will work with. In
default cases, this method will return a ParameterizedCompiler
that uses the same group of collaborators as Compiler,so
compilation will proceed much as it used to do. For more
specialized requirements, such as breakpoints and light-
weight classes, #newCompilerwill be overridden to return a
ParametetiedCompilerwith new kinds of collaborators.

Unlike ClassDescription>> compile: classified: notifying:,
which directly added the newly compiled source code to
the Change List, MethodProducer makes a separate call to
store source, which provides an easy way for future spe-
cializations to extend or override (and which will be
exploited to support both lightweight class methods and
breakpoint methods). MethodPtoducer defines the source-
storing message by sending #storeSource:method: selec-
tor:chssified to the designated class, which responds by
updating the Change Set and Change List. Frequently, as
happens here, moving a method from one class to anoth-
er requires splitting off a portion that remains in the old
class, where it is easier to access local instance variables
and conceptually more self-contained,

Finally ClassDescriptionimplements load.lkthod:selecto~
classified: by classifying the selector under the specified
protocol in its ClassOrganizationand then adding the new
method to its method dictionary. As with source storing,
this behavior from the old compilation message is better
performed by the ClassDescription itself than by a
MethodProduceroperating on it.

PARAMETRIZING THE COMPILER
ParameterizedCompiler is quite similar to its superclass,
SmaM-kCompiler. It adds accessor methods to set the value
Tire Smalltalk Reporl



ApplyingOMT
A Practical Step-by-Step Guide to Using the Object
Modeling Technique

KURT DERR

[ISBN,I-SII4S42-1O-OI

$44

To order a copy of
ApplyfrsgOMT

call (609) 46S-%02
or see our Home Page
htqd/www.sigs,cam/

Applying OMT was writtento
illustrate the process for
implementing an application
usingthe verypopularObject
Modeling Technique (OMT)
created by James Rumbaugh,
Designed as a how-to guide,
this book instructsreaderson
the implementation process
and on practical approaches
for OMT. The included
diskette provides relevant
C++ and Smalkalkcode.

This is an eswntial rejkrence
for anyone wishing to learn
object-oriented analysis and
design or who uses or wants k
begh exploration of the
Object Modeling Technique.

mw AvailableatAdd bmk otors.DhiributedbyPrenticeHall.
of each of the classes used in the compilation process. It
uses five Factory Methods to instantiate its co-workers, pro-
viding a locus for overriding in future subclasses. Instances
of Pwser, PrograrnNodeBuiider,and MethodNodeHolderare
instantiated simply by sending #new to the class. The other
two methods are:

newCodeSheam
‘codeStreamClass new owner: self

scopeForClass
“self nameScopeClass forClas.s:class

These implementations show why Factory Methods some-
times produce classes and sometimes produce instances:
because different “factories” (i.e., classes) sometimes need
different messages and associated information to produce
valid instances. ParameterizedCompiler overrides the key
worker method of step 4, #tmnsl.ate:noPattem:ifFailmeed-
SourceMap:handle~, as follows:

translate: astream noPattem: noPattem ifFaikfailBlock
needSourceMap: map!%g handler: handler

I methodNode holder codeStieam method I
methodNode:=

self newParser
parse: aStream
class: class
noPattem: noPattem
context: context
notifying: handler
buildec self newBuilder
saveComments: mapFlag
ifFail: [AfailBlock value].

methodllod e:=producer transfonnhee: methodNode
in: class.

handler selectoc methodNode selector. “save selector
in case oferror”

codeStream:= self newCodeSheam.
codeStream class restart.signal

handle: [:ex I
codeSheam:= self newCodeSheam.
ex restart]

do: [codeStream class: targetl%ss outerScope:
seLfscopeForClass;

requestor: handler.
mapFLagifTrue: [codeSheam saveSourceMap].
noPattem

ifTrue: [methodNode emitValue:
codeStreaminContext: context]

ifFalse: [methodNode emitiffect:
codeStream].

method :=3D codeStream makeMethod:
methodNode].

holder :=3D self newMethodHolder.
holder node: methodNode.
holder method: method.
mapllag if True: [holder sourceInfo: codeSbeam
July-August 1995
sourceInfo].
‘holder

There are two things to note herein contrast to the super-
class’ implementation of this method. First, no classes are
referred to by name-they’re all accessed by the instanti-
ation methods shown earlier, so that they can be easily
changed and specialized. Second, there is a new message
send just after parsing, which is our second transforma-
tion stage, (In a similar way messages can be added at the
other stages so that the compiler’s producer can trans-
form the objects flowing through the production points.)
The producer working with this ParameterizedCompilier is
given the newly obtained parse tree and the class it is
being compiled in with the #-hansformTree:in: message.
The producer is expected to return the pame tree that
should be used for code generation. By default, Method-
Producer will simply return the parse tree that is the first
parameter of this message, but in some cases (including
when breakpoints are present), it will need to be able to
manipulate the parse We.

A parse tree, as returned from the parser in step 4a, is
represented by its root node, an instance of class
MethodNode. That node, and all others in the tree, are
subinstances of the abstract superclass ProgramNode,
which defines the common behavior of all members of a
parse tree. Each superclass of ProgramNodehas a different
instance layout. For example, a MethodNode contains a
single block as its child in the tree, while a messageNode
17



!DEEPIN THE HEARTOF SMALLTALK

has both a receiver and an array of arguments as its chil-
dren, This makes it hard to enumerate over a parse tree.

Fortunately help is provided in tbe form of Program-
NodeEnumerator,an abstract class that outlines the proce-
dure for enumerating over a parse tree. ProgramNode-
Enumerator is an instance of a common design pattern, in
this case one called Visitor. The Visitor pattern represents
an object that operates on each object in a complex, het-
erogeneous sh-ucture, performing some function on each
member that is dependent on the type of the member.
However, ProgramNodeEnumeratoris only an abstract rep-
resentation of a Visito~ it doesn’t acturdly do anything
when it “visits” the various nodes in a parse tree. We

out changing its basic
introducing abstract cla
sages, changing inherita
tionships, and so on. P
make them easier to
Refactorings area new
fink and communicate
establish a basis for dev
work. In our experience,
ous paragraph is a co
doing system reworlq a
our system rework intr
thinking about an exis

implement a concrete sub-
class in the form of Program-
NodeEvaluator,a class that pro-
vides the normrd block-based
enumerations used in the
Collefion classes, including
#do: and #seleck.

The ProgramNodeEvaluator
interacts with the ProgramNodes
using a technique called dou-
ble-dispatching the evaluator
sends the generic #nodeDo:
message to each node with the

ParameterizedCompiler

allows programmers to override

behavior at each production point

and transformation stage,
providinggreatflexibility in the

compilation process.

evaluator itseJf as a parameter, which in turn sends back a
class-speciilc message to the evaluator, such as
#doMessage:receiverxelectorargurnents: from a MessageNode
and #doAssignmentm.riablexnlue: horn an AssignmentNode.
The evaluator implements these messages by sending itself
#doNode for each node passed to it in the case of the
AssignmenWode,that would mean tbe variable node and the
value node, while in the case of the MessageNodeit includes
the receiver node and all the argument nodes. FinaJly the
evaluator implements #doNode: by evaluating the block
with the programNodeparameters as an argument and then
sending #nodeDo: back to that node to contiue the enu-
meration. The enumeration terminates because the various
leaf nodes, such as LiteralNode or VariableNode, have no
RogramNodechildren for the evaluator to #doNode: on.

There is one tlnal issue to consider before our imple-
mentation is complete. Prior to our work, parts of the sys-
tem could compile a method by sending appropriate
messages to its target class, or they could parse or compile
methods by sending messages to an instance of a Parser or
Compiler obtahed by the class’ #compilerClass message.
Now, however, it is important that all method parsing and
compiling be done through the appropriate Method-
Producer, so that any extensions or vruiations in the com-
piled code are handled consistently and correctly. As a
result, we have to search through the image to find all
places where Parser and Compilerare used directly to see if
they are SW correct. If they are not, we must change the
site to use either the class or its MethodRoducer.

We use the term “refactoring” to describe a common
process that developers use to reorganize a program with-

in an object’s look-up
#class message, which r
ate the object, define
things. Any method tha
#class to obtain in
#dispatchingClass had to

CONCLUSION
This concludes the imp
ble compilation framew
MethodRoducer-Paramet
breakpoints. Jn the pro
system increases the e
bility as well as some
MethodRoducers to be c

Authors’ note
Source code for the para
anonymous ftp from
ParameterizedCompiler2
trized Compiler41,st in
support).

References
1. Me, B., V Jones, and

SwuxrAI,K REPORT2(9),
2. Gamma, E. et al. DESIGN

OBJECT-ORIENTEDSOFW
1994.
10
functionality+xamples include
sses, renaming variables and mes-
nce relations to composition rela-
rogrammers refactor programs to

reuse, maintain, and understand.
and useful way for programmers to

about what they do, and they also
eloping tools to support refactoring

the process described in the previ-
mmon refactoring applied while
nd we call it lkail Splitting, When
oduces one or more new ways of
ting process, it splits one existing

hail into many. We must then
find each place where the trail
forla and point the way (by
changing code as necessary)
down the correct path. We also
applied this refactoring in the
implementation of breakpoint
methods (as we’Jl see next
issue) and when we intro-
duced lightweight classes.1 For
the latter, we created a new
message, #dispactchingClass,
which returned the first class

chain, as opposed to the existing
eturned the class used to instanti-
its layout, and many, many other
t had previously sent the message
formation now returned by
be changed.

lementation of a new, more flexi-
ork. Next issue, we wiJl use the

erizedCompiler pair to implement
cess, we’Jl see how this new sub-
nvironment’s programming flexi-

extensions that aJlow different
ombined.

meterized compiler is available by
st.cs.uiuc.edu. Look for the file

0,st in pub/st80_vw (or Parame-
pub/st130_r41 for 0bjectWorks4.1

R.E.Johnson. Debugging objects, THE
1993.
PATTERNSELEMENtSOFRmxs.mm

A.IW,Addison-Wesley,Reading I@
The Smalltalk Report



Amodestmetaproposal
Kent Beck
IJUSTGOTANIssuE OFSMMEMM REPORTthat had some-
one’s written summary of one of the talks I gave at
Smalltrdk Solutions. I sound like a wild-eyed, fire-

breathing, spiky-haired maniac! It is so strange to see how
others see me, especially in public. I’ll admit to being in
rare form in New York, a little over the top on the outra-
geous meter, but really...

The other shock this month was news of the
ParcPlace/Digitalk merger. I see the press release. I check
the date. Nope, not April 1. Hmmm.. .1s this some kind of
elaborate joke (badly timed and in extremely bad taste)?

Now that I’m over the shock, I can see positives and
negatives in the deal. It makes sense for Digitalk because
(as RobertYerex from ObjectShare pointed out) they got a
much better valuation than they would have on the open
market. It makes sense for ParcPlace because their worst
nightmare was Digitalk’s technology married to some-
body with cash and marketing clout,

The outlook for customers isn’t so one-sided. If all goes
well, the current products will get their holes tilled.
VisualWorks will get native widgets and better perfor-
mance. V will get a better garbage collector and iidler
application model. DigitaJk’s culture of getting stuff out
the door mamied with ParcPlace’s culture of striving for
elegance could be a potent brew. On the other hand, if
sales aren’t going well there will be a lot of pressure to
drop one or the other image before PPD can architect an
orderly transition.

AU this spells opportunity for the other vendors to
invoke that good old FUD factor, and pickup some quick
market share. They’d better, because if they don’t and PPD
starts hitting on all cylinde%look out!

CLIENT 00CL
I’ve gotten several questions about what it’s like to be a
consultant. By the time this is published, everyone on the
planet who knows how to write Smalltalk may already be
a consultant, but just in case, I thought I’d provide a short
sketch of one of my clients and what I do for them.

Orient Overseas Container Ltd. (OOCL hereafter) is a

Kent Beck has been discovering Smalltalk idioms for ten years at
Tektronix, Apple Computer, and MasPar Computer. He is the
founder of First Class Software, which develops and distributes
developer tools for Smalltalk. He can be reached at First Class
Software, P.O. Box 226, Boulder Creek, CA 95006-0226,
408.338,4649 (voice), 408.338.3666 (fax), or by email at
70761,1216 (CompuServe).
July-August 1995
$1.5 billion (US) global container shipping company
headquartered in Hong Kong. Their business is delivering
those standard-sized containers you see pulled by trucks
on the highway from point A to point B, where A and B
could be anywhere in the world. They own or lease hun-
dreds of thousands of containers and chassis. They oper-
ate 30 some container ships. They run terminals, depots,
and transshipment yards all over the world. They interact
with hundreds of thousands of customers, all of whom
rely on 00CL to get shipments delivered on time, They
handle more than one million shipments per year.

While these wen’t numbers to impress Federal Express
(with a peak of three million shipments per d@), they are
pretty respectable, especially when you factor in the
tremendous amount of capital involved in the form of
containers, ships, and yards. Container shipping is heav-
ily regulated worldwide, so small reductions in cost or
improvements in productivity make a huge difference on
the bottom line.

00CL3 current IS operation is cenhalized in Hong
Kong, built around a large IBM mainframe. To gain flexi-
bility, reduce cost, and better address local requirements
(imagine having to satisfy a hundred different customs
bureaucracies with one system), they decided to move to
a more distributed, client/server system. They chose
Smalltalk (VisudWorks) for the front-end implementa-
tion language.

The project, IRIS-2, is medium-scale by IS standards.
They plan to have around 40 developers when things are
in full swing. They located in Silicon Valley to be closer to
Smalltalk talent,

I’ve been involved with IRIS-2 since it began its life in
these United States, I’ve had a number of jobs as the pro-
ject has matured:

● At tirst we were all just trying to figure out the architec-
ture, so I was a design consultant. We slung CRC cards,
acted the part of objects, and learned about each oth-
ers’ specialities.

● As the design became clemer, David Ornstein and I
wrote an architectural prototype of a critical part of the
design so we could be sure we weren’t just making
beautiful diagrams.

● I helped design and deliver the “Smalltalk Boot Camp,”
a three-day simulation of the entire software lifecycle
intended to bring teams closer together and promote
good programming practices,

● OOCL has generously sponsored my pattern writing,
19



I SMALLTALKIDIOMS

using the Smalltalk Best Practice Patterns I have been
working on as part of their developer guidelines.

● I have been visiting about twice a month all along to
review code, suggest improvements, and tune perfor-
mance.

1 have learned a number of interesting lessons for myself
and for projects like this, which are becoming the norm in
the Smalltalk world. On my part, I have learned:

● A stand-up lecture is useless for teaching. I have given
a series of lectures about patterns that seemed to have
no impact, To address this, we held a “Pattern Bowl,”
where teams were challenged to find patterns or the
absence of patterns in exisdng code. I think everyone
learned more in those two hours than in tens of hours
of lecture before.

“ Be outrageous. What we are doing is difficult. It is risky
(does anyone know the source of the factoid that 50%
of all software projects never deliver?) There is a lot at
stake. Plodding along in a humdrum way doesn’t cut it.
If I want to have impact I have to go for risk and flash,
not “just the facts.” The Pattern Bowl is a good examp-
le. We had prizes, applause, an obnoxious timekeeper
(me), tension, competition, and the all-important
fuzzy animal to go into the keeping of the winning
team. Hokey? Yes, but it works.

“ Don’t be too hard on yourself. A consultant can only
do so much. In the end, the success of the project isn’t
my responsibility. I’m responsible for doing the best I
can, and suggesting other things that I can see need
doing. When a deliverable slips, it doesn’t help to get
caught up in the emotion. It’s hard to care but not too
much, but that’s what it takes to be effective.

This project has shown me that Smalltalk has some seri-
ous holes. I have been swimming in Smalltalk for so long
that I no longer see the water. Newcomers to Smalltalk
find it anywhere from irritating to impossible. For the
market to grow, the vendors absolutely have to address
the issues raised by new Smalltallcers.

For projects, I learned
● Baby steps. Do one small thing then one slightly larg-

er thing, and on and on, The temptation to jump in
with both feet is overwhelming. The argument always
goes “I have committed to this date. I can’t do it with
baby steps. I have to ramp up more quickly” The result
is always disaster. Always. OOCL has done a good job of
trying to stick to baby steps and of getting back to baby
steps when they have gotten too big too fast.

● Program in pairs. The most productive form of pro-

grrimming I know (functionality/person/hour) is to
have two people working with one keyboard, mouse,
and monitor. Our educational system trains us not to do
this and some upper managers have a hard time with it
(“Why did we buy all those workstations and cubicles if
we don’t use half of them?”), but it makes a bigger
change in productivity than any other single change.

● Follow standarda. There are two parts to this. First, you
have to have standards. In writig patterns, I’m deeply
20
embroiled inexactly what the standards should be, but
honestly it is far better to have adherence to good stan-
dards than deviation from perfect standards. Second,
you have to follow them. 00CL has recently put in
place a schedule of peer review that makes sure every-
one’s code is seen by a critical audience at least every
couple of months, This ensures that everyone has a
motivation to understand and follow the standards, if
only to avoid being ripped in public.

There’s a lot more, both to the project and what I’ve
learned, but it wiU have to await another column. I’m
running out of space and I still haven’t gotten to my tech-
nical topic...

A MODEST META PROPOSAL
“Mets programming? Isn’t that what PhD’s do to get the-
sis? What does that have to do with getting my next
deliverable out?” Even if you don’t know it, you’re proba-
bly already doing some meta programming. Meta pro-
gramming is writing programs that manipulate not your
objects, the way usual programs do, but the representa-

tion of your objects. For example, the fact that each
object has a hidden “class” instance variable, and you
can fetch any object’s class and ask it interesting ques-
tions, is meta programming. IsKindOf, respondsTo:,
instVarAt:—these are all messages about how the receiv-
er is represented.

SmalltaJk makes meta programming easy. Too easy, in
fact. When you meta program, you are no longer really
programming in SmalltaJk, you are inventing a new pro-
gramming language that is an extension of Smalltallc
Used indiscriminately by application developers, meta
programming is a disaster. Just as not everyone can write
reusable software, not everyone can write new program-
ming languages. When everyone is writing in their own
Smalltrdk increment, and all the increments are different,
disaster lurks. You can no longer read a line of code and
guess what it does correctly, Risk soars and so does the
cost of maintenance,

On the other hand, the meta programming facilities of
Smalltalk can come in extremely handy, They can even
save a project. If having some new kind of control sbuc-
ture vastly simplifies your program, chances are you can
implement it in Smalltalk and take advantage of it,

How, then to provide the needed facilities without
exposing them unnecessarily? The problem as I see it is
that they are all implemented up there in Object. It’s just
too easy to stumble across isKindOfi,use it to solve a short-
term problem, and never discover the powerful polymor-
phism lurking just around the corner. I propose to put up
a waJl between application programmers and meta pro-
gramming by introducing a new class, MetaObject, upon
which all the current meta protocol in Object (and some in
Behavior as well) will be heaped.

This is not an original idea. I got the idea in 1987 from
Patti Maes’ 00PSLA paper. I don’t remember the exact
title any more, but it introduced the idea of meta objects.
The Smalltalk Report



I’ve had the idea floating around in my head since then,
but I didn’t do anythng about it until I was bored on a
flight recently. Pulling out my trusty ThinkPad, I whipped
together an implementation. I liked the result enough to
publish it here.

MetaObject is an Adaptor on any object. An Adaptor
changes the protocol that an object accepts by interpos-
ing an object with the changed protocol.

Class: MetaObject
superclass: Object
instance variables: object

You create a MetaObject by giving it the object to adapr

MetaObject class>>on: anObject
‘self new setObject: anObject

MetaObjecO>setObject: anObject
object:= anObject

There is a Facade in Object, Obje@>meta, for creating a
MetaObject. Clients will use this interface.

Obje@>meta
‘MetaObject on self

The infamous isKindOf becomes “inheritsFrom:” in
MetaObje&.

MetaObject~XnheritsFrom: aClass
‘self objectClass includesBehavioc aClass

ObjectClassreplaces Obje@>class:

MetaObjecP>objectClass
‘self object class

I don’t have space hereto show all the implementations of
the MetaObject protocol. Table 1 shows the old and new
meta protocol. In some cases, I’m not thrilled with the
July-August 1995
new names. I’ll happily entertain suggestions for better
selectors.

This is certrdrdy not an exhaustive list. It’s just what I
came up within a couple of hours. It should be possible to
move more meta programming protocol in MetaObject.

Given this amount of protocol, I was able to quickly
produce an Inspector that used a MetaObject to display and
modify instance variables.

MetaObject provides the following advantages
s It discourages casual use of meta programming pro-

tocol. If you see “meta” in application code, you’ll know
to perk your ears up and make sure it really belongs.

● It collects scattered protocol. Some j4
meta programming protocol is implemented in Object,

some in Behavior, some in Class. MetaObject brings it all
together in one place.

. It is flexible. If a particular class needs a different kind
of MetaObject for some reason, it can override “meta.”
You might do this, for example, to give a uniform pro-
gramming environment on Smalltalk and C++ objects,

● It simplifies ObjecL Let’s face it. Object is too darned big.
VkualWorks 2 (the Envy version, anyway) defines 166
methods on Object. Visual SmaUtalk Enterprise 3,0
defines 348. IBM Smalltalk gets by with 101, MetaObject
is a step in the right direction.

MetaObject has the following disadvantages:
● One more class. Don’t we have enough classes in the

base system already? We will have to teach people to
use it and convert old code.

● One more object, Now, when you want to have access
to meta protocol you have to create a whole new
instance of MetaObject.

How about it? Next time you need meta programming,
implement a little MetaObject first and see how it feels. Let
me know if you like it,
Table 1. Old and new meta protocol.

Obiect meta messaee

class

changeClassToThatOEaclass
(VisualWorka)

class aUInstVarNames

class aUlwtVarNames size

in.stVarAh aNumber

instVarAt aNumber
put: anObject

allOwnersWeakly aBoolean
(VmualWorks)

become: anObject

isKindOfiaclass

isMemberOfiaclass

MetaObject message

objectclass

objectllass: allass

keys

size

at aStn-ing

ak aString
put anObject

owners

.switchWith:anObject

inheritsFrom: aclass

instantiates: aclass

Extdanation

Return the class the
receiver instantiates.

Change the receiver’s class.

Return the named instance variables (MetaObjectlets you treat
an object like a Dictionary).

Return the number of named instance variables,

Return the value of an instance variable.

Change the value of an instance variable.

Return a Collectionof all objects refering to the receiver.

Swap two objects identities.

Return whether the receiver inherits from acl.ass.

Return whether the receiver is an instance of aClass.
21



I
WAS RECENTLY ON A PANEL DISCUSSION at
ObjectWorld Boston about problems O-O software
projects encounter and how to recover from them or,

better yet, avoid them in the first place, It got me to
thinking about the lessons we’ve learned and how they
keep coming back over and over again. It’s been awhile
since I listed a set of these topics, so here goes.

ERRORSAND RECOVERY
There are a number of problems we could discuss, cer-
tainly too many to exhaustively list here. So in this section
I’ll list some of the problems I see most frequently on the
projects I work on.

Missing model
This problem results when you connect a graphical user
interface (GUI) directly to your existing database (DB).
This design keeps you from achieving reuse and lower
maintenance costs when developing your software sys-
tems. Object technology’s great potential is primarily
achieved by developing and leveraging a model of your
business domain. This model is surfaced through the
GUI. A database is merely persistent storage underneath
the object model.

If you need a quick ad hoc solution to some need in
your organization, you can by all means slam together an
application that is all GUI and DB. Just don’t kid yourself
into believing that you will have an easier time reusing,
maintaining, and extending the application over time.

Some of the development products available today
make leaving out the model between a GUI and DB very
easy to accomplish. Interfacing objects to a relational
database (RDBMS) used to require a “broker” layer of
software to handle the data movement to and from object
state data and database rows. IBM’sVisualAge is an exam-
ple of one such product. VisualAge handles many of the
details of accessing RDB row data. In fact, as Figure 1
shows, you can make direct connections from GUI wid-
gets to database row information.

Mark Lorenz is founder and president of Hatteras Software Inc., a
company that offers services and products to help other compa-
nies use object technology effectively. He welcomes questions
and comments via e-mail at mark@hatteras.com or phonemail at
919.319.3816.
22
Staffing behemoths
This problem occurs when you have offices ful of people
and the project is just starling to develop an object model.
It occurred on a project of mine a few years back. Another
modeler and I showed up to begin developing an object
model. We were shown around the group and discovered
that there were over 25 developers and all the surrounding
support sti on the project, We gathered a couple of tech-
nical leads and a couple of domain experts and the six of
us went into a conference room to start the rapid model-
ing sessions. I asked the woman who eventually became
the de facto chief architect on tbe project “what are all the
other people doing while we’re in here?” The answer was
“they have things to do.” Well, they basically wasted time
waiting for us to get far enough along with a model and
subsequent architecture of subsystems and contractual
interfaces, They were then put to good use.

My previous work discusses how to architect your sys-
tem so that teams can work relatively independently and
still be productive in building a cohesive system. 1’2
Using these techniques, you can effectively grow your
organization and avoid the costly mistake of staffing too
many too soon.

Ill-behaved object model
M “object model” that has all data and no behaviors is a
typical indication of this problem. A group Iiom a telepho-
ny project once proudly marched me into a room to see
their object model pasted onto a wall. The pages and pages

.

EB’K’qap--- ..........$=l
DmhbnEeCwaY

resuh%blnd DeInbaseCmery

rwmnt%w ti msuHTablnd DnlnbnseOuary’

Figure 1.EuampleVkualAge application with no model.
The Smalltalk Report



of output included every imaginable piece of state data that
could be associated (and had been in their legacy data-
base!) with the classes they had identified. And not one
class had a single behavior in it! Figure 2 shows an example
of what this type of model looks like. You can spot it from
across the room, even if you can’t read the details, because
the middle state portions of the class boxes are filled with
text and the bottom behavior portions are empty.

An object model must focus on behavior, as shown in
Figure 3. I’ve purposely left all state data off this diagram
to drive the point home that behaviors and their alloca-
tion are essential to success. Certainly, you will want to
(eventually) show state data in youI object model.

Missing management
There are differences in managing a team developing O-O
systems using different processes and methodologies
rather than traditional techniques. Managers need train-
ing in what to track, what it means, how to schedule, how
to organize teams, and so on.

Figure 4 shows an example of basing schedules on use
cases, scenario scripts, and subsystems. This is different
than traditional schedules, which are generally based on
functional line items. This new type of schedule has
dependencies on the team organization also. For example,
most of the time one small team will work on one subsys-
tem start-to-finish. This requires that work on business
scenarios that affect their subsystem be scheduled serially
along with other subsystem teams. Support subsystems
can be worked on independently, as long as they are ready
before dependent business scenarios need them.

Persistence black hole
I have seen whole projects eaten alive by this problem.
There are various facets to integrating O-O systems to

Customer Account

name number

address ● balance
phoneNumber transactions

●

Transaction

number
Iineltems
date
total

Figure 2. Example of a data model mistaken for an object model,
July-August 1995
legacy systems and databases, It requires brokering to
map between the object’s state data and the RDB rows,
as shown in Figure 5. This is often just the tip of the ice-
berg, however. When you start getting into issues of dis-
tributed objects, shadow objects, system startup and
shutdown, and error recovery, the situation gets much
more complicated.

Basically you end up spending a large percentage of
your time getting into the object database (ODBMS) and
support tool businesses. You worry about how to handle
long DB transactions, rollback, and other issues. This obvi-
ously takes tie away from your real business, such as
building a finance, insurance, or retail application,

Depending on your requirements and the products
available when you encounter this beast of a problem,
you have different options, An easy one, if it meets your
needs, is to use an ODBMS such as GemStone, Versant, or
ObjectStore.

AN OUNCE OF PREVENTION
Preventative measuring
O-O metrics can assist you in vruious ways, from develop-
ing better estimates for new projects to checking on the

quality of projects already underway. The goal is to find
and resolve problems as soon as possible.

The 00 metrics that give you the most “bang for the
buck” are organized as follows:

● Method size-number of message sends
_ Class size-number of methods and variables
● Coupling-law of Demeter, global usage
● Inheritance—method overrides, hierarchy nesting

depth
● Complexity-McCabe for classes

See OBJECT-ORIENTEDSoF’IW.mEMETFUCS3for a complete
discussion of each of these.

Customer Account

hasPhoneNumbec withdraw
isPrefened deposit
hasCheckingAccount isOverdrawn

owner
balance

●

Transaction

logTo
is5uspended
commit
total

Figure 3.The same businessrepresented by a true object model.
23



7

I PROJECTPRACTICALITIES !1
Design, don’t just code
Mos~ proiect teams focus on coding issues, such as lan-
guage- sfitax and tricks, instead o~what’s really impor-
tan—the object model and design conventions. I recom-
mend the following techniques for yom design (discussed
in greater detail in RAPID Somvww DEVBLOPMENT2).

Instantiation integriq. This technique ensures that
your model state is valid at all times through the use of
custom class instantiation methods. For example, if your
business rules require a SalesTransaction to have a
Customer associated with it, you might have a class
method such as:

SalesTransation class
for aCustomer

“return an instance of myself with my customer set
to aCustomer”

‘self new
custome~ aCustomer;
yourself

Collection protection. This technique protects your state
from mistakes made by your clients by passing them
copies of your information. For example, if a view class
asks the Store for its employees, a copy of the Collection is
returned so that the real Collectioncannot be corrupted.

Store
employees

“return a copy of my employee collection”

‘self myEmployeescopy

Laissez-fd?winitiukutim. This technique makes your
24
objects more robust by having them self-initialize as need- ~
ed at runtime. It also allows for business rule enforcement ,.
and ease of redesign because you have a point of control
for state access.

~
Store
myEmployees

“Private: return my collection of employees” .

1?

( myEmployeesisNil ) ifl’rue: [ self
myEmployees: OrderedCoUetion new 10. ].

‘myEmployees

Invest in an object model
The most important O-O software asset is your business’
object model. It is absolutely essential to your success
that you spend time developing a model of your business
concepts, relationships, and service requests before
design and implementation. Get O-O and domain experts
in a room, write use cases and scenario scripts, and draw
object model and collaboration diagrams.

Get mentoring
The fastest way to get your people over the learning curve
is through mentoring. There is no replacement for direct
interaction with people who have developed O-O systems
before. Developing a good O-O system takes a lot more
than a language class!

Run your project like a group of small projects
The Standish Group did a study of 8,380 applications and
found that 78% of small company software projects were
Successful, whereas Ody 9% Of the large company pro-
jects were successful The message tome is that the only
realistic way to run a large project is by dividing the team
up into relatively independent smaller teams.

,.,

,,.,

[:

,.

,:.

{.,

E!
\ ..:--- ~~~

Usacesel
.

“&bayittil ““”-“-” ‘“

“tikl “ ‘“” “’ “’
..- — . -.

Scenario 2

1‘--

.
ernz” ““

-S&nirbl--””” ““”,.- *k,

Iusezeee2

Scenarb 3 fioio&pa
. . . .

Scendo3!Jn2tast

sliindo30as&rmiaw

~a”~ 1. .. . . ..
Conmmatlons Coniracis”

. .. . . . . .. . . . . . . -----
-w—~z

D&i&i brokirc&a&a
Figure 4. Example schedule based on use cases.

bte
#.,

K.

~ !The Smalltalk Reporl



JOURNAL OF OBJECT-OSUENTED PROGRAMMING (JOOP)

is the technical magazine designed to help programmers
and developers better understand object technology and
use it more effectively. With each issue, you’lJ receive the
latest technical breakthroughs and information, usable
research, innovative ideas, product news and reviews,
and other useful advice nine times per year!

Edited by O-O expert Richard Wiener, JOURNAL OF

OBJECT-ORIENTED PROGFWMMRSG is filled with informa-
tive articles and regular columns by top industry leaders
including James Rumbaugh, Ivar Jacobson, Donald
Firesmith, Andrew Koenig and others.

?EibORENTED

WrJJnNcoumN m
SIGSPublications, PO Box ECk19,Brentwood, TN 37024-9737

For faster serv@ call: 1-8C0-361-1279 or fax 615-370-4645.
---------- -------- -------- ------------ ..-----

~ YES! Send me one year (9 issues) of JOOP for $69.
Plus, FREE issues of Cross-P/atform Strategies end

ClientiServer Develope~

Methodof Payment
Q CheckEnclosed(payableto S/GSPublications)
Q Charge My D Visa D Mastercard Q Amex

Card No. Exp. Dete

Signature

Neme

Company

Address

Country/Postal Code A50701

lmporlml: Non. L’.S.ordersmust bcprepaid Lr.S,ark include shipping. Cmladim and

Wrican orders pleased $25 for air wvire. Outside North America mid .$40. Che4s must

K pd in Lr.S.dollars drawn OH a L’.S. bank Pleaseallow 6-8 wckfor dchwy offirJI iNI,.
L==l 6
Address

&&

View

objects

Model
objects

DBBroker
layer

DBRecord

DBMS

-. .,.. -“.. ,

Figure >. use or a utmroKer.

SUMMARY
We’ve gone over a number of the most common problems
we run into on O-O projects. We’ve discussed ways to
resolve them when they happen and, more importantly,
how to avoid them in the first place,

Terminology
● behavio~ The services provided by an object to other

objects, through messaging and method invocation.
● collaboration diagram Graphical representation of

the subsystem groupings of classes and the contractu-
al relationships between subsystems and key classes.

s object modek Objects and their relationships required
to represent your business domain and business rules.

● distributed object An object that resides on another
processor.

● object database A persistent store that works seam-
lessly with object definitions and/or instances.

s shadow objecti An object that has a proxy stand-in on
the local processor, but actually resides on another
processor.

References
1. Lorenz, M. Architecting large projects, THE SMALLTALK REPORT

4(6):2&29, 1995.
2. Lorenz, M. RAPIDSOFTWAREDEVELOPMENT,SIGS Books, New

York,1995.
3. Lorenz, M. and J. Kidd. OBJECT-OFIIENTSDSOFTWAREMETRICS,

Prentice Hall, Englewood Cliffs,NJ, 1994.
4. The Standish Group International. Cwos, 1994.
July-August 1995 25



Managingproject
documents

Jan Steinman BarbaraYates
IN OUR PREVIOUS COLUMN, we made a case for “con-
tinuous documentation,” and outlined what that
entads. We also promised to give you some concrete

examples and source code, so you could begin to imple-
ment a continuous documentation process.

First of all, we’ll need to change how classes store
their comments.. ,WE INTERRUPT THIS COLUMN TO
BRING YOU A BASE IMAGE CHANGE ALERT! ALL
USERS WITHIN 200 KILOBYTES OF THE IMAGE MUST
EVACUATE IMMEDIATELY! WHEN YOU ARE ALLOWED
TO RETURN, YOUR PRECIOUS, CAREFULLY CRAFTED,
WORK-OF-ART CODE WILL TAKE ON STRANGE AND
(we hope) WONDERFUL NEW BEHAVIOR! HAVE A
NICE DAY!

Whew! We almost slipped one by the Base Image Police
there, but they caught us! So, let’s retitle this column and
proceed.

MANAGING MODIFICATIONS (OR’’WHO CHANGED
basicNew?”)
Pity the poor Smalltalk vendors! You buy an object library
in C++, and you typically get linkable object code-it
works, or it doesn’t, But when Smalltalk customers don’t
like what they got from their vendor, they simply change
it—which often introduces bugs, which are often subse-
quently reported back to the vendor! (All of this applies to
third-party code as well.)

Consider the myriad ways that basic Smalltalk can
become polluted:

● Beginner naivet4. “Delay:= Delay forSeconds: 1.”
● Enough lmowledge to hurt yourself. A seasoned ST/V

user tries VisualWorks, and writes a cleanup method
that does “MyClassalllnstances do: [inst I inst become:
nil]. ”

● Enough lmowledge to make it look random, The same

Jan Steinman and Barbara Yates are co-founders of Bytesmiths, a
technical services company that has been helping companies
adopt Smalltalk since 1987. Between them, they have over 20 years
Smalltalk experience. They can be reached at Barbara. Byte-
smiths@acm.org or Jan.Bytesmiths@acm.org.
26
code as above, but cleverly made conditional upon rare
low-memory conditions, and then forgotten.

● Unintentional overrides, Such as implementing
nextPutAlk in a Stream subclass that normally inherits it.

● Forgotten halts and other test or debug code.

Beginners often put halts in system code (rather than
putting halts in their own code, then stepping into the
system code), and sometimes they forget to take them
out .

● Well-meaning changes gone awry. Such as the data-
com specialist who changed Integer printOn: so that if
the shift key is held down, they print in hexadecimal.
(This one didn’t quite make it to production before
someone noticed strangeness when extending selec-
tion in a table by shift-clicking,..)

“ Downright malicious. Nab, no Smallt alker would
make malicious changes, right? But if someone did, say
a disgruntled soon-to-be former employee .,.

Always keep in mind that base changes are the enemy of
reuse. One of the big wins of reuse is that less testing is
needed when you reuse previously tested code, The down
side is that changing code that is heavily reused increases

the testing burden, because you aren’t really sure all the
uses of the changed code agree with each other.

Why are changes necessary?
In team programming, base changes fall into two cate-
gories. Personal changes are necessary for individual
developers. Individuals need to be able to experiment
with base changes before foisting them on their teamm-
ates; they may experiment with base changes to better
understand the environment or they may simply want to
customize their own environment. If you are using a code
management system (such as ENVY or Team/V), you gen-
erally have numerous options for balancing the needs of
the team for stability against the needs of the individuals
for experimentation.

The second category is where the trouble begins.
Although you should do whatever you canto discourage
it, sometimes you need to make project- or corporation-

wide base image changes. These changes might include:
The Smalltalk Report



conh.nued on page 31
● Fixingbugsinvendor’s code. This is fairly unusual, but label if the window
if you do find a bug that is getting in your way, and it window is iconified
has an obvious fix, you will probably want to incorpo- Another useful e
rate it into your base. Also, maintainers love getting bug for an instance va
reports with fixes, so if you fix the bug carefully, docu- selector so that it
ment it properly, and submit it with your bug report to change to “pluggab
the vendor, there’s a good chance it will be in the next behavior of your s
release from the vendor, which makes your re-integra- tially invisible to ol
tion job that much easier. A big problem w

● Make enhancements to the vendor-supplied tools. directly visible to s
This is the category for which the Base Image Police class directly access
caught us! The combination of dynamic compilation than going through
and full source code means you can easily tailor the tandem, there will
Smalltalk development environment to your organi- diagnose.
zation’s specific needs, These kinds of changes have A4ethod overrides

little possibility of getting into a vendor’s product, have tremendous im
and so they must be done in such a way that facili- Behavim basicNew w

tates re-integration with future
vendor releases,

● Make enhancements to the ven- “When Smalltalk customers
dor-supplJed framework classes.

don’t like what they gotThis is similar to the previous
case with one important differ- from their vendo~ they
ence: the changes you make to
framework classes will be deliv- simply change it.”
ered with your application, and
so must be more robust than
changes made to development tools. This should
involve regression testing to ensure that the framework
still functions with previously written code.

Limit scope and impact of changes
Base image changes can be categorized by their scope.
You should carefully analyze your needs, and limit the
scope of your change to the greatest degree possible. For
example, it may first seem that you need to add an
instance variable to a base image class and add two
methods that use that new state, but further analysis
might show that you really only need to change the use of
an existing instance variable, and then hide that change
by changing the methods that access that instance vari-
able. The following change categories are roughly in
order of desirability.

Single-method, non-state changes are the best. Such
changes should not change the arguments or answer of
the method, but only its side-effects. The answered object
should have the same behavior, and no additional con-
straints should be placed or assumed on variables or sent
methods.

Encapsulated state changes put different objects in
instance variables, but manage those changes through
the methods that access those variables. These changes
tend to have small impact on any given vendor release.
For example, you might need something better than sim-
ple truncation of window labels to use as icon labels, so
you could change the label instance variable to be a two-
element Array that either answers a full, title-bar length

—

son tools will detec
well conflict with v

Finally there is
such methods—if a
the change shouldn

Chan@g messa

get messy, and shou
or returned objects,
an Array rather than
your particular cas
someone else’s code

Changing object

instance variables,
you can make, and
ables by itself is no
necessary, most of
behavior of the clas
are what subclasses

Changing intercl
might track down a
software won’t kn
Smalltalk vendor’s
either! If changes t
document them we
eventually will resu

“Conditionalize’’cha
Especially in the l
becomes increasing
July-August 1995
is open, or a custom short label if the
.
ncapsulated state change is arranging
riable that normally holds a method
can hold a block. This can be a useful
le views” for increasing the dynamic

ystem, and if properly done, is essen-
d code.
ith this technique is that object state is
ubclasses. If some poorly written sub-
es the state you have changed, rather

the access methods you changed in
be trouble, and it may be difficult to

don’t seem like changes, but they can
pact. (If you don’t believe us, override

ith a new implementation in the Object
class, then purposely introduce a
bug and see what trouble that

causes!)
Overrides are tempting, because
they do not change actual base
image code, but for that same rea-

son an override is difficult to track
and debug. They are more trouble
when re-integrating new vendor
releases—none of your compari-

t the override as a change, but it may
endor changes in the new release.
usually a reason for the inheritance of
n override seems atmactive, be sure that
’t actually go into the inherited method,
ge arguments or return objects begins to
ld be avoided. Constraining arguments
such as requiring that an argument be
any kind of collection, might work for

e, but it is certain to eventually break
that didn’t share your assumption.
shape, or the number or ordering of
is one of the most invasive changes

is to be avoided, Adding instance vari-
t terrible, but if such a change is really
the time it is because the fundamental
s is being changed—behavior changes

are for!
ass interf~es is really dangerous. You
ll uses in your context, but thhd-party
ow about your change, and your

next release certainly won’t know
his extreme are required, be certain to
ll, to ease the inevitable problems that
lt.

nges
atter categories mentioned above, it
ly important to factor your change in
27



Group”

The American Funds Group is one of the most
successful mutual fund or animations in the world.

L1Since 1931,we have provi ed our shareholderswith
consistently superior investment results and out-
standing service. Share in the continued growth of
our Norfolk, VA OffIce.

We have been a financial indust~ leader in Small-
talk developmentfor over 5 years. We are currently
developinga large client serverbasedcustomer serv-
ice system. This application is being created using
the latest object oriented methods and is in the be-
ginning stages of development. Ideal candidates will
have the opportunity to be a part of the design team
whose responsibilities will include these initial
phases of development.

We offer a competitive salary and excellent
benefits package including

● Medical, dental and vision care coverage
. Educatioti assistance
. An outstanding company-paid retirement plan

Positions are currently available for:

This positon requires 2 to 5 yeara of Smalltalk ex-
perience including 00A and OOD. Job responsi-
bilities will include leading in the overall design
and creation of class and object hierarchies.

*_,,..,,:::, ..

In this position, you will develop GUI baaed client
server applications. At least one year of Smalltalk ex-
perience is required.

If you are interested in applying for any of the
positions listed above, please aend your resume
and salary history to:

The American Funds Group
(Please specify position)
5300 Robin Hood Road
Norfo@ Wrginia 23513

EQUAL OPPORTUNIW EMPUIYER

entd mporationIhalprovkksanericellenlworkingenviromne;ttialwill

ckallengeycarratdilii andsharpenyourskills.We ore K.SC.We on year
fularr.

f%sently, we are ding 10aupoenlourteclmicalbninkrgandmowhing
sMswilfrprofessionalswhohavetwo@usyearsof demmtstratedeqmi-

eomwith00A&D, IBM Srnalhrdkm VktrdAgerParcPlaceVisudkk&
DigitalkSmalltalW~ and Envy.

Ass leader in supplyingmu htum 500 cliint Lmsewith Objd Oriented

MakeNo Compromises.
Join a leader in
ObjectTechnology.
WareKnowledgeSystemsGnpomtiaLhe mlmmledgedleaderin
objmx Oriented Tedrmlogywvires.Workingmrtbetuningedgeoftecb-
mlogy,wearepoisedtomovetogmalerheighlsoftecknicaldiversky,
clientserviceability, ad employer opporh@. We are pmfesaional, team

~-~ ~vm 10excellence, but roostof all, we are an emolovA-

WhMions,Knowled& Syslmts Cufmradon is able 10offer a very cont@i-
tive salary, so excdenl lmetils pdrage and mmy opporluniliis to grow
with the Ie&r. Pke seodlfm ymr rover le4ter,mume, sod salary
rtqirements tm Knowledge SystemsCmpora600, 4KII Wemn Parkwayr

Cary,NC 27513; or cdl (919) 431_, Fax(919)677-3 ore-mailto
-~d@-.m- EqladOpmmlnityEqloyerl

SMALLTALKPOSITIONS

DIGITALK is seeking experienced Smalltalk instructors and
consultants for our world-class Professional Services team.
At DIGITALK you will work with one. of the world’s lead-
ing development teams, use state-of-the-art prnducts and

assist companies on the forefront of adopting object tech-

nology in client-server applications.

Requirements for Senior Consultants are: solid experience

with Smalltalk (3-5 years) and/or PARTS Workbench

Experience. 00ALD experience and GUI design skills.

Mainframe database experience is a big plus. Requirements

for instructors are: previous training experience ‘in a relat-

~d field (2-4 years), understanding of 00 cnncepts and

5malltalk.

Positions are available in varioua sites throughout the U.S.

Compensation includes competitive salary, bonuses, equity

participation, 401(k) and family medical coverage. All posi-

tinna require travel. DIGI’14LK is an equal opportunity

employer.

Please forward your resume to:

Dkector of Enterprise Services
Digitalk, Inc.

7585 S.W. Mohawk Drive
Tmdatin, OR 97062
faxl (503) 691-2742

internet: hollvfddirritalk, com

28
The Smalltalk Report



.bjedSpace

ObjectTechnologyProfessionals
ObjectSpace, Inc. is a cutting-edge leader in the

object-oriented arena with awesome technological capability
and extraordinarily talented people dedicated to the creation

and deployment of advanced technologies.

Progressive growth has created immediate career opportunities
for Obiect Tec~ who are highly technical and are

committed to excellence.

We have requirements for Object Technologists who have
strong object-oriented backgrounds and two years of

experience in one or more of the following:

Smalltalk Distributed Smalltalk
c++ EsrdWorks

Fusion EsrualAge
Rumbaugh Booth

We offer competitive compensation, performance-based and
travel bonuses rmd a complete benefits package.

For consideration, send a resume to:

ObjectSpace,Inc.
14881 Quorum Drive, Suite 400

Dallas, Texas 75240
1-800-OBJECT1

Fax (214) 663-3959
jobs @objectspace. com

. . LISTEN, even though you’re not “looking” now.
Exceptional career-advancing opportunities for a
particular person occur infrequently. The best time to
investigate a new opportunity is when you don’t have to!

You cart increase your chances of becoming aware of
such opportunities by getting your resume into our full-
text database which indexes every word in your resume.
(We use a scanner and OCR software to enter it.) Later,
we will advise you when one of our search assignments
is art exact match with your expcriertw and interests, a free
service to you.

Founded in 1974, we are a San Francisco Bay Area
based employer-retained recruiting and placement firm
specializing in Object-Oriented software development
professionals at the MTS to Director level throughout
the U.S. and Canada.

We would like to establish a relationship with you for
the long-term, as we have with hundreds of other

Object-Oriented professionals.

$&?@ $A $~
Established 1974

Internet lji@nai.com URL hltp//www.d.naLcom/-lji

voice 510-787-2110 FAX/BBS(8Nl} 510-787-3191
P.O. Box S17,Crockett, Cdihmi. 94525

If you want to see the Future, take a look at our past: 185

years of smart decisions have made us one of the few, true

long-term success stories. That success continues today

with superb ratings and bold new products, making ITT

Hartford the smart decision for those with an eye on their

future. We are currently seeking technical professionals to

join our Gmporate Object Group located in Hartford, CT.

The selected candidate will be responsible for the constmc-

tion of corporate-level “infrastructure” object classes to pro-

vide utility functions and be leveraged by segment developers.

You will review and harvest classes deemed appropriate For

inclusion into the class library Other duties include work-

ing with the Corporate Object Group and assisting project

Y

teams in velnping classes to meet specific needs. Ex@ence

with +, Smalltalk and relational database products is

~e cial. Experience developing classes in an insurance
z

~-”to in;eg;ate Smalltalk classes into

re required.

-~’”

Id

e responsible fnr ject database

%

&pning f. . e corporation. Duti ~include ins . ,

!3+ .pg SII Obj=t ~ ase for the o-

9ing product “-

support pers

Smalltalk and”

is required. Experien

&qThis individual will SZS;q

trahon of class speci “o

repository, Tasks in he]

1
easy navigation th

multiple classes wi

for Iibrsry users

internal publicati

library is desiq

ParcPlace VI?

July-August 1995 29



If you’d like to play a

significant role in a large

object-oriented project...
we’d like to hear from you. 00CL’S IRIS-2 project

takes a strong software architecture approach to

building an integrated information infrastructure.

The IRIS2 development team is based in Santa
Clara, CA. OOCL, an industry leader in the container-
ized shipping business with over 140 offices around

the world and 2000 employees, offers reliable trans-
portation services to its customers via a global net-
work of ocean and intermodal routes.

Smalltalk Developers

We are looking for experienced VisualWorks/

Smalltalk system analysts/designers and developers

with strong interest in domain modeling, user inter-
face design, and persistence and distribution tech-
nologies. You will have the opportunity to work with

a highly skilled, highly motivated Smalltalk develop-
ment team in an environment which emphasizes
technical excellence, teamwork and professional
growth. If you are 00 fluent and eager to join the
league of the very best in Smalltalk development,
we’d like to talk to you.

Productivity Tools and Release Engineer

We are building a team to provide the 00 tools and
infrastructure for software delivery. If you have expe-
rience in configuration management, release engi-
neering, and tools and utilities development, you can
play a role in helping us build quality into our devel-

opment process.

00CL offers competitivecompensationpackagesand the
technicaland analyticalchallengesyou expect in a state-
of-the-artenvironment.Applyby sendingyour resumeto
Lori Motko via a-mail, indicating (he position of interest, at

motkolo @ oocl.tom, or mail to 00CL, 2860 San Tomas

Expwy, Santa Clara, CA 95051, or fax to (406) 654-8196,

Dedicated to Quality Service

Smalltalk RothWell Smalltalk RothWell

SMALLTALK
PROFESSIONALS

This is your opportunity to join
the finest team of Smalltalk
professionals in the country!

RothWell International
has challenging projects
across the US and abroad.

Excellent compensation and
immediate participation in the
Employee Stock Plan.-.

(CHECK OUT OUR
w NEW WEB PAGE!)

http:llwww.nvi.cornl

BOX 270566 Houston TX 77277

(713) 660-8080;Fax (713) 661-1156

(800) 256-9712; landrew@rwi.com
Smalltalk RothWell Smalltalk RothWell

objectWare Corporation is a Chicago-based
software consulting company with nationwide
presence in the telecommunications industry,
Qualified individuals will have hands-on
Smalltalk experience and familiarity with OMT.

Experience with UNIX and ODBMS are pre-
ferred.

We will challenge you to enhance your skills,
while providing you an opportunity to grow.
objectWare offers salaries commensurate with
your experience. For further consideration please
submit your resume with salary requirements to:

Sam Cinquegrani
objectWare Corporation
1618 N. Orchard Street
Chicago, Illnois 60614
e-mail: flda@interaccess. com

objectWae Corporation

30 The Smalltalk Report



MANACINGOBJECTScontinued~m page 27

away that makes it easy to back out. For example, if you
want to add some special processing to what happens
when you compile a method, it is tempting to simply put
your modifications irdine, but a better way is to make all
your modifications in a separate method, then condition-
ally send that message if it exists, by using testing meth-
ods such as respondsTo: or canUnderstand:. Note that these
tests can have a performance impact, but so can a broken
change that you can’t isolate!

This “base-change boundary” is one of the few places
we tolerate the use of isKindOfi.
Using isKindOfi as part of your

We use two techniq
image modules; both h
place. The simplest is to
example becomes “RI .
have a number of chang
often prepend some i
“Bytesmiths R1,43.0. ” E
with new vendor releases

At the system level, a
every change or addition
method, is highly useful.

program logic is contrary to
good O-O design, because it “Keep in mind that your
imposes the sending method’s base image changes are not
viewpoint on another object
rather than obtaining the other the main development stream;
object’s willing collaboration.

they are a branch!”However, at the base-change
boundary, isKindOfi is useful for
testing the existence of base
changes, so that they can be easily backed out without
changing the base once again. It still isn’t good O-O design,
but it’s a bit more justified when used to veri@ module
interface boundaries.

Another useful technique for managing changes is to
make them conditional upon an arbitrary “signature”
method. For example, you might implement hasBeen-
Hacked in Object, and then bracket your changes inside
“(selfrespondsTo: #hasBeenHacked) ifllue: [...].” This way if
a particular module of enhancements is present, they are
used by changed base methods, but if not, the base
changes skip the conditional changes.

Positive identification
There are two principle reasons to keep track of exactly
what you changed: it will make your integration with the
next new release from the vendor less painful, and it will
help you to back out a change if it proves to be a mistake,
Identification needs to happen at the method, module,
and system levels.

For method changes, we’ve implemented a “hot key”
that inserts “Modifiedby [user] on [date]: .“ where “user” and
“date” are properly filled in, and the tumor is positioned
before the period to encourage the user to further describe
the change. We use this two ways. In a short method, we
simply place it after the normal method comment. In a
long method, we bracket our changes by placing this hot-
key comment both before and after the change.

Common code management systems allow version
names for code modules. Keep in mind that your base
image changes are not the main development stream;
they are a branch! So if you modify a code component
that the vendor named R1.43, you should not call your
version R1.44 because that will most likely collide with the
vendor’s next release!

to demonstrate this in a
ing why and how the c
human activity.

Organizational issues
In organizations with
teams, there is usually a
has the authority to decid
the base image will be
“Keeper” is particularly i
corporate-wide version

A trial period for cha
cannot always tell that
all the development te
reports a problem with
Keeper can then modi@
the problem.

Even when there is
integrity of the base ima
who is the sole develope
the base classes, also bas
rience, a trial of about on
weeks) is a good idea.

CONCLUSION
Now that you know how
that is limited in scop
integratable, document
return you to your regu
next issue, we’ll give you
to practice with as we pr
uous documentation.”
July-August 1995
ues for naming changed base
elp indicate a branch has taken
append a “dot level,” so the above

43.0”. This can get messy if you
es from different sources, so we

dentifying information, such as
ither way makes re-integration

easier.
separate document that records

, organized by module, class, and
These release notes are necessary
even if your source code man-
agement system provides aver-
sion comparison tool; it is very
useful to have a linear docu-
ment to review when things
start breaking!

In some cases, your code
management comparison facil-
ities can be harnessed to survey
changes and build templates
for these release notes (we plan
future column), but document-

hange was made will remain a

multiple Smalltalk development
n individual or a committee that
e whether a particular change to

allowed. This role of base image
mportant when there is a shared
of all base image classes.
nges is a good idea. The Keeper
a particular change is benign to
ams’ applications. If any team
a change to the base image, the

or back out the change to correct

only one Smalltalk team, the
ge is usually guarded by a Keeper,
r allowed to release changes to
ed on a trial period. In our expe-
e development cycle (six to eight

to make base changes in a way
e, conditional, identifiable, re-
ed, and “back-outable,” we
larly scheduled column. In the
some actual base image changes
oceed with examples of “contin-
31



JUST PUB II MIID!

AbouttheAuthor,,,
,Mark Lorenz is the founder and
presidentof Hatteras%~ftwme,
Inc.d company that specializes
in helpingprojectsuseobject

technology successfully.‘Th; author ha_s
alreadypublishedtwo popularbooks on
objecttechnology entitled OI!.IECT-ORIENTEII

SOHWWREDEVELOPMENTA Pw\mc~I.GUIDEand
OR.IEL’T-ORIENTELISommw ME-I-WC-S(Prentice
Hall) and also writes a regularcolumn for
THE SMALLTALKREPOKTcalled“Project
Practicalityies.”

Available at selected book stores.

Distributed by Prentice Hall,

RAPID SOFTWARE DEVELOPMENT WITH 5MALLTALKcovers the spectrum
of O-O analysis, design, and implementation techniques and
provides a proven process for architecting large software sys-
tems. By using detailed examples of an extended Responsibility-
Driven Design (RDD) methodology and Smalltalk, readers will
find techniques derived from real O-O projects that are directly
applicable to on-going projects of any size.

The author provides readers with specific guidelines that could
dramatically cut costs and keep projects on-time. Specifically,
the author provides readers with project patterns that work,
illustrations of design patterns, O-O metrics with example code
to test design quality and of course, numerous Smalltalk code
examples.

Readerswill,,,
9

●

●

●

●

●

Speed up the development process by fostering reuse

Significantly reduce debugging time

Gain step-by-step instruction on how to make
the object model more robust

Learn how to distribute responsibilities within
the object model more effectively

Discover a practical day-by-day breakdown
of a rapid modeling session

See how to organize the development team most efficiently

n!ilm
.

*m.

■ =

■ ■

------------------------ ---------------------------- ----------- --------------- h---------- ----

This book will prove invaluable to anyone interested in speeding
up the consistent development of high-quality object-oriented
software systems based in Smalltalk.

SIGS BOOKS ORDER FORM
~ YES! Pleaserush me copy(ies) of I&m 50FTWARE

DEVELOPME~ WITH S,MAI.LTALKat the low price $24 per

COPY. (ISFIN 1-8 S4L142-1 2-7; Appmx 200 pgs,)

Monry-back Guarantee: [f 1am not completely satistird, 1may return
the book(s) within 14 days and receive a complete rrfund, promptly and
without question.

~ Check payable to SIGS Bmks

Q Visa Q American Express Q Mastercard

Card# Exp.

Sigmture

SIIIPPINGANDHmDuNG: For U5 orders, please mtd $5 for shipping and handling;
Canada and Mexico ❑kl 510; outside North America add $15. lr.mw.rmm NY 5taIr

residents add appliiablr s-ales tax. Please Aow 4-6 weeks fur delivery,

Address

City/State/Zip

Ccmntry/Wstal Code

Phone Fax

SINDTO:
116$Books,P.0,Box99415

(oIlitssywond,Ml08108-9910

m

S I G_S
Phone609.WI.960ZFax:609.488.6180 BOO-KS


	By ArticleTitle
	A modest meta proposal
	Managing project documents
	ParameterizedCompiler: Making code reusable
	Remembrance of things past: Layered architectures for Smalltalk applications
	Rules to live by
	Segregating application and domain

	By Author Name
	Beck, Kent
	Brown, Kyle
	Hinkle, Bob
	Howard, Tim
	Johnson, Ralph E.
	Lorenz, Mark
	Steinman, Jan
	Yates, Barbara

	By Topic
	Deep in the Heart of Smalltalk
	Managing Objects
	Project Practicalities
	Smalltalk Idioms


