
The International Newsletter for Smalltalk Programmers

November-December 1993 Volume 3 Number 3
THE HP
DISTRIBUTED

SMALLTALK IDL
LANGUAGE

BINDING

by JejfEastman
Contents:

Features/Articles

1 The HP Distributed Smalltalk IDL
Language Binding
by Jeff fish-rran

4 What if? A protoool for object
validation
by Susan Grifin

Columns

7 %ahtlk idhms:
It’s just not the oaee

by Kent Back

9 Pumng ti in perspective:
Designing acenarimx making the
case foraueew
by Rebecca Wda-Brock

13GUIS:
Window8uilder A do-it-yourself
extension framework

by Ray Horn

16 Product Rew-ew:
shootatt at the Msc corral
by Jan Stm”hman
Inl
he Object Management Group’s Common Object Request Broker

Architecture (CORBA) specifies the architecture for an Object Re-

quest Broker (ORB), which provides a standard communication

mechanism between object systems in a distributed environment.

An ORB’s job is to communicate with ORBS on other systems, to

locate the objects that can perform requested services, and to communicate re-

quests that can be processed by those remote objects. A critical part of the ORB’s

job is the translation (via a language binding) between its language-neutral Inter-

face Definition Language (IDL) and the local language (such as Smalltalk, C, or

C++). The translation process uses the IDL definition to convert client object re-

quests expressed in the client’s language into request packets that can be decoded

by the server object and for converting result packets produced by the server into

the appropriate local language entities.

In order to use the ORB, it is necessary for programmers to know how to

access ORB functionality from their particular programming language.

Hewlett-Packard recently introduced HP Distributed Smalltalk, a full CORBA

implementation for the Smalltalk-80 language as delivered by ParcPlace Sys-

tems of Sunnyvale, CA. This article describes the manner in which the con-

structs of CORBA are made available to Smalltalk programmers in HP Dis-

tributed Smalltalk.

INTERFACE DEFINITION LANGUAGE

To allow objects that are implemented in different programming languages to in-

teroperate via the ORB, it is necessary to define their behavior in an abstract man-

ner and then for each implementation to provide a mapping from this abstract

description to its particular language. The HP Distributed Smalltalk binding from

IDL to the Smalltalk-80 programming language provides the Smalltalk program-

mer with mechanisms for expressing the following IDL concepts:

.

.

.

.

.

.

.

.

References to objects defined in IDL

Invocations of operations, including passing parameters and receiving results

Exceptions, including what happens when an operation raises an exception

and how the exception parameters are accessed

IDL basic datatypes

IDL constructed datatypes

References to constants defined in IDL

Access to attributes

Signatures for the operations defined by the ORB, such as the dynamic invoca-

tion interface, the object adapters, etc.
,-117111111dC#f’111~’l~,c .? I

IpleogAlos!Apl#

sNollv31ml-lds~ls‘

aldoadJaa[qoaqlp,4t!s)aA!unuOlapErJ

al!qMlnEdpUEq6ndUWi

SIOJ!pq‘

~loda~SIIWIWISaq~
—
WNMr0rX3HlWe‘lM0d3Mx7V111VWS

3H1‘IMOdW++3,3NlZVWw1C13(E0,5NI14WVM5
.onda31N31N0133ra0407vNm0rJOslaqsllqnd

S’!$ISU

laBEuEpJIelauag

I.-.-.—._

I
ypl!fi!a‘uOeJapuVluy

Ipl~p3po]!~

ltloda~xrwnvwj3H1

IEUO!]EUJWIIA60pUq3all~+o%ELUOqlaAE(l
sqelIlaglWIV‘dnJ)snoJISauJelH

W131‘=-wH!la
ammIJosau!l~aluao‘dEIEJd‘dqSaS

SUJa@ASpUEp(Em‘SaUOr-a613dJ!l!aW

3SI‘IaAa~pumag

wal‘aAOluol

sua)sASam~md%J~pIO~alapv

6u!]psuo~S6VUO!IELUJOYJI‘XODpEJH

qlel!61a‘qpoimsoga6J0a~

IEUO!WW‘qoOOgI@EJ~

uB,saaIaa[qo‘poo,m-IvLUO1

Slmllltm “v &’L’L’lopL’l’s ll:l\’c’ COI1lL” [() I’cly 011 \Vi]lcl(]\vI\llil(lcI” I%(] J“ is ;Iv:lil:lllk’ (m Wiml(nvs t(w S295

Winclo\vBuil&’r :1s :In

Lwcnri;ll [(1(11k)r LlLW’L>]()[3-

ing sophi.stic.llc(l LwL’r intL’r-

hccs. Tcdio Lls h;lnd c(din~
01”intdicus is rq31xcLd by
intcrxtilc I’isu;ll c(mlposi -
ti(m, SinL’c its initial rdcwse,
\Y~incloIv1311ilclcrh:l.s
Ixx(mw the irduslry .stm-
dml CJITI dcvclopnw’nt [(x)I
for [IIC SIlldll[;llli/V” cnvir(m-
mcnt. N“(nv Ol>jec[sll;lrc
brings yoLI :(wllolC new

lco\c1 ol” mpd]ility Ivith
\Y:inclo\vIILliltlcr l]ro! N-13Y
I’unctiom(]ily mcl po\vc’r

:llxmnd in this rmxt gcncra-
[i(m of \Vinclo\l;lllli lclcr.

I WldwB@#ar k -mtislwm~ .

File Edil WeW AlIan Size Onllms Scmnbook Add

m~l

Ii”k=n--nihii-1-dlml

:IIKI OS ‘2 t’or $t05. (hr sl:In

d:lrd ~illLlo\V[\Llil CIL’r, ~’ i,s
still ;It.:lil;ll>lc (m W:ind(ni.s
I’(w $ 1+1),95 :Iml OS; 2 F(M
s~();. \x:(, ()[fL-r [Lll! l’XILILh

tmk’-in ~or OLw

WincloIi-I ILlilclc>r cLIsl(IInLw
jv;[nting 10 nNNC up 10 Pro,
‘I”hw pr(duds xrc ;II.sI)
;li2il:llllL’ in
l;N\’Y ‘: ‘/kv’d(Jp(J). ;lnLl

l“fiun.’~l \l UI mlp[illlc l(M-
nr.lt.s. As tvith d] (d’ OLlr
pr(dLMs, Wind(nvllLlildcr
Pro uImws Ivith :(.+() d;ly
lll(MIL’~ h’!i ~ll:ll;llll L’c, t’Llll
s(NII”CCL’OCIL”;IIICI 110 i+LIIV

‘I”imc Ic’cs,

● [:(111111()+il\,l]. ill L,\. (; I’L>;I IL> Cllstolll con(rols” ;[s L.OIll[)OSit L}S”

T

SIrceb
ot” otllCr Control s,” trtil[ul :1s

, x sin@2 (dljcul, dl(nving tlw1

● .\lorl)l)ill:g: A[l(Nvs [hc dcvcloprr to (luick l)’ cll;ln~c

EIl

malllalk 9 [rolll oflC (~fX’ of L’OI_I(rol” ‘Skills ■

WlndmvSullder
Other 10 m(hcr, :dlowin~ for

m

,:,s~~lh~lk

p(nvcrfLd ““what-if” style ,~,~,nd~~ul,~~r

i.isu:ll LIL’\-Cloplll(?n[. Tlw t:, ~h.,
●

Ilcxillility :lll(mtd Ily
m(wphing will gl-v.ltly cnh:lnc.c pr(xluc[ii i[y,

. .S(r;l[)l !()()l\: ,~not[]er nLw\. f~.llllru to lL,\-CP.lgLJ l’i*LIXl

Lxnllponcmt rcu.sc, SCMplk I(Iks prm,idc :1 nmclmnism t’or

dL’\”L’l(m’rs to (lLliL’klY
L“.*,,.

IE!R’+’’’’’”””’”II ‘ ‘W)rc, :Ind rLlriLh.u prL,-
&hIL’Cl SC[S 01 LWlll[X)-

W
ncnt. s.‘Ihc SLXIpIh I;Ik
is ;I c:Iidog of onc’,s

h\x)rirc inrcrf;lcc c(ml-

~, p(mmt.s. (jr~.lnixcd
into chp[crs ;lnd p;lgc$.

;Icti(ms ivitlloLlt Ixlving [() \vri[c code, Those tc’xlurc,s
#rL’;l[]}”L’nhNLL’L’ pro LILIL’[i\”i[~CILlrin# pr()[()[}”[>iIlg,

iL1.stIik tlw (m’s in tlw Wind(nvlhikkr Pro t(xd it.self.

(408) 727-3742

Objmtshare Systems, Inc 5 Town & tinmlry Village
Fsx (40B) 727-6324 Suite 735
Cmmpu.%rve 76436,1063 san Jose, CA95 12fL.2026

WindowB.,lder and W,ndowB.ider Pm are k.ademarks of Objeclsham Syslems, 1... All .Iher brand and product name. are reg,s.lemd Iradenmrlw .1 their m~pecllvm compames

—

NOIIVCIIIVA12WH0
_———.———

.—.——

and corresponding exception handler) decides to proceed.

But the writing is on the wall. The users will want some sort

of visual feedback if there is inadequate travel time, which

means our AppointmentBook will need to include testing

protocol. We end up creating testing methods that look a lot

like our validation methods.

idmdequate’fravel’t$me
“Answertrue if there are any meetings with inadequate travel time
between them.”
self meelings do: ~eachMeeting I InextMeetingI

((nextMeeting := self meetingAfte~ eachltedng) notNil and
[eachMeetingtooFarFrom:nerrU4e&rg])

ifhue: [%ue]].
“hlse

What’s happened here? Previous tests for travel time in-

volved checking the proposed meeting, aMeeting, against my

list. Our new testing method requires no argument, since its

purpose is to test the current state of the object. The valida-

tions need to be available for both the current state of the

object and the proposed state of the object. That’s what

what-if is all about, If we can create an object that looks like

the one the manipulator wants (“What if I added this meet-

ing?”), we can use the same testing method to ask it if it is

valid. And we can define a structured protocol that simplifies

both the methods that perform the validation and those that

invoke them. For example, I’d prefer not to change my #add:

method every time a new rule is introduced about adding

meetings, since we know how otlen these kinds of require-

ments can change.

TURNING TECHNIQUE INTO PROTOCOL

Let’s see what the wlrat-i~approach is all about by restructur-

ing the code, The #add: method becomes very simple.

add aMeeting
“Adda meetig to mylist of meetings. Notifymy dependents if I add

the meeting.”
setf proposedChange:#add: with aMeeting.
“esrceptionswillbe raised and handled. If I get to the next line,

everything’sOK.”
self meetings add aMeeting.
self changed.

This is looking better. Any future changes to the #add:

method will be only due to changes in the semantics of adding

a meeting, not because of new validation rules. Our simple

method is no longer overwhelmed by error checking code. The

new addition is the method #proposedChange:. The Appoint-

mentEtook is proposing to add a particular meeting to itself. If

the proposal fails, exceptions will be raised. The following

methods in AppointmentBook illustrate the rest of the protocol.

proposedChange:anAspectwith: aoArgument

“Private - What if ar&pect of me was changed? Would it be a problem?

I eapect exceptionsto be raised during validation if there is a problem.”
self validating

if’tlcr=[(selfvahdatingCopyperform: anAspectwith:
a%rameter) vatidate #newMeeting]

validating
NOVEMBER-DECEMBER 1993
“Private- lmswer whether I am currentlyvalidating all changes to me.”
“validating

validating: aBoolean
“Private”
validating := aBoolean

validatingCopy
“Private- Arswer a copyof myselfwhich accepts any proposed
changes until asked to validate. Thevalidating copy
must rememberwho originated the copyso that any resultant
exceptions will carrythe appropriate parameters.”
‘self copy

originah self;
validating: H.se

validate: aValidationCategory
“Performallvalidations associated with aVatidationCategory.”
(selfvalidationTests at: aValidationCategory)

do: [:eachTest I self perform eachTest]

validationTests
“Private- Answera dictionary of validation tests. The key is a symbol
representing the category of the change.
Thevalue is a list of selectors for each test that should be performed.
ThisreaUyshould be cached in a class variable.“
‘Identi&Ditionay new

ah #newMeetingput: #(checkTravelTimecheckConfticts);
ak #removeMeetingput

#(checkRequiredMeetingsnotifyAttendees);
yourself,

So what happened? When the AppointmenLBook proposed to

make a change to itself, it actually created a what-if copy. The

copy was a standard copy with a pointer back to the original

object and a validation flag turned off. Then, the original ob-

ject’s “proposed change” (adding the meeting) was actually

made to the copy. ARer the meeting was added, the original

AppointmentBook asked the new copy to validate itself.

To avoid blanket error checking each time a change is

made, a category of validations was specified. Each category

can be associated with an array of validation methods appro-

priate to the situation. In this case, the methods #checkTravel-

Time and #checkConfdcts were the relevant tests for adding a

meeting. The final step was to perform the tests.

The protocol support methods above need only be coded

once. We can now focus on the validation and testing meth-

ods, which are structured differently in light of what if.

check’tlavell%ne
“Checkfor meetings with inadequate travel time and raise an
exception if any are found.”
self meetings do: [:eachMeetig I I nextMeeting I

((nextMeeting := self meetingAfter: eachMeeting)notNil and:
[eachMeetingtooFarFrom:nerrtMeeting])

ifTrue: [self class invalidModetSignal
raiseRequestWith:self original
errorString: self tooFaAwayString]].

isInadequateTravelTime
“Answertrue if there are any meetings with inadequate travel time
between them.
If exceptions are raised during the check, I knowthere is inadequate
havel time, and I
can answertrue in the handler.”
self class invalidModelSignal
5

9

—
—.——

.

JJIOdX~YIV.LITVMSSISHJ,

MALLTALK IDIOMS Kent Beck

It’s just not the case
T
he topic of this month’s column is case statements:

practical necessity or pernicious contaminant? My in-

terest in the topic comes from several areas at once.

SmalltalkAgents has added a form of case statement to their

Smalltalk for the Macintosh. CompuSetwe has hosted a lively

discussion of isKindOf and its relatives, Finally, net news has

had a discussion of case statements. What’s the deal?

Cutting right to the punch line, I think case statements

are an inappropriate holdover from procedural thinking.

While vital in procedural languages, their use in object pro-

grams is obviated by the much more powerful mechanism of

the polymorphic message send. Anytime you find yourself

wishing for or using a case statement, you have an opportu-

nity to take advantage of objects instead. The non-case ver-

sion will yield a more maintainable, more flexible, more

readable, and faster solution.

Of course, I can’t just say case statements are bad, I have to

demonstrate how to avoid or eliminate them. Here is the first

of two patterns that go a long way toward getting rid of the

need for case statements.

PAllERN: TURN CLASS TESTS INTO MESSAGES

Context

To get code running, you occasionally have to insert an explicit

test for the class of an object, either through sending it the

message class or isKindOf:, or by introducing a testing method

like isInteger, which is implemented in Integer to return true

and in Object to return fake.

Problem

Class tests, explicit or implicit, area maintenance nightmare.

An operation like refactoring an inheritance hierarchy can

break seemingly unrelated code. How can you eliminate class

testing?
NOVEMBER–DECEMBER 1993
Constraints

~ Limited impact. You’d like the solution to affect as little

code as possible.

“ Readability. The solution should reveal more of the pro-

grammer’s intent than the original code.

. Maintainability. The solution should yield code that is less

susceptible to breaking because of unrelated changes than

the original,

I did a little research into the various images’ use of class tests.

Table 1 provides the raw results. These numbers need a little

interpretation. There are legitimate uses for isKindOf:, like writ-

ing generic comparison methods. There are also legitimate uses

of class. It is used heavily in V Mac 2.o to return instance-

invariant information.

The most interesting comparison in Table 1 is between V

Win 2.0 and V Mac 2.0, Both images come from a common

base and share a lot of code. The Mac image shows the effects

of being worked on afler Digitalk bought Instantiations, which

brought a new sense of discipline to Digitalk’s code. Both the

reduction in the reliance on isKindOE and in the increme in the

use of class, not for class testing, but for instance-invariant

behavior seem to be the result of the strict programming style

developed in Portland.

Solution
Replace the test with a message. Implement the conditionally

executed code as the method in the class tested for. Implement

the conditionally executed code as the method in the class

tested for. Implement an empty method (or one that returns a

default answer) in all the other classes the object could be.

Exemple

Here is an example from the V Win 2.o image. The method
.
1

I Table 1. How various images use claee teats.

V Win 2.0

44

3

156

43

V Mac 2.o

26

1

810
18

——

VisualWorks 1.0

161

26

573

11

ENVY for VisualWorks

214

26

823

13

Senders ofisKindOE

Senders of isMemberOE

Senders of class

is,., methods in Object
—.

—. .— -. . —. .——
7

8
—.——
J.UOdl~YIV.L1’IVJ4SEIHJ,

UTTING ITIN PERSPECTIVE

Designing scenarios: making the
case for a use case framework

Rebecca Wirf+Brock
E
xperienced object designers explore the design space

from many different angles. They refine ideas of how

their systems should respond while they are in the

middle of building and discarding ideas about how their de-

signs should work. Getting a design to gel involves making

assumptions, seeing how they play out, changing one’s mind

or perspective slightly, and reiterating. Design is a difficult,

involved task. It inherently is a nonlinear process. Yet, we are

asked to trace our design results back to system require-

ments. And if we uncover some implications during design,

we’d like to tune our system requirements to reflect neces-

sary design compromises.

To meet these challenges, we need solid conceptual

bridges to help us straddle the crmcerns of what the system

must do (analysis) and how it will be accomplished (design).

We also need techniques for adding detail and driving out

different perspectives during this process. In this column, 1’11

describe experiences we have had bridging system require-

ments, object design and user interface design by applying

use cases.

WHAT ISA USE CASE?

Use cases, scenarios, or scripts are roughly synonymous terms

forimportant ways to focus our design activities. I prefer the

term me case (although quickly saying it three times can leave

your tongue tied) because it emphasizes usage.

A use case is a textual description of a sequence of inter-

actions between an actor (roughly corresponding to an ex-

ternal agent or class of users) and the system we are design-

ing. Use cases were first described by Ivar Jacobson in

OBJECT-ORIENTED SOFTWAREENGINEERING: A USE

CASE-DRIVEN APPROACH.]

Use cases have been around in various forms for quite some

time, Jacobson, however, made the keen observation that use

cases can be treated as refineable, extensible, and even reusable

specifications of system requirements. We’ve had these same

goals for object designs. We know that it is harder to actually

accomplish them than it is to talk about them.

Use cases are a pretty powerful modeling concept, once we

know how to effectively build them. What sounds good in the-

ory needs to be practically applied within a basic system devel-

opment framework. A flock of questions come to mind:

“ What process can you use to build good ones?
NOVEMBER-DECEMBER 1993
“ How should they be captured?

o How detailed should they be? Are there different levels of

detail?

“ When are you done finding and describing them?

I’ve had heated discussions about these exact same issues for

object design. It isn’t surprising that these themes keep re-

curring. People who build and describe software systems

want to know how much they should describe before they

truly understand what they are building, The answer to this

question depends on how one intends to apply that descrip-

tive information.

Many people claim to be using use cases. It’s a trendy con-

cept. Yet they all seem to be applying good use case construc-

tion techniques at completely different levels of detail! This can

be incredibly confusing to an innocent bystander, manager,

student of design technique, or end-user!

Being the pragmatic type, I really want to get to the heart of

the matter. I’ve known for a long time that you really need to be

aware of what perspective you are taking during a discussion.

I was stumped by the question of what’s a good use case?

until I read about the what vs. how dilemma in Alan Davis’

excellent book on sotlware requirements.z Davis discusses

--

user needs ~ ~hat i

/ ‘0” !
possible solution space +—. “hat

chosen solution’s ~ ‘“w
behavior ~ what

system architecture ~ ‘0”

~ “ha,

I

design specifications

c:t

“:::~wt

Figure 1, Requirements framework.
9

!

I

!

J

.—.
‘3>‘“’”p“’”e’

ull!saps!q30M~!Apaluam%wLIEluasa~dpmsaJnJml!qm~

uaIsAsaqlla~~amly!d,s!maOW!%qdplnonqJoMas.uvJjs!q~

‘(~aJn%~)q~omausEgw33asnEJ03podoJdhJs,aJaH

-uo!spa~d30SIO1paauA[palqnopunsui4!sap~~a(qoOILS

l~a(o~da%uqI?uosJuausaJ!nbaJu.sa]sAspxIJJo3%J!UO!I!SUEJ

SI.LIEJ~“UO!JWJIJ03U![WJO!J!ppEpWUSUO!J>EJJ]U!JXn%I@S

-apuopasn~ojasoq~“u@apaql30lsaJaqlUJOJ3Jayqo]AsEa

am~mpsp~]ap~no%s!malalqEUoyuo2aJEslau~!sappama!J

-adxq-sdalspapE~apA[Jp?3OUJ!uMopuaqo~qsuo!~d!Jxappaau

SJWS@ap]3a(q0MJNi[l~~lj012AT?qJ,USJOpJJMSUEJUO

~asmasnpoo~L?saqmu]Eqm30uogsanbaqlo]

JaMsuEa[qEuoseaJEq~!Mdn%p.uogaJo3aqspaau~aJu!~]~as

-w01AJIpue~ispuadapII,,‘a]ElsAlpq!u!o]luavsonApJa3Jad

USE1‘qJoMausEJ3s!qlamqaMaxso‘sluxuagnballnoqe%.s

-qu!ql.I03sasodo~dspit?aauoa~OJJkq!uqs‘sasmasn%Jp.sgaJ

puE%s!q!Jxap103dwupmldaxro~Es!paauAIIEa~aMWqM

‘aldoad30afh.sE

ap!mEAqpools~apunaqumsuogd!nsapasmxnasaq]‘autxi

-m00J]a~o]Ioup’sJaJmamJM3!~a~-sasodmd]uaJa#!po!

waq~A[ddE01V-IEMam3!ApuaJag!pkpq%ysasEJasnalc[nu.s

-Jo301paauaM“Jaql!aqJOM],uoMImUIOJas~nasnlE3ysouEJ
auo~1~Ig~,usaops~uauJaJ!nba130JZ!SJUOSElsni“Moq

S,laqloueskt’M[Es!U?qMs,uos~adauoJEqlazqEaJo]s!Aqutn

mo%.qdaaqpuE?mumappasmasnJno%I~A[os01kayaq~

“a]~!~doldd~s!AI!A!IJEu@apausosJaq]aqM

Jnoquan%allo3JOIa%uw.smoAqyM%qlEqap3psJnoA

pugnoAWLI!I]xauaq]lq%oq~J03poojpooss,lI‘%J!pEJJ

uys!s!q~“J!ISU!IX%JO.Io~an%~UE3noA‘w!od.wapin-ioA

uo%mpuadaa“(ado3spuoAaq%qasuos)MoqEJO‘(wsaw

-aJ!nbaJ30JuauJaJE]seu!apnpqOJ%J!qlJ[qt?uoseaJ~)JEqM~

pamp!suogaqmmma~!qma‘aAyadsJadauouJoJd‘luauJaJ!nb

-aleaqAIpg@f!J01p!maqumaJnHgs!qlu!usa~!q3Eq

“([ant%~)

spoq~aussno!lEA%s!ssnx!pJ03qIoMauIw~a3!uL?s]uasaJd

spwaisJuau.saJ~nbaJwala#~p%qapousAIIcaJam?sanb!u

-q>a~sJuauJaJ!nbaJluau~wo~dih.m~“(v?%I!qJOMaqOJUJEM

aMIJAJIaq]yyd0]MoqMouqOJSnJ03lua!3yyIsu!pUE)3!]

-sqduqsA[ausaJJxas!MoqJouJt?qMJOJuau.sa]eJsEaJES]uas.u

-aJ!nba~~cql%Jys!I?l~‘w.umapps!sApwEsJuau.saJ!nbaJaq]

Object Transition
by Desi@

~’
APPRENTICE PROGRAM ,

ADVANCED TRAINING

ANAL YSIS & DES/GiV
.,

~.

Object Technology Potential

Object Technology can provide a

company with significant benefits:

. Quality Software

● Rapid Development

● Reusable Code

s Model Business Rules

But the transition is a process that

must be designed for success.

Transition Solution

Since 1985, Knowledge Systems

Corporation (KSC) has helped

hundreds of companies such as

AMS, First Union, Hewlett-Packard,

IBM, Northern Telecom, Southern

California Edison and Texas krstru-

ments to successfully transition to

Object Technology.

KSC Transition Services

KSC offers a complete training

curriculum and expert consulting

services. Our multi-step program is

designed to allow a client to uki-

mately attain self-sufficiency and

produce deliverable solutions. KSC

accelerates group learning and

development. The learning curve is

measured in wcclis rather than

months. The process includes:

● introductory to Advanced

Programming in Smalltalk

● STAPr” (Smalltalk Apprentice

Program) Project Focus at KSC

. (Xl Analysis and Design

. Mentoring: Process Support

KSC Development Environment

KSC provides an integrated applica-

tion development environment

consisting of “Best of Breed” third

party tools and KSC va]uc-added

software, Together KSC tools and

services empower development

teams to build object-oriented

applications for a client-server

environment,

Des@n your Transition

Begin yrmr successful “Object

Transition by Design’~ For more

information cm KSC’Sproducts and

services, call us at91 9-481-4000

today. Ask for a FREEcopy of KSC’S

informative management report:

So/lwwe A.wt.s hy DcsiyI1.

Is KnowledgeSystemsCorporation 114 MacKcnan [h.

Cary, NC 27511

OBJECT TRANS1TIO X13 YI)E SIGN (919) 481-4000

u 11)[)2 Iin(m lmlgc 5! \lL,In\ (:4)rp[mititnl.

3Al133dSt13dNI11E)Nlllfid■
TIO!WUWSASE%s!us~03~ada~03aqpaqmtpaq~snu.swql

SW!TWSU03ssau!snq-10uo!wp!lEAWpAuejouo!ld!msaa

-paqddns30Uuog

-IXLMOJU!JOJ(AUE3!)sqn~3apalqwoww“-IOJ3Eaq~Aqpaqd

-dnsaqIsnsuIqUO!WLH03U!A.mssam.s30uo~~d!mapv

-wa@aq]AqpawoJ

-~adaq]sns.uwqlsuo!lmJO%!manbasIL@OIpuEsda]s

—.——.—
.

.

“z
“1

suoyXL!uLou

-apalqq!em30sald!qnusu!

aq]snu.slunoumqwoJasfl

puL?q

uospun3alqe[!cA~awp![~A

:saA!lwlaqV

paqs!ugs!aqssa~E3!pu!~asfl

lunos.mqsmsaum!pul

.—

Ray Horn

WhdowBuilder: A
do-it-yourself extension
w indowB uilder, originally developed by Cooper &

Peters and now distributed by ObjectShare Systems,

is a powerful GUI builder. WindowBuilder allows

you to lay out user interfaces graphically, save them as classes

with source code, and then edit these same interface classes

graphically.

Cooper & Peters created WindowBuilder to be easily ex-

tended. This column explains how to extend WindowBuilder

by adding a custom pane and its associated editing dialog. The

editing dialog appears when you press the Other button in

WindowBuilder.

A SAMPLE EXTENSION

The custom pane you will create is a list box with a horizontal

scroll bar in addition to the vertical scroll bar that list boxes

normally have. In Windows a list box gets a horizontal scroll

bar when its horizontal extent is set to a number of pixels

greater than its width.

You might reasonably expect the extent to be adjusted auto-

matically so that horizontal scroll bars appear and disappear as

needed, the way they do in MS Windows program groups. Un-

fortunately, this does not happen. So in this example the width

must be set explicitly once. You may want to extend this exam-

ple to automatically adjust the extent as list items are added or

removed.

Step 1: Create the Custom Pane

Create HorizontaKcrolllistBox as a subclass of ListBox. Horizon-

taEcroU1.istBox inherits the following method from ListEtox for

setting its horizontal width:

setHorizontaLExtent:pixelWidth
“Setsthe width in pixels bywhich a list box can be
scrolledhorizontally.If the size of the list box is
smallerthan this value, the horizontal scrollbar will
scroll items in the Ustbox. If the list box is as large
larger than this vahre, the horimntd scrollbar is
disabled.”
self isHandleOk
ifrnle[

UserLibrary
sendMessage:selfhandle
msg: LbSethorizont’alextent
wparam:pixelWidth
Iparam:O

1
iffalse:[se~ proper@At:#horizontalExtent put: pixelWldth].
NOVEMBER-DECEMBER 1993
Override this inherited method so that the value of horizon-

talhrtent is always at hand in the image:

setHorizontaMrtenk pixelWidth
“Makesure the value is alwaysstored in the properties dictiomry.”
self propertyAti#horizontalExtent pub pixelWidth.
super setHorizontalExtent:pixelWldth.

Now it is safe to write a simple method to get the horizontal

extent:

getHorizontallxtent
“Answerthe width in pixels by which a list box can be scrolled

horizontally”
“self prope@At: #horizontaLExtent

Step 2: Create the Matching Interface Object
All subpanes edited in WindowBuilder have a matching inter-

face object. InterfaceObject is a class-specific to WindowBuilder.

Interface objects know how to draw themselves on a IayoutPane

(another WindowBuilder class) and how to produce source

code for the pane they represent. The interface object for h.st-

Box is PListBox, a subclass of InterfaceObject. If some distant sub-

class of Subpane does not have an interface object named after

it, then the interface object for the superclass is used. If you

were to use HorizontaUcroULktBox now, WindowBuilder would

use PListBox to represent it and generate code.

To edit horizontal scroll list boxes differently from list boxes,

you need to create the class PHorizontalScrolUistBox, as follows:

PListBmsubclass: #PHorizontalScroUListBorr
instanceVariableNames:‘horizontaWxtent’
classVariableNames:“
poolDifionaries: “

The instance variable horizontaWtent is the horizontal scroll

bar’s width. Horizontal scrolling is done in units of pixels,

rather than characters.

PHorizorrtalScrolll&Box needs accessing methods called hori-

zontalEtent and horizontalExtent:, a getter and setter.
horimntalExtent

“Answersthe horizontalExtent”

‘horizontallxtent.

horizontallxtenti arrInteger
“Setsthe horizontalhrtent to anInteger”

horizontalExtent := anlnteger.
13

.—
———..—..—_

,Jol!zauo~nqqsndJaq~

awfiu!sn~qPau!lapJeqIIOJ=IEWOZ!JOqeqJ!Mau-adwddlcami3!~
—-—.

11uoxo!alsllmxomsIlIIo13slQuoz!IoHleuuoueq~!msued~no~elzsJn6!d -.,,-..,,,

.

I00011

.—

The
malltalk
Report

Callfor Papers

The editors of THESMALLTALKREPORTinvite you to

share your research, applications, programming

tricks and tips, etc. with our readership. If you have

a Smalltalk story to tell, they would like to know

about it. Suggested topics are:

●

✎

✎

✎

✎

language issues, such as inheritance, user

interface paradigms, concurrency, persistent

objects and databases, distributed Smalltalk

issues, performance issues, t~ing metalevel

programming garbage collection, interfacing

Smalltalk with other languages or applications,

metrics

Teaching/7earning5malltalk, novel approaches,

educating management, research laboratory

reports, teaching 00D

Project management, includingrapidprototyp-

ing, version or application management, team

organization, organizing for reuse

Application development tools, object editotx,

CASE tools, and project management and

application development tools

Commercial, engineering and scientific appli-

cations; application frameworks; object library

management; portability uses; object-oriented

design and analysis techniques.

Please send manuscripts or queries to:

John Pugh and Paul White
The Object People

885 Meadowlands Drive, Suite 509

Ottawa, Ontario

Canada K2C 3N2

613.225.8812

Internet: pugh@kcs.carleton,ca
the window shown in Figure 1. The user enters the width of the

horizontal scroll bar as an integer pixel value as shown in the

figure.

To edit the HosizontalScrolUistBox’s parameters we must cre-

ate the WBHorizontaKcroWistBoxEditor.

charrgedHorzScrollWidthEFaPane
‘Thismethod is called for everykeystrokethe user enters to validate

the enhy.”
I aValueI

aVahre:= aPane contents.
((aValuenotNil) and [aValueasInteger > O])

ifia [(selfpaneNamed ‘horzScroWlarWidth,ST)enable]
iffalse: [(selfpaneNamed:‘horzScrollBarWidthST)disable],

initWindow
‘Thewindowis initialized with the openingvahres.”
I horzExtent I

(self paneNamed:‘horzScroUBar’MdthEF’)
contents: (horzExtent :=thePane horizontaWxtent)asShing.

(horzErrtent> O)
ifhe: [(selfpaneNamed:‘hoczScroUBarWidthST’)enable]
ifFaLse:[(selfpaneNamed:‘horzScrollBarWidthST)disable].

ok: ignore
“TheOkbutton has been pressed so save the changed parameters

and close the dialog.”

thePrme

horizontalhtenti (self paneNamed: ‘horzScroUBarWldthEF’)

contents asInteger.

self close

Step 4: Tying it all together
The final step is to test the HorizontaBcrollListBox custom pane.

Figure 2 shows a layout pane with a normal Horizonta&rollIist-

Box or ListBox on it. The layout pane contains one Horizon-

taWroUlkt130x object. Honzonta15croWistBox can be added to a

layout pane by using the Add Custom Pane. ., menu. Refer to

page 19 of the WindowBuilder reference manual for more de-

tails concerning how to manipulate custom window panes.

Figure 3 shows a layout pane with a HorizontalScrollIist.Box

that has a horizontal scroll bar defined by using the Other

pushbutton editor.

CONCLUSION
WindowBuilder can be extended rather readily. The result is an

easier to use, more powerful interface builder. The Horizon-

talScrollhstBox sample in this column is quite simple, but the

same techniques can be used for a more elaborate extension of

the WindowBuilder environment. ❑

RayHorn is an independent consultantw“thHierarchicalApplications
Limited (HAL) in Cary, NC. He has over threeyearsof extensiveexpe-
rience w“thobject-on”entedsoftware desi@sand developmentin
Smalltalk/V WIN/PMfVOS2, Smalltalk-80R4,1 and EnW Developer
R1.41. Ray may be contactedviaemail at HBNH98A@Prodigycom or
through theAmerican hr~ormation Exchange (AMIX).
NOVEMBER-DECEMBER 1993 15

....— -.

91
U~lUU~JJSUZ7[
JUOdZS~XTVITIV14SHH~

Table 1. A comparison of Smalltalk implementations available for the Macintc-sh.
..-

STA 1.0. I ST\T 1.2 sTIV 2,0 FK\JY/\’isual*’[)rks

srart -up tinw 42$% 20 I5?4) 7.3 ;lG 34

irmqy saw timv 100% in ; i% 3,3 w?4B ,;- “i E : ‘-’

slcqnlonc(no FPU) 100% 0,076 71% 0.054 6& 0.046 13% 0.037

dup>tonc (FPIJ) 74% 0,17 30% 0.070 ~7% 0.061
------ g; :, ““

smop.$tom (rm FP~) 1m% ti.io 46% 0,046 344” 0.034

;mopstonc (FPL!) 59?4” 0. I 3 27% 0,060 22?4 0.050 I owl 0.22

rcquirml memory R5#% 3,500 35; 1,465 65Yn 2,654
““ ‘-+

10096 4,096
—

preferred memory (K) 60?4 6,oOO 20% 1,953 36?4, 3,5&1 I 00% 10003
— .——.

image size (K) 71% 2944 16% 669 50% 2073 100(% 4121-” “-”-
—.

numhcr of classes 45% 369 ;0% I 65 6.WD 553 I 00% 811

nunlhcr of mcthoch 34% 5R92 20% 3490 5% 10190 I 00% 1726S
. .— .-

. Objects receive events such as finalization prior to garbage

collection.

“ Source code is stored as styled text, and names may contain

16- or 24-bit characters. Syntax is added for literal styled text.

“ Blocks can take a variable number of arguments, and be

reflexive via the pseudo-variable blockself. Syntax is added to

explicitly declare local or global scoping of block arguments,

which allows much better performance if block locals can be

used. This is also an improvement over ParcPlace’s

“clean/copying/full” hidden block semantics, since only so-

phisticated developers fully understand how to write a block

for maximum performance.

“ Class Switch supports case statements.

“ Local variables are automatically declared—they need not be

declared at the top of the method, as in other Smalltalks.

“ Call-by-reference is supported: formal parameters can be

modified, and the modification is reflected in the actual pa-

rameter in the sending context.

“ C-style syntax for Integer bit operations; C-semantics for

true and false. All objects are equal to true, except O, nil, and

false, which are all equal to each other.

. Arbitrary-precision primitives. This could be extremely use-

ful in financial software, since Float should not be used for

counting money!

“ Syntax added to support compiler directives. This has po-

tential for improving performance by providing “type hints”

to the compiler.

“ Pre-emptive, time-sliced (UNIX-style) processes.

● General-purpose catch-throw exception handling mecha-

nism, similar to the C setjmp/[on~mp.

* An event-driven (as opposed to polled), non-MVC GUI

frameworks.

FEATURES MISSING FROM BETA VERSION
The following features are referred to in the beta manual, but

were not available at the time of review.

“ Only part of the GUI builder was present: The source code

was protected, and no documentation was provided.)

PRO

STA

plica

QKS

pers

T

sofiw

curr

the

rent

save

som

S

that

the

lead

open

then

com

bugg

turn

I

or d

ging

eval

prom

com

halts

I

The

effic

amp

large

flag

nary

inch

com

T

— —.

NOVEMBER-DECEMBER1993
.

.

.

.

.

.

.

Inspectors were partially operational, without access

to properties, structured storage, or self.

The Binaty object loaderhmloader was not available,

nor was there automatic source code management

(limited to file-in, file-out, with no crash recovery).

WorldScript/Unicode was incomplete.

The debugger was partially operational, with no ac-

cess to self or modification of temporaries.

The compiler had debughrace code installed and

lacked speed.

DAL interface.

32K limit on text views.

No network classes.

BLEMS

is a young product, and it shows in many ways. While ap-

tion crashes were rare, they did occur. On the other hand,

technical service was especially responsive, both in my

onal experience and as related by others.

he STA virtual machine proved fairly stable for any

are named” 1.0. 1.“ Only a few application crashes oc-

ed during my use. However, there does not appear to be

equivalent of a “changes file,” and all source code is cur-

ly kept in the image. In this situation, one quicfdy learns to

oflen! On the list of promises is a source-code database of

e kind, with multi-user facilities.

hort of outright crashes, a number of features had problems

might be expected in such a young product. For example,

messages in the debugger window were often wrong or mis-

ing. I became used to routinely not trusting what it said, and

ing a full debugger to see what was really happening. Even

, the debugger is but a shadow of what Smalltalkers have

e to expect. You cannot evaluate expressions in the de-

ed context, nor can you change the method and re-start, re-

arbitrary expressions, or modifi temporaries.

was unable to send messages to “self’ in either an inspector

ebugger, which greatly reduced the usefulness of the debug-

environment, since one often goes into an inspector to

uate expressions, like self halt problemMethod. On the

ise list is a true breakpoint facility, which would be a wel-

e improvement over the typical Smalltalk habit of inserting

in the source code.

n general, the development environment has rough edges.

browsers are impressively colorful, but lack the spatial

iency that users of other Smalltalks take for granted. For ex-

le, over half the area of a typical inspector is taken up with a

Properties check-box area, which apparently displays static

information that might be more efficiently displayed as a bi-

or hex number and legend. Code browsers devote nearly an

of the view to iconic buttons. This is not a product that is

fortable to use within a 640 by 400 screen!

he euphemistically named Beta Manual, which seemed to

be galley proofs of several chapters combined with some design
17

Hill
G!XUOJ4MSIIIIll/1

I

—

Iil1
‘uO!]

— —. ___ —-.. --
r-—””— ‘— “-
I

_ .—

Iv

Id0 P//,Onantothsaxpanaa’of
otherConaidarahs.

ortable with
?7)sL/lchasm
pottabilityaids
oftrardasas.s

do /
Ski WI yourexlafhrg Smellbs/h
i/a M@@yaa ofportablllyis a

/ #tra lightaatMathfagration.

WQ..--+

yw area Mac-fanatic,
STA maybeyour bad

Smeuttdks. se
sfarting *I inloSmaIllak

idar STA.Ifssirrgl.+uaer

::-22S7:X:Z::Z:SST-SOorthoa vahbla to N. Thlamakes mlagrafbn m a

W be aaaantialto TAina faamm“rorrmahl.

//

----2TheSTAlookare aalhatkdlykeauiiful, M clutteredandwaatetulol
scmanapace.I/youmuddevalcp on a smallsmsan,youmlghf con.skfer
the leas handsome, bui more elfidanl ST-SOorSTNbrowsara.

Figure 2. The pros and cons of SmalltalkAgenta.

effect is that such boolean messages are no longer commutative:

347 and [me] answers true, but hue and: [347] answers 347.

This is going to be a maintenance nightmare-when someone

changes the order of short-circuit boolean messages to improve

performance, the behavior of entire systems may change.

(Perhaps one should not be so hard on QKS for this. Start-

ing with VisualWorks, ParcPlace changed the semantics of

and: —along with all other messages that take a no-argument

block—simply by implementing “value” in Object to return self.

The statement true ifhue: 347 evaluates to 347, but takes much
NOVEMBER–DECEMBER1993
longer to execute than true ifh-ue: [347]. “Hidden-time” is a

ParcPlace weakness (as with different block semantics); it

would be regrettable to see QKS follow that path.

QKS defends their boolean equivalence policy vigorously,

citing C and Lisp (while conveniently ignoring Pascal, Modula-

2, Ada, et al.), and VM efficiency as reasons. They have taken

considerable criticism from the Smalltalk community cm this,

and may yet yield to pressure to conform with established

boolean semantics.

Other compatibility issues are more easily justified, and gen-

erally have workamunds. For example, much of the collection

and stream hierarchy is subsumed by class L@ but with multi-

ple libraries (any of which can be declared as a pm-d), it is sim-

ple to create aliases for List called Array, OrderedCollection,

WriteStieasn, etc. QKS is promising eventual file-in compatibility

for major base classes, but as of version 1.0.1, it is safer to as-

sume that there simply is no compatibility-even basic class

creation methods, such as needed to file in, are completely

different and incompatible.

FEATURE COMPARISON

Table 1 lists some items for comparison among some Smalltalk

implementations available for the Macintosh. All measurement

figures are rouded to two significant figures, which is within the

variation we observed between trials.

The Samuelson benchmarks (THE SMALLTALKREPORT, June

1993) were run on two different platforms, both as a consis-

tency check, and to assess the contribution of a floating point

processor. The “no FPU” tests were performed on a Mac

PowerBook Duo 210, which has a 25MHz 68030 and 12MB

RAM. All other measurements were made on a Mac Hci, which

has a 25MHz 68030 with a floating point processor, 20MB

RAM, and a 32K cache card. All measurements were made un-

der “maximum performance” conditions—no system exten-

sions or other applications running, l-bit video, and no power-

saving in effect-using System 7.1.

With two exceptions, all measurements were performed using

the “preferred memory” partition-if an implementation did not

“prefer” extra memory, I did not offer it. I felt that changing the

memory partition for one or more implementations would be ar-

bitrary, and difficult to do for all of them in a fair manner.

The exceptions are the two “no FPU” measurements for Vi-

sualWorks. The Duo’s 12 MB of RAM was not enough to allow

VisualWorks to run with its preferred memory partition-the

Finder indicates that those measurements were run in 9,560K.

Note the dramatic, 61 reduction in performance in these cases.

Due to portability problems, many of the individual bench-

mark tests had to be modified to run under STA. Two Smop-

stoneBenchmark tests, primesUpTo: and streamTestsOn: would

not complete, and were removed from the suite. The smop-

stone numbers are the geometric mean of the remaining tests in

the suite.

The only VisualWorks image I had available was ENVY/De-

veloper R 1,41a as delivered by Object Technology Interna -

tional. This difference should not greatly impact most measure-
19

a~

Z[a%mju40+(fl?)lU~U0J..
3Al133dSt13dNI119NlLlfld■
ay
 sawal

. . .confi”nwdfrompage1

.

References to Objects

IDL interface definitions contain the definitions of IDL con-

structs that define the basic unit of an obj ect’s abstract type.

Each interface groups a portion of the operations and related

abstract behavior of the object into units that are meaningful to

an external client. Interface definitions maybe composed and

interrelated using a multiple inheritance mechanism organizes

and determines object roles in a distributed system. Groups of

related interfaces and other declarations may also be grouped

into larger units called module defirriti”otrsthat capture client

and server behavior that is related to a particular application

policy or protocol.

Local objects in Smalltalk are manipulated via object refer-

ences supported by the virtual machine, Remote objects in HP

Distributed Smalltalk are manipulated via local surrogate ob-

jects which contain identifiers to uniquely identify the object

and its interface. Local calls on these surrogates are transpar-

ently intercepted by the ORB and the message is forwarded to

the remote object using this information. During remote exe-

cution, the local process thread is blocked until the result values

have been received and decoded into internal smalltalk repre-

sentation. At that point, the local thread is resumed and local

execution continues. .Since access to remote objects is transpar-

ent to the Smalltalk programmer, operations that have been

defined in IDL interfaces maybe invoked as though they were

local methods on local objects.

Operations on Objects
In IDL, an operation invocation requires a reference to a target

object, a description of the operation to be performed, and a

specification of the argument values. This is completely consis-

tent with the Small talk object model; thus, in HP Distributed

Smalltalk, a remote method invocation is indistinguishable

from a local invocation. The only difference to the programmer

is the amount of time required to complete the request.

IDL and Smalltalk message syntaxes both allow zero or

more input parameters to be supplied in a request. For return

values, however, smalltalk provides a single result object

whereas IDL allows multiple output parameters to be returned

from a single invocation. This is handled by returning an array

with all of the output parameters included in the order of their

declaration in the IDL operation declaration (the result value is

given last). IDL operations declared to have a type void result,

but have a single output parameter are returned as single values

just like operations with a single result value and no output pa-

rameters: the single value without an enclosing array, All para-

meters are allocated and reclaimed from the Smalltalk heap.

In addition to in and out parameters, IDL also allows inout

parameters to be defined. These parameters are expected to be

supplied in the invocation and will be returned as out parame-

ters in the resultant array. In HP Distributed Smalltalk, the in

and out values will be distinct Smalltalk objects, rather than

sharing some portion of the heap (as in C, for example). The

prrrgrammer may use #become: with caution to achieve this
effect ifit is desired.

. _ ——

NOVEMBER–DECEMBER 1993
Exceptions

IDL allows each operation definition to include information

about the kinds of runtime errors that maybe encountered.

These are specified in an exception definition that declares an

optional error structure which will be returned by the opera-

tion in lieu of its normal results, should an error be detected.

Exception handling is implemented using the normal

Smalltalk-80 exceptirm handling classes Exception and .SignaL

Thus to raise an exception, the programmer can merely invoke

#error:. To return an appropriate error value, the #raiseWith:er-

ror%ing: operation may also be used. Consider the example

smalltalk fragment that raises the BAD_lNV_ORBERexception

(one of the standard exceptions defined in interface Object):

‘ErrorSignalraiseWith:(Array
with #’BAD_INV_ORDER’
with (Arraywith: minor with: #NO))

errorString: ‘routine invocations out of order’

To allow the ORB to return the error result structure cor-

rectly to the sender of the method, an array must be returned as

the parameter of the error. Here, the symbolic name of the

event is provided in an array along with the type-structure rep-

resentation of the required error result values. These values will

be processed by the ORB to ensure that the same exception is

raised in the context of the client of the remote operation.

As with normal Smalltalk exceptions, a #handle: do: or other

recovery method may be used to catch and recover from these

exceptions. The main difference is that the ORB call context

will have already unwound to the site of the remote call before

the exception is raised. This greatly limits the extent to which

recovery can be accomplished.

Basic Datatypes

Each of the parameters of an IDL operation definition has an as-

sociated data type that must be declared in advance, since IDL is

a statically typed definition language. As a result, some opera-

tions that can be implemented in Smalltalk cannot be declared

in IDL at all. This is also complicated by the fact that Smalltalk

has no notion of type All Smalltalk values are instances of a

Smalltalk class. To be able to construct valid calls on IDL opera-

tions, however, a mapping must be devised. Fortunately, the fol-

lowing type-class mapping works well enough, and useful dis-

tributed systems can be constructed which use IDL definitions.

What is needed is for the Smalltalk programmer to understand

the mapping and its limitations.

In HP Distributed Smalltalk, the following classes are

mapped directly to the required IDL basic datatypes. Instances

of these classes are passed by value during remote method invo-

cation. This means that a copy of the argument instance is pre-

sented to the server implementation.

Boolean values true and false are used to represent IDL

boolean types. Character values are used to represent IDL char

types. Float and double values are used to represent lDL float

and double types. Integer values are used to represent lDL long

and short integer types Character and SmallInteger values may be
— .-

21

9NKlNla3!WflEJNVlla[XIV1llWUSCIUflEltllSladH3HJ■

NOWAVAUABLEFREEOFCHARGE
Cumukive Article Idtm

For SIGS Publications
]OOP

OBJECTMAGAZINE

C++ REPORT

SMALLTALK REPORT

From Januury 1990-1993

l%e Source+r information on

Object Technolo~

Receive a FREE comprehensive subject index LO
ALL ar[icles published. Find in-depth, practical
information in semmds. Whether you re researching
a particular topic or are simply looking for that
landmark article you missed, this index will put you
on the right track and provide the answers your
need—fas t.

Toreceiveyour FREEindex
Call:718-834-0170(CustomerServh)
k 212-274-0646 (SIM Publications)

SIG P.bliauom, 5SIE Broadway, S.iw 604, NY, NY 10U12
-.

Smalltalk object directly, then there is no net effect. However, if
the operation is remote and actually returns an Association
value, then the value of the Association (the intended result) re-

sults. For em-np]e

struct Point [any x, y] ;

allows Smalltdk Points to be passed as parometcrs to methods

which remember to add J tialue call to the point’s coordinates

before they are used. A better solution than with type union

perhaps, but it is still awkward.

Constants
1111.allows constant expressions to be declared in interke and

module definitions. In HP Distributed Smalltalk, such expres-

sions are evaluated to produce constant values each time the

Interface Repository is changed. During C)RLfoperation, IDL

constant values are stored in J pool dictionary ORBConstants un-

der the fully qualified name of the constant.

For example:

interface foo [
const long bar= 7;

1;
results in the following:
(ORBConstantsah #:: foo::bar’)= 7

Attributes
IDL attribute declarations area shorthand mechanism to define

pairs of simple accessor operations, one to set the value of the

attribute and one to get it. Such accessor methods are common

in Smalltalk programs as well, thus attribute declarations are

mapped to standard methods to get and set the named attribute

value, respectively.

For example:

attribute string title;
attribute string my_mme;

means that Smalkalk programmers can expect to make title

and title: calls to get and set the title attribute of the object. By

convention, attribute names that contain underscore characters

are converted to more conventional Smalltalk notation. For ex-
ample, “mY_name”results in selectors #myName & #myName:.

Signatures of Standard Interfaces
COIU3A defines a minimal set of standard interfaces that define

types and operatirms for manipulating object references, for ac-

cessing the Interface Repository, and for Dynamic Invocation

of operations. These operations have been implemented in HP

Distributed Smalltalk, and maybe invoked using the operation

binding discussed previously.

For example, an object reference to the interface Repository

meta object supporting an object’s 1111.interface is obtained by

invoking the #getInterface method. Other calls, from the stan-

dard interfaces InterfaceDef, Container, Contained, and Object may

also be invoked cm this metaObjRef to further elucidate its nature.

While the mechanisms provided in the Dynamic Invocation In-

—— .-
NOVEMBEL+DECEMBER 1993
lerface (1)11) may [w used hy tllc HP Distrilwttxt Smilllta]k prw

grimmer to dynamically construct object requests, the more

conventional #perfonn:witlulrguments: method works the samr

and is preferred to the more verbose DII.

SUMMARY
The preceding is a description of tht IDL to Smalltalk la IlgLIirgc

binding ~\~hichis provided by HP Distributed Smalhdk. In addi-

tion, HP Distributed Smalltalk alsn cctnt~ins a numl>er of Com-

mon Object Services and %mple Applications which extend and

apply the cORBA standard. These services allow the WY u-eatioll

and manipulation of true distributed applications by providi Ilg

standard distributed building blocks that can be used by develop-

ers. For more detailed information, con~~ct the nuthor. Ed

J@Eos~ImIIz is (~cmmilfi)rg c;@)wm i)l Ht~\vlctf-P(~t”k,lr~f’sDis-

trilmteh Cmnp//ti)~gProjp-mu, wlwrehc i$ tlw archiwf of HP l)is-

tributed Snudltdk nmf the designrr of itsIf)L lmJ#u~~~ebindiu~.

He hm over 18 yrors cxperisvm i)~sqf~wm-cdrvckyvmwf (z[HP

aluf hflsheld posiiiom in Clevelopnwut,rcwwrch,flud fnf~lIflgc-

ment.His experiwce with Snuslltdk d~~tesfmdc to 19/10,md he

h been active in object-oriented developmcnr or HP dw-itlgtht

interitn. Jefhohfs n Ph.D. in elcctricfllengineerilzgfrom Norfh

Carolina Stnte ~nivmity. He cml be rmched ~lr:
jenstnum@cup.hp. cotm His nmiiitrgmi&-cJsis: Htw/ctt-Pm-km-d

Company, 19447 Prinwir@ Romi, Cuprrtim), CA 95024.
23

:3
!

a~Jk?7JOas!JdJa]U]Ut?
‘.:u!q]!MA30/ouq3a~pa]ua!JO /.

-]3alq0)0asfl]sagJ04
pJL?M~~&51plJOMJa]17~lL10~

aq]UOM@?aJ/L?aAk?qs100]

UO!]L?J17@U03~JOM]aUJ!al/1
“uoseaJpoo3qIIm

,,apIJOMaq]u!yJoAqau
pa~nqiJ]s!ppa]e~i]sydos~souI

aql,,lle~Aaq]uia]sAsv‘YJOM
-]aueaJeap!ma]e]s-[[Mau

Jiaq]uoe3!Jaui~]0but2g

	By Article Title
	Designing scenarios: making the case for a use case
	It’s just not the case
	Shoot-out at the Mac corral
	The HP Distributed Smalltalk IDL Language Binding
	What if? A protocol for object validation
	WindowBuilder: A do-it-yourself extension framework

	By Author Name
	Beck, Kent
	Eastman, Jeff
	Griffin, Susan
	Horn, Ray
	Steinman, Jan
	Wirfs-Brock, Rebecca

	By Topic
	GUIs
	Product Review
	Putting it in perspective
	Smalltalk Idioms

