
The International Newsletter for Smalltalk Programmers

September 1992 Volume 2 Number 1
EXPERIENCES

WITH SMALLTALK

oNA LARGE

DEVELOPMEN

PROIECT

By Bran Selic
Conten&

Feeturee/Artlclew

I ExperienceswithSmdltalkon a
~ DevelopmentP@ect
byaransenc

8 SmaIlbont+telaase 4 Graphks
andMVC Pan 3
byDanEemon

Columns
14 Theaestof

Co@o@mdkok What ●ke
laq Wfth00P!
byhnl(nlght

17 GetthgRed
Extendingb Colleedal
Hlemsrchy
byjuanltaEWhg

I9 Snsantdh/dbms
ValueModelkbSTM

6yKentebeds

DepertmeW

23 ProductNews& Highlights

i-
T

ml
ne of the most frequently asked questions about object-oriented
technology is whether it was used as the primary technology on a
large project. This question is particularly relevant to Smalltalk
because it is often said that Smalltalk is a language well-suited for

prototyping but not for “real” product development. In this arti-

cle we will describe our experience using Objectworks\Smalltalk from parcplace

Systems as the basic implementation language for a commercially available CASE
tool called ObjecTime. This project is currently in its sixth year and at one point
involved over 30 Smalltalk programmers.

THE PRODUCT
Bell-Northerg Research (BNR) designs and develops real-time distributed
telecommunications systems for its parent company, Northern Telecom, The

software driving these systems is often surprisingly complex and usually involves
many millions of lines of high-level code. To meet the extreme quality and ro-
bustness requirements of such systems, it is obvious that powerful computer-
based development tools are required. ObjecTime (previously known as Telos) is
one such CASE tool created at BNR for constructing the next generation of dis-

tributed event-driven systems. It can be used for analysis, design, implementation,
and verification. The tool is a key component of a methodology called Real-Time
Object-Oriented Modeling (ROOM), which is characterized by a set of high-level
design paradigms and a highly iterative development process.1 With ObjecTime,

users graphically capture the high-level aspects of their designs and combine them
with specifications written in C++, or a simple rapid prototyping language for the
more detailed aspects. These designs can be executed directly using ObjecTime’s
built-in run-time environment. ObjecTime is currently the most widespread
CASE tool within BNR. It has been made available to external (non-BNR) cus-
tomers and has already been purchased by several major corporations.

The software comprising the tool is quite elaborate and includes an interactive
graphical user interface, several complex semantic editors, a high-level language
compiler, and an event-driven run-time system. This system’s level of complexity
can be deduced from the size of the class hierarchy, which currently contains close
to 1,400SmaUtalk classes.

THE PROJECT AND ITS CHRONOLOGY
Theproject has so far progressed through three principal stages a prototyping
stage, a development stage, and a commercial product stage.

The prototyplng stage
Theprototyping stage started in late 1986 and lasted approximately 18 months,
during which time the project team grew from three to 18 people. None of the

cmtinuui on page 4,.,

The SmdMaWiteport
Editom
JohnPughand Paul Wlice

Carleton Unkrsily & The Objecc People

SIGS PUBLICATIONS

Advismy Board
Tom Awood, Object Wi

Grady Booth, ucional

George Bosworth. Oi@alk

Brad CoX, Inhnatlon Age Ccmndting
EDITORS’
CORNER

John Pugh Paul Wlsite

Chuck Duff,TheWhie?water(%IJUP
Adele Geldbq Pmd%ce Syswns

Tom Love, Camukam

Beru-and Meyer, ISE

Meilir Psge-Jones,Waflmd _

Shess %*, CenterLine .%fcwat-e I

P. Michael %a.chols. %mant I
~ame Stroussrup, AT&T Sell bbs

Dsve Thomas, Object TechnoloW Inceme+nal

THESwmuK REPORT
Edtirial Board
Ilm Anderson, D@nlk

Adele Goldbem fireplace SystmIs

Reed PMllips, K,wwiedge SymemsCurp.

Mike Taylor, Digicdk

~ve Thomss, Ob@ Teduwlw’ Inmrmmimal

Columnists
Kent Beck firer ass sdcware

Iuanti Ewing, D@dk

Greg Hendley, howl+ Sysmms Corp.

Ed Klimas, Llnea Engineering k.

Ah bight, Grkon Univerxiq

5uzsnne Skublics, objem Technc40~’lncemarCond

Eric Smith, Knowkdge SystemsCC@

lebecca WIrI%-6rock, Olsialk

WGS PublicationsGroup, Inc.
lichard P. Frkdman

%under & Group Publkhar

Ast/Prodcsction
Kristina Joukhzdar, ManagingEdmr

Pilgrim Road, Ltd.. Creative Di-tian

Karen To~”sh. Production Edimr

Jennifer Et@nder, Aflrod, coordinator

Circulation
Ksn Mm-do, .=ubsknem_

Diane Bsdway, ci,-dmm SUsimsc-r

John Schrelber, Clruchclon ASShmnC

Maslseting/Advertlslng
DmMotancia, /wter@s_ccd%ada

HOsy r%n27er,Advelich &w. cm5ciEur0pe
Ge*sdsakmslhwm51immsd5 s+m&2r
si21ahl+m#c0nPmmau0m~
LOMSLjia, b—nmenc~

bwshh’w, hncdom GnpbkA-dsz

Admkslstmtion
OsssmaTomoum, SusinnmManager
H
APPY ANNIVERSARY! We thought somebody should say it, as we roll into year two of
THE SMALLTALK REPORT. We trust you have been satisfied with the quality of articles over
the past 12months. Subscriptions are constantly climbing, as is the number and diversity
of Smafltalk users. We have tried to include articles that have a broad band of appeal yet
are specific enough to give you more than just a “warm feeling.” Certainly the best part of

this job has been the opportunity to meet many of you (albeit electronically in most
cases!!). Please, keep coming forward with ideas.

As you are all aware, one requirement sorely lacking in our niche of the software in-
dustry is a repository of documented experience reports. Other than 00PSLA’S experi-
ence reports, very little is available in terms of actual documented case studies. Newcom-

ers to object-oriented technology, and Smalftalk in particular, want to see proof that the
technology has been successful. And those of you trying to get on with the development of
software know how much easier life would be with a reservoir of experiences from previ-

ous projects, both good and bad, on which to draw, If you’re like us, you’re constantly left
with the feeling that “this has been done before,” especisdly in terms of adapting tradi-
tional management strategies to Smalltalk projects. It’s time we started to reuse more than

just code.
Bran Selic’s feature article describes many experiences gained during the development

of the CASE tool ObjecTime at Bell Northern Research. He gives a chronology of the pro-
ject, highlighting things that worked well and some of the ptifalls encountered.

Mso in this issue, Dan Benson concludes his three-part series on the development of

SmallDraw, his graphics editor, illustrating the “ins and outs” of MVC, He adds facilities
to SmallDraw to allow grouping, layering, and afignment of objects, cut/copy/paste facili-
ties, and scrolling.

Three of our regular columns appear this month with each building on themes de-
veloped in earlier columns. Kent Beck’s column describes the inherent shortcomings of

the change propagation mechanism and describes the ValueModel style of coding intro-
duced in Objectworks\Smalltalk 4.o. Juanita Ewing continues her discussion of proper
use of inheritance through an example of adding an OrderedSet to the Collection hierar-
chy. Finally, Alan Knight continues his survey of many of the complaints registered on
USENET about OOP.

In closing, we would like to take the opportunity to thank those of you who have
helped us out over the past year. A special thanks goes to our regular columnists, who
have yet to let us down and whose contributions form the pillar of the REPORT.

Thanks, gang!
‘fhc SmaLlldkRcpmc lIsSN# 1054-7S76) Mpublidmd 9 lima a year, mm-y month cxccpl for dx Mar/@r, J@hug, and Ncw/Dcc combti isufa. Pub-
Iislwd by SIGS Fwbiiwions Group, 5EBBmadvmy, Ncw York NT 10012 (212)274+%40. 0 @yri@ 199?.by SS!22hbfications, Lx. AU righM—d,
fkpr.ductim af this mmcrid by .kimnic wmsmiuion, kmx or my IM?XImccbcd W tw tr=ald as z willhl vid.adon of he US Gppigh law and M
fit2ypmhibitcd Mawial maybr rrprcducd tith q pmnkion horn tlw publkhers.Mail,d FirstClaw Subscriptionrab I year.(9 iww) domes=

& $SS, FLIreiSUand Canada SW, hsk COPYpric=, $8.00. FKISTMAS~ Send adrbns dance. and SUb=iptio. OATS to: THESMAUTNKSwRr, S.b-
~ Scrvicch DqL ShU, P,O. h S000, DwwilIe, NJ 07s54,

Submit srdclcsto the Editorsat SmsUtalkRcuorL 91 SccsmdAvessue,Ottkws, Ontario KIS 2H4, Cncseda

David Chscterpsul, Acmunchg

clsiraJohclstul, ~-

Chwly Roppel, cmfemnce cmrdinaw

AmyStewam~Ilmag8r

Iennickr Fischer, PUbUeIWSImC

Helen Newtlng, Mmhlurmhn A4cant

Mstgherh R. Monck ●

Gmwcd Mamgar I

-. .

2 THE SMALLTALK IIEPORT

Tmition to
ObjectTechnologybyDesign

MENTORltUG..

APPRENTICE
,?~“’\

ADVANCED TRAINING ‘$’+

FRAMEWORKS
~:v
CUSTOM CONTRACTS

The Management Challenge
The transition to object technology
must be designed for success,The
management challenge is to:
● Produce Quality Software
. Deliver on Time
● Build Maintainable Code
● Model the BusinessProblem
● Build Client-Server Solutions
● Manage Complexity

Knowledge Syetema Meete
the Challenge
Knowledge Systems Corporation
(KSC)has emerged as the industry
leader in delivering pure object-
oriented product solutions. KSC
products and servicesare designed to
successfullytransition business to
object technology,

Trandtion Sewlcee
KSCTransition Servicesinclude
contract servicesand a complete
training curriculum that supports a

group development environment.
Multiple training tracks are designed
to ultimately attain self-sufficiency
and to produce deliverable solu-
tions. Program curriculum includes:
. Mentonng, ProcessSupport
● Apprentice Small Group Project

Focus at KSC
● Finding the Objects (CRC)
c 00 Analysisand Design
● Introductory to Advanced

Programming in Smalltalk
● Intmcluction to Smalltalk for

COBOLProgrammers

Development Environment
KSCnow markets in the U.S.and
fully supports ENVW/Developer, a
multi-user development environ-
ment. In addition, KSCprovides
integrated servicesand tools to
enable construction of cooperative
processing applications.

DeelgrI your Transition
Beginyoursuccessfultransition to
object technology today. Join the
growing list of KSCclients such as
IBM,Hewlett-Packard, Texaco,
Fisher Conbols, American Airlines,
FirstUnion, Northern Telecom, and
Texas Instruments, For more infor-
mation on transition products and
servicesfrom KnowledgeSystems,
call us at 919-481-4000.

b Knowbdge Systems Caporation 114 MacKenan Dr.

Cary, NC 27511
OBJECT TRANSITION BY DESIGN (919) 481-4000

Q 1992 Knowledge Systems Corporation. ENVY is a trademark of Object Technology International, Inc.

■ Experiences WITH S54ALLTALKON A LARGEDEVELOPMENTPRoJECT
...mntinuuffim page1

team members had practicaJ experience with O-O technology

but we decided to adopt an O-O approach.
Communications software traditionally has been designed

using an object-based approach, primarily because of the in-
herently distributed and asynchronous nature of communicat-
ions systems. We were looking for a new technology that
could overcome some of the major limitations of traditional
software construction methods.

After some deliberation, we chose Smalltalk as the imple-
mentation language for our prototyping. Various object-
oriented flavors of C (Objective C, C++) were also considered
and discarded. We felt that a qualitatively different technology
was required to deal with the complexity we had forecast for
the coming generation of software systems. We were interested
in programming abstractions that couId deal with entire sub-
system architectures and complex graphics. The semantic gap
between these and the low-level machine-oriented abstractions

provided in C and similar languages was just too great.
We originally selected Smalldk/V born Digitalk Inc. After

about a year, we switched to Smalhalk-80 from ParcPlace Sys-
tems because ParcPlace software ran on the Unix-baaed work-

stations used by most of our client base. In addition, our own
performance benchmarks indicated that at that time (late

1967), our application would execute more than twice as fast
on ParcPlace Smalltalk than on Smalltalk/V on the same plat-
form. The port of our code to Smalltalk-80 was straightfor-

ward with most of the difficulties stemmirig from differences in
the graphics paradigms.

There was no formal design process but the issue was dis-
cussed at length, with great fervor and some dissent. The

highly interactive Smalblk development environment was un-
like any the team had experienced before. It obviously had
great potential that was not exploited fully by traditional linear

models of software development.
Our initial development consisted of a set of disjoint proto-

types of different toolset components, each one designed and

implemented by a single developer. In the latter part of the
pmtotyping stage the distinct components were integrated,
one-by-one, into a composite whose fimctionality roughly ap-
proximated that of the desired system. There were no commerc-

ially available team programming environments at that time
so we eventually evolved a “manual” process for aynchronising

the activities of progrdng teams.
This process was baaed on a weekly integration cycle. At the

beginning of each week a new version of the system was gener-
ated by the system integrator. Once this image was available,

designers would copy it to their own environment and make
further changes to it as necessary, At the end of the we~ de-
signers would submit their changes for inclusion in next week’s
image, To minimize conflicts, all the classes in tbe hierarchy
were partitioned so that each class was owned by a group. Only
members of the group owning a class were allowed to submit
changes for that class. AISO,it was possible to specfi the inte-
gration order of a submission relative to other submissions. A
common “patches” repository was maintained fiq-any changes
4

that needed to be shared in the interval between successive in-
tegrations. These couJd be filled in at the discretion of the indi-
vidual developer.

To our surprise, we found that this manual process was ef-
fective even in later stages of the project when the development
team was much larger. We attributed this to the decoupling ef-
fect of partitioning the class hierarchy across different groups
as well as to the highly modular and loosely coupled architec-
ture of the application.

The development stage
Followingour prototyping experience we commenced the ac-
tual implementation in September of 1988. This second stige
lasted approximately two years. During that time the internal
architecture of the tool was reorganized and aImost all of the
prototype code rewritten. The development team doubled in
sim to eventually include over 30 developers (not including
managers), all of them programming in Smalltalk.

The software was developed gradually, in four successive
releases, each release extending the capabilities of the previous
one. One of those releases included porting of the complete
software from a Macintosh platform to a Unix workstation

(Sun Microsystems SPARCstation 1). This porting effort
turned out to be trivial despite significant differences between
the underlying hardware and operating systems.The easewith
which this was accomplished confirmed the portability claim
of the ParcPlace SystemsObjectworks\Smalltalk product.

A more formal development process was used during this
stage since we were working on a production version of the
software and a much larger team was involved. The final ver-
sion of this process is described in a later section.

The commercial product ~
Until the end of 1990 ObjecTime was exclusively targeted to
internal BNR projects. In 1991 the potential for more
widespread use was recognized and a decision was made to
market the technology. This meant setting up a full-fledged
support organization, “robustilication” of the software to com-
mercisl-qudity standards, creation of high-quality user docu-
mentation, and functional extension with features required by
a much wider open market. With basic toolset architecture and

functionality in place this was accomplished by a smaller and
more focused t-.

The current release of the toolsa ObjecTime Release 4.0,

contiina close to 1,400 classes and the initial image requires 5.8
MB, Despite these relatively large numbers, we have not yet
encountered nor do we anticipate any fundamental technical
or resource Iimiwions of either the language or the ParePlace
Objectworks\SmaUtalk environment.

EXPERIENCE WITH SMAUTALK
Thissectionsummarizessomeof thesalientaspectsof our
Ssnalltalkexperience.

wntimdOrIJhl&6...
TtaIs%mrLTALK RSPOIIT

10Ymrs
WhenOTI
ThatObject-oriented

TechnologyWould
Revolutionize

TheSof~areIndustry,
PmpleCalledUs

Crazy..

Now,They Simply CallUs.
Forover10years,OTIhasbeenon the
leadingedgeofobject-mientedsoftware
engineering.Andtoday,asmoreandmore
companies adopt this exciting, new
technology, OTI remains the leader in
providing industrial and commercial
object-oriented solutions.

Partnersin
Object-Oriented Development
OTI’s unique technologyallianceprogram
proviti a meansof acceleratingproduct
developmentandintroducing new software
technology. OTI’s technologyis being used
in products ranging from pen computers to
rerd-timesystems. Through these alliances,
we’ve earned a solid reputation for developing
highquality, reliable software-on-time,
within budget and to demandingproduct
specitlcations.This success is attributed to

OTI’s ENVY”/Developer - thefitmulti-user
development environment for object-oriented
engineering,

OTI’S ENVY/De~eloper - Product
Development Tools For Smalltalk
With ENVYIDeveloper, large and small
sofiware engineering teams work within an
interactive, shared programming environment,
Inside this environmen~ team members share
common development tools, common software
components and common source code - that
means fastercycle times, incremed productivity,
virtually no duplicated code, and no wasted
effort.

Applications are created efficiently and
effectively, from begirmingto end, Using
ENVY/Developer, the team passes the
application through each phase of the software

manufacturing Iifecycle - conceptualizing,
pmtotypiog, manufacturing, testing, release
and maintenance - without ever leaving the
environment. ENVY/Developer alsotracks
this process by providing complete software
version control and multi-platform
configomtion management.

Interested?
If yonr organization is interested in joint
research and development or you would like
more information on ENVY/Developer and
object-orientedpmgmrruning environments,
call us today.

@

Objj MhlnIlogy
lmemationalInc.
:’fiin~ug~deas

Canada Telephone: 613-820-1200 ● Fas: 613-320-1202 ● E-mail: info@oti.on.ca lJSA Telephone 602-222-9519 ● Fax: 602-222-8503

ENW is a registered trademark of ObJ?ct Technology International Inc.

I EXPERIENCESWITH SMALLTALKON A LARGEDEVELOPMENTPROJECT
lxntinU?d@n ~ 4...

Productiviq
We are convinced that Smalltalk, with its sophisticated and
customizable environment, source-level debugging capabil-
ity, extensive class library, and automated storage reclama-

tion, is significantly more productive than most other devel-
opment environments (including, to a lesser degree, other

O-O environments).
This is substantiated to a certain extent by an interesting

case that occurred during the project. ASpart of our develop-
ment we were required to implement a general purpose graph-
ical windowing system using Objectworks\Smalltalk Simtdta-
neously, a second development group was independency
implementing a similar facility in C based on an X Window
System toolkit. This substantial application amounted to ap-
proximately 66,oOOlines of C code, while the same functional-
ity in Smalltalk required only 6,200 lines of Smalltalk-a func-
tionality ratio of 10 to 1 per line of code! A more conservative
estimate, based partly on these results and partly on our overall
experience on this project, is that SmaUtalk gave us a produc-
tivity advantage three to five times over a traditional program-
ming language such as C.

We believe that Smalltalk has a significant productivity edge
over other O-O languages as well. Although we have no hard
quantitative data, our rough estimate is that SmalhaIk is at

least two to three times more productive than C++,

Performance
ObjecTime is a computing-intensive application: It has a
graphical interactive user interface, it must perform complex
semantic cheeks in real time, and it must efficiently execute
complex high-level designs. By far the greatest portion of this
functionality is implemented in Smalltalk (Lesser portions
[approximately 5%] were implemented in C++, not for perfor-
mance reasons, but to enable execution of the C++ segments of
a user’s design,) AItbough we occasionally encountered perfor-

mance problems, in most cases we were able to improve per-
formance to acceptable levels either via straightforward code
optimization or through readjustment of the architecture.

The only potentially serious problem relating to performance
is an occasional pause for memory compaction, which is part of
the automatic garbage cokction mechanism, For our applica-
tion, we found that this pause becomes unacceptable in situa-
tions where there is not enough real memory so part of the
garbage collection involves swapping memoqy from disk To
eliminate this problem we stipulated a minimum amount of real
memory for our appli~tion. Memory requirement is a function
of the size of the user design. For ObjecTime release 3.5.1, mini-
mal memory requirement starts at 16 MB (on a Unix worksti-
tion) for small to intermediate designs and goes up to 40 MB for
the largest designs. With sufficient memory in place, the garbage
collection pause is relatively short (between 4 and 10 seconds)
and occurs infrequently (every 15-20 minutes).

Quality
Most of our development was done with the ParcPlace Systems
6

product, Objectworks\Smalltdk (km release 2.I through release
2.5). In over four years we encountered only two problems, botb

minor, which required product fies by the vendor.

Usabilityfor largesystemdevelopment
Our experience demonstrated that Smalltalk was a practical so-
lution for moderately large development teams (3o program-
mers) even without the assistance of specialized team pro-
gramming tools. Of course, if such tools are available (e.g.,
ENVY/Developer from Object Technology International), they
should be used since they add significant value and can extend

the applicability of Smalltalk to even larger projects than ours.

Training
Carleton University is one of the major world centers of
Smalltalk expertise. The School of Computer Science at Car-
leton organized a short course, taught by professors John
Pugh, Wilf LaLonde, and Dave Thomas, which for most team
members was the initial exposure to SmaJltalk. We were also
able to hire, on a temporary basis, a group of graduate and un-

dergraduate students who served as consultants on proper
Smalltalk usage. The presence of such experienced Smalltalk
programmers significantly cut down on our training time.

In addition to the Carleton course, we took an “intermedi-
ate” level Smalltalk course offered by ParcPlace Systems, which
focused on common techniques for effective usage of the envi-
ronment. This course visibly increased the confidence level of

the development team.
It takes between one and three weeks for an experienced pro-

grammer to learn enough Smalltalk to start using it on the job,
However, for a programmer to effectively use Smalltalk, it is
necessary to become famdiar with the O-O paradigm, the class
library, and the programming environment itself In our experi-

ence the majority of programmers needs an additional 6 to 20
weeks to reach an “intermediate” level of proficiency. (Keep in

mind that the same amount of time is needed to learn the envi-
ronmental particulars [e.g., code libraries] for any large project.)

The development process
Our development process differed somewhat from the tradi-
tional modeL First of all, we wanted to take advantage of the

rapid prototyping capability of SmaJltalk. Proper use of this
feature helps designers gain valuable insight early in the devel-
opment cycle and before major implementation effort is ex-
pended. Inheritance also adds a new aspect to the overall de-
sign effort. Typically this requires additional effort consisting
of another pass through the design after the desired functional-
ity is tidly achieved. Further design optimization is accom-
plished from the perspectives of reuse and abstraction. We ul-
tirnately settled on a process consisting of four main activities:

1. Functional design defines the functionality of the feature

being developed. The output of this activity is a Functional
Specification document which can be discussed with
clients. Once finalized, this specification is also given to an
THE SM.ULT.UX REPORT

Just opened

The first online 5malltalk marketplace where
any developer can 6ell or buy Smalltalk tools,
components, add-one, advice or training, and
hook up with the right people. lf you’re looking
for the best in Smalltalk, come to the AMIX
online marketplace.

We’re ofFerlng the AMIX eoftware for %ee,
Visit the AMIX Booth (#701) at CIOP5LA,
October 18-22 in Vancouver. Or call us now at
415-903-1000 and we’ll send you a di6k today,

American Information Exchange Corporation
1001 Landlng6 Drive
Mountain View, CA 94043-0040
Phone: 415-903-1000
FAX: 415-903-1093

AMiX
independent verification group to allow early preparation
of test plans.

2, Objector classdesign is the fundamental synthesis process in
which a high-level design is worked out for the feature. If
the feature is complex enough, a formal Design Document

is produced for review purposes.

3. Coding is part of the prototyping and refinement activity.In
the case of prototyping, this activity is often concurrent
with and supplemental to class design and even functional
design. Given the importance of user interfaces to our ap-
plication, a distinct subactivity is early modeling and evalu-
ation of the user interface design.

4. Documentation and testing are usually done in the final

stage. Each designer generates a functional test plan that is
reviewed and used for white box testing. For major features,
code inspections are also held. This phase also includes test-
ing of the software by an independent verification group.

Although the individual activities are listed in sequence, the
process allows for internal cycles to accommodatefurther refine-

ments, particularly following implementation.

The project management process
The iterative nature of the development process makes it
difficult to detect whether or not it converges. To get around
this we specified a linear progression of milestones, each one
tied to a concrete deliverable. The interval between successive

milestones was fixed in advance, based on a priori estimates of
the effort required. For example, the formal release of a Func-
tional Design document was the first milestone following the
start of feature development. Other major milestones included
the release of an Object Design document, the delive~ of code
to a test group, and the successful completion of testing. Not
surprisingly, we had the most difficulty estimating the amount
of effort needed for individual milestones to be achieved. This
was especially problematic at the beginning because we had
had no previous experience with an iterative development pro-
cess or the O-O paradigm.

Additional obeemations
To conclude this summary of our experience, we list several
additional points pertaining to O-O development

1. The management team must have an in-depth understand-
ing of O-O technology to gain maximum return from it.
This technology is different enough from traditional ones

(e.g., the focus on reuse, iterative development process) that
many of the long-established management practices are in-

appropriate. Becausethis is a relativelynew technology not
many techniqd managers are experiencedwith it.

2. There is a aigniticant need to develop better management met-

rics to reconcile an iteradve development process with the
needs of management so that a process stays within its alloated
resources. Sucassive refinement can indeed reach a point of di-
SSWrEMBER 1992
rniniahing returns. How do we detect when that point has been
reached? New metrics are also required to measure productiv-
i~, with refinement the number of lines of code carsactually
decrease with tie through inheritance and reuse.

3. The ease and rapidity with which code carsbe changed and re-
compiled in Smalltalk an easily lead to hacking with little or
no brne taken to reflect. (Srnalltalk is one of those seductive
environments where it is very easy for the medium to become

the message.) This style of development tends to work bottom
up and does not extend very well to large system design. The
best way to avoid this is to ensure that a system architecture is
defined before any development of details takes place.

CONCLUSION
We have been using Smalltalk on our project for almost six
years; overaJl, our experience remains strongly positive. We
have confirmed not only that SmaUtaIk is powerful and robust
enough to be used for commercial-quality software, but also

that there are substantial benefits when compared with other
implementation options, Finally, we have demonstrated that
Smalltalk can be used successfully on large and long-term pro-
jects involving sizable programming teams. ❑

References
1. Selic,B,, G. J. Gullekson, and I. McGee Engelberg. ROOM ArI

Object-Oriented Methodology for Developing Real-Time Sys-
tems, Montreal, Canada, July 6-1o, 1992.

Bran Selic is Senior Manager responsiblefor real-time CASE technol-
ogyat Bell-NorthernResearch in Ottawa,Canada He can be
reached at 613.763.3954or at selict?bnr.ca

—.—
7

SMALL DRAW—

RELEASE 4

GRAPHICS AND

MVC, PART 3
Dan Benson

❑
maUDraw is a simple structured graphics editor

that provides an example of graphics rendering
and MVC application construction in Smalltalk-
80 Release 4. The first article in this series con-

tained an introduction to graphics concepts and application
construction with the MVC architecture through the definition
of a “minimal” SmalIDraw. The second article added the abil-

ity to select and modify objects in the view. This third and final
article extends the features of SmallDraw to include grouping
of objects, layering of objects, alignment of objects through a

DialogMew,cut/copy/paste operations through a shared clip-
board, the use of command keys, and scrolling of tie view. In-
formation on obtaining the complete source code for Small-
Draw is given at the end of the article.

GROUPING OBJECTS
Grouping objects together allows them to be treated as a single
unit. That is, a grouped collection of objects can be translated,
scaled, and copied as a single object. To do this, a new class is
defined as a subclass of SDGraphicObject, called SDGraplsicGroup:

Object()
SDGraphicObject(’insideColor’‘bordefilor’ lineWukh’ kindles’

IIOundingllox’)
SDGraphicGroup(’elements’)

SDGraphicGroup’ssingle attribute, elements, holds a collec-

tion of SDGraplsicObjects.It implements specific methods for
calculating its boundingBox, displaying its elements, testing for
point inclusion, and translation and scaling. For example, SD-
GraphicGroupdefines the following method for translation:

tx’anslatsll&aPoint
self elements do: [:0 I o ban.MeBy aPoint].
self computeBoundingBox

The SmallDrawmodel is responsible for grouping objects,

When the group operation is selected from the menu, Srnall-
8

Drawcreates a new SDGraphicGroup,setting its elements to the
currently selected set of objects. The selected objects are re-

moved tlom SmallDraw’sobjects and the new SDGraphicGroupis
added to SmallDraw’sset of objects.

The inverse operation of un-grouping is also provided.
When this operation is selected, SmallDrawremoves any in-
stances of SDGraphicGroupfrom the current selection, adding
each individual element to its set of objects.

LAYERING OBJECTS
Asobjects are added to the drawing they are placed on top of -

existing objects; that is, they are conceptually layered. This idea
is also reflected exactly in the SmallDrawobjects instance vari-
able as an OrderedCollefion of objects.

It is often useful to change the relative positioning of objects
within the stack. This is accomplished by providing four menu
selections, shown in Figure 1, for moving objects to the front or
back of the staclc or fo&d or backwar~ by one position.

r

I
Figure 1. Menu selecrion for moving objects.

Moving selected objects to the front is done by simply re-
moving them from the list of objects and adding them to the
front of the list:

moveToRont
selfhasSeltion HTrw [I selection I

selection:= self selectedObjectAssociations.
seletion do: [:oa I self objeck remove: oa],
self objects addAUFirsLselection.
self changed: #rectangle with: seLfselectedObjectsDisplayBox]

Moving objects forward by one position is done by insert-

ing the selected object before the object that was in front of i~

movaForwdrd
selfhasSelecSionifhus [

selfselectedObjectAssoriationsdo: [:oa I I before]
selfobjectsW ~ oa

ifFalse:[before:=selfobjectsbefore:oa.
selfobjects remove oa.
self objects add: oa before: before]].

self changed: #rectangle with: self sektedObjectsDisplayBox]

Moving objects to the back or backward one position is
done in a similar fashion.
THE SMALLTALK REPORT

ALIGNING OBJECTS
A difficult and time-consuming task in any graphics editor is
trying to get objects aligned with each other. Confining the
mouse to a low-resolution grid is helpful but not always ade-
quate. This task can be simplified with the use of a DialogView
to specify the type of alignment desired. Alignment can take
place in either of two directions and one of three positions for
each direction (see Figure 2).

The user has the option of choosing one or both directions.

For each direction, only one position can be specified using the

M@’unEmt

❑ vll
@Top
~ Center

~ Bottom

pg Hdznntd

o bft @ titer o Right

Q@----J~

Figure2. Aliiment Dialogview.
S~EMBEFI 1992
radio buttons. The chosen alignment positions are retained by
SmallDrawso that they maybe applied to selected objects with-
out bringing up the DialogVieweach time. Therefore, two menu
selections are added, one for applying the current alignment
and one for setting the stored alignment.

When the alignment is to be set, SmallDrawcreates a Di-
aLogViewwhose model is SmalLDraw.When the DialogViewis

opened, SmallDrawspecifies a message selector (#iinished#dign-

rnent) that determines when the view should be closed. Until
that message selector returns true, the DialogViewinteracts with

the user and SmallDrawto set and modify the alignment direc-
tions and positions.

The vertical and horizontal positions are represented as
symbols. These values are stored along with a flag that indi-
cates whether Cancel or OK was pressed in the DialogView.
Rather than adding three new instance variables to SmallDraw,a
single instance variable called alignment is added. This is an in-
stance of a three element Array to store the three pieces of in-

formation as follows:

fslMauzeAugnnsent
“’l’healignmentinstancevariable is an array of three elements:
1) verlical alignment I nil
2) horizontal alignment I N1
3) false I hue I nil -> ermcel I accept I not 6nished (used by

DialogView)

Thelast fig must be set to nil each tie the DialogViewis opened.

See openAlignmen~ialog and FmishedAlignment.”
9

—.—..——.

■ SNALLDRAW-REL-SE 4 GRAPHICSAND MVC PART 3
atignmentiaNil
itl’rw [alignment:= Arraywith: nil wittc N1witi ml].

alignment ak 3 put: nil

Methods are used to access the alignment array elements as
follows:

acteptldignment
alignment ak 3 puk hue

MeqMiWgnmemt
‘alignment * 3

cancelAUgnment
alignment ak 3 put: false

5nishedhUgrmrent
“(alignment ati 3) notNil

Isosisontilsllignrrsent
“alignment ati 2

horisontalAUgssmenti aSymbol
a-errt ah 2 put: asymbol.
self cbarrged:#horkmtalAligmrrent

vemcalAugrursent
‘alignment at 1

vemcalAMulserlb asymbol
alignment w I put: asyrnbol.
self changed #verticalAlignment

Alignment is performed relative to the total boundingBox of
the currently selected set of objects

doldignment
selfhasselectionifhoe: [I bb repair I

bb:= self selectedObjectsBoundirrgBox.
repair:= self selectedObjectsDisplayBox.

‘Verticalmovement.”
selfvefialAlignment = #top itTrue:[

self selectedObjectsdo: [DOI o translateB~
O@(bborigin y -0 boundingBoxorigin y)]].

seLfverticalAligronerrt= #center ifhue: [
self selectedObjectsdo: [DOI o hanslatelly

O@(bbcenter y -0 boundingBoxcenter y)]].
selfveticalAligrmrent = #bottom ifTrue[

self selectedObjectsdo: [DOI o trarrslateBy
O@(lb comer y -0 boondingBoxcomer y)]].

‘Horisontil movement.”
selFhorisantalAlignment = #left ifl’rue:[

self selectedObjectsdo: [DOI o translateBy
(bb origin x -0 bodingBox origin x) @O]].

self horisontalsllignment = #center iflku=[
self seleetedObjectsdo: [DO[o translate~

(bb center x -0 boundingBoxcenter rr)@O]].
self horicontibiligrrrrrent= #right ifhue[

self sekctedObjecta do: [:0 I o tianalateBy
(bb comerx -0 boundingBoxcomerx) I@O]].

self changed: #rectangle with: repti]

CUT/COPY/PASTE
A common metaphor in many applications is the cutting,
copying, and pasting of objects using a “clipboard” as an inter-
mediate storage mechanism. The Macintosh system is an excel-
lent example of using a common system clipboard to tnmsfer a
variety of data objects between applications. Similarly, graphic
objects can be copied or cut to a common buffer accessed by
all SmallDrawapplications.
10
Intermediate storage implies an instance variable that can
reference collections of graphic objects. Sharing access to this

storage among SmallDrawinstances suggests that a SmallDraw
class variable is the appropriate mechanism for a common

clipboard. Therefore, a class variable called Clipboard is added
to the SmallDrawclass. The Clipboard can hold one object, or
one collection of objects, at a time. Copy and cut operations

are destructive because they overwrite the current contents of
the Clipboard. Pasting is nondestructive because a copy is made
of the Clipboard contents and added to the drawing.

It may seem trivial to implement the copy operation by
simply assigning the Clipboardclass variable to a copy of the se-

lected objects:

w
selfhaaselection

ifkue: [Clipboard:= seLfselectedObjectscopy]

However, care must be taken when copying and pasting ob-
jects to and from the Clipboard. The Smallhllr copy performs a
shallow copy, which simply duplicates references to the objects

to be copied (making them identical and thus equal), and the
Clipboard then points to the objects remaining in the drawing.
In contrast, a deepCopy creates exact duplicate objects that are
different from the originals (equal but not identical):

m
selfhssSelection

M’rue [Clipboard:= self selectedObjectsdeepCopy]

It is not necessary to use deepCopywhen objects are cut
from the drawing. In this case, the objects are removed from
the drawing and essentially transferred to the Clipboard

cut
selfhasSelectioniflhse: [

Clipboard:=selfselectedObjects.
seLfobjects:(selfobjectsrejeck [:p I p value]).
selFchanged:#rectanglewitluselfclipboardDisplayBox]

When objects are copied to the Clipboard, they retain their
attributes including their location in the drawing. A copied ob-

ject immediately pasted back into the drawing covers its origi-
nal copy. A useful convention is to paste an object into the
drawing at an offset from its copied position. Each subsequent
paste of the same object would then be offset from the previ-
ous pasted object. This can be accomplished by defining a
paste ofiet constant and translating the contents of the Clip-
board with each paste operation:

pasteoffeet
“Answerthe del%ultofFsetfor ptig objects fromtheir copied

positions.”
Alo@lo

self clipboardFuUitTrue: [
self deselectrlll.
self objects addAllFirsh((Clipboarddo: [DOI

o hanslateBy self pasteOffaet])
deepCopycoUect:[:0 I 0-> tnre]).
THE SMALLTALX REPORT

I SHALLDRAW - RELEASE4 GRAPHICSAND MVC, PART3

Thehterface

-- --

“... tbisIia a potent rapid ❑pplicntion development tool which

❑hosdd be included m nuy SmaUtaWV developer% environment .“

- Jim Sabmwu, Tlw Smdta.lk Report, September 1991

The key to a good application is its user interface, and
the key to good interfaces ia a powerfid user interface
development tool.

For Smalltalk, that tool is WindowBuilder.

Instead of tediously hand coding window definitions and

NESUJN@Ig through manuals, you’fl simply “draw” your
windown, andWindowBuilder will generate the code for
you. Don’t worry — you won’t be locked into that firm,

inevitably less-than-perfect design; WindowBuilder
allows you to revise your windows incrementally. Nor will

you be forced to learn a new pmradigm; WindowBudder
generates standard Smalltafk code, and fits as seassdessly
into tbe SmaUtalk environment as the class hierarchy
browser or the debugger.

Our new WindowBudder/V Windows 2.0 is now available
for $149.95, and WindowBuilder/V PM is $295. Both
products include Cooper & Peters’ unconditional 60 day
guarantee.

For a free brocbure, call us at (415) 855-9036, or send us a

fax at (415) 855-9856. You’ll be glad you did!

COOFERh PEIEW INC. IFOM!ENVACLIMEN50WAMI 2600 Et CSMNO REAL,SUIIE .40? PALOAMO, CAUFOINIA 94306 PHONE415 .955 9036 FM 415 B55 9856 COIAPU,EW[71571,407
self changed #rectangle witlr self clipboardDisplayBox]

Note that all pasted objects become the current selection by

setting the value part of the Association to tree. Making dupli-

cates of objects can be simplified by defining a duplicate opera-

tion that bypasses the Clipboard:

duplicate
‘Adda copyof the current seleetion without changing the Clipboard.”
self hasSeletion ifhu~ [I newobjeets I

newobjeets:= (self selectedObjeeUasociationsdeepCopydm [:oa I
oa key tianslateBy seLfpasteOffset]).

self deselecW1l.
self objects addAUFksknewobjects.
self changed: #rectangle with: self seleetedObjectsDispleyBox]

COMMAND KEYS

As an input device, the mouse is a convenient mechanism when
working with modem bit-mapped graphical user interfaces.
However, it is often faster snd less tiring to perform a com-
mand via the keyboard than to make a selection from a menu.

Keyboard commands are distinguished from normal typing

by pressing a combination of two keys: the command key and
SEFIEMltsn1992
a letter key. The command key looks like %!?on the Macintosh
and is the alt key on the IBM RS/6000. Other platforms may
vary. The Smalltalk class InputSensor refers to the command

keys as alter meta (depending on the platform) and responds
when either is pressed through the messages al~own and rneta-

Down, respectively.
Command key equivalents can be defined for most of the

operations that SmallDrawperforms. Borrowing from a popular

commercial structured graphics application, the following keys
are used to invoke the following operations:

1
2!?!L—
x
c
v
f

j
d
a
k

9
G

. operation—.— .—
cut
copy
paste
movefotward
movebackward
duplicate
select all
align
group
U21-group
11

9 S~RAW-RELEASE 4 GRAPHICS AND MVC PART 3
66
[In SmallDraw] the controller is

independent of command key processing

and additional keys may be added

to the model without changingthe

controller’s method.

99

The SrrraUDrawControUeris responsible for all inpuL and cars
now check for keyboard activity in its normal control se-
quence. All of the operations listed above are performed by the
Smallthaw modeL When the mntroller senses that a command
keyhss been pressed, it forwards the key to the model for pro-
cessing. This way, the controller is independent of command
key pro=ssing and additioml keys maybe added to the model
without changing the mnlrcrller’s method. The SmaUDmwin-
stance method that processes command keys looks very much
like the list of operations abmw

psomsbmnramdl(~ altq
"RaspodtoaKaywfdch maycusrespondto oneofthemwives's

❑ enu commands. If not, ignoreit.”
akg = Qsmaderbackspaceifltue: [selldelete].
aKey”$KiffsUG[selfc@.
afreg=SCirfnra:[Selfcopy].
SKey- $Vifl’rue:[Selfpaete].
akg - Sfiffruw [salfmoveFoswardJ
*“ $j if’1’rw[eelfmoveklmard],
~ - $dk [Afdupficate],
*= b- [Selfselectm].
S@” $kifhue:[selfddllgnment].
*=$9 ifhoe:[Afgroup].
elky=$Giffsue:[seffmrGmup].

SmaUDmwmenus are modified to indicate the keyboard com-
mands that may subsdtute for menu operations (see Figure 3):

SnsaUDmwConWleris only slightly modilied in order to han-
dle keyboard events. One method is added to detect and pro-
cess any keyboard activity

new 3
selection)

~ cut
change 9 copy (alt-c)
display 9 paste (alt-v)

- duplicate (alt-d]
Sei=t all [aIt-a]
12
-~
“Determinewhdrertheuserpressedthe@boardmIfso,madthe

keyandpassitontothemodeLm
selfsensorImgbodpmsediffrw[lkeyllitj

Keyflit:=selfsesrsor~srt W~ue-
‘Checkforbackspacehere.”
IreyHit=threderbackspeceit’frue:,

[selfmodelpocesdhmrrrandlkykeyflit].
(selfsensoraltl)owrrm [selfamsormetakwn]) We [
WeyValuesareknwcase w wemustconvertto uppermseif the

Shlftkeylsdolm”
se~ sensorshtftllowniffrue

pragfiit:=kegHitasuppercaw].
selfmodelprocessGmmmdl@ keyllit]]

and one inherited method is overwdten to include the key-
board method in its mntrol loop

~n~
Ttret checkthe keyboardand then dothe usrmL’
selfprocessKegboard.
supercomolktitity.

SCROLLING THE VIEW
SmaUDrawViewcan become a scrollable view by defiing it as a

subclass of ScroUingView.The claw comments for ScroUingView
include the following information:

Subclassesmusthnplement the followingmessagex
accessing

displayObject
scrolling

Scrolwy
Wroflflosisontafty
scroUYertica@

DisplayObjectmust be able to respond to the message bounds.
DisplayObjectis the object being scrolled in the view, in this case

the SsnaUDmwdrawing. SrdDmwView needs to know how big
the %nalUhawdocument is so that the scroll bars can be prop-
erly scaled. Ssnalllhds new iace variable, pages, is an in-
stance of a Poirrt that defines the number of pages lined up hor-

izontally and vertically.Themi~mum is l@I, or one page. For
two pages side by side, pages would be 2@l, and so on. The
document automatically increases in pages if objects are trans-
lated or scaled such that they extend beyond the rightmost or
bottommost pages of the document The SniaUDcawConboUer
ensures that objects are not allowed to extend beyond the left-
most or topmost pages.

The size of the document is obtained by asking SmalU)mw
for iw bounds:

bands
W@O extenhselfdocumentSize

where the page configuration is converted to pixels by multi-
plying an 8 1/2 x 11 inch sheet of paper (awuming 1/2 inch
margins all around) by the number of pixels per inch:

Sknsaassww
“Arrswerthesizeoftie documentin termsof the numberof t3.5x
THE SMALLTALK REPOIST

Voss
Virtual Object Storage System for

Stnalltalk/V
Srxm[ess persistent object management

for all SmalltalklV applications
● Transparent access to all kinds of %nalltslkobjmts on disk.

● Transaction mnunit/mUback of changes to virtual objeck.

_ Access to individualelementsof virtual collectionsfor ODBMSup
to 4 bifIionobjectsper virtual space; objectscached for speed.

● Multi-key and muhi-value virtual dictiumrim rimquery-building
by Io?yrange selection and set intemection. (rip)

● Works directly with third party user interface & SQL class etc.

● Class RATucture Sditor for renaming cksses and adding or
removing instance variables allows applimtions to evolve. (rip)

● Shared access to mmed virtual object spaces on disk; object
portability between images. Vial ob@s are fully functioml.

_ %lMw code SU@ii.

,Smnemmmentswehavereceived about VOSS:

“.. cl-n . .eleWnt. Works like a charm.”
-Haf Hildelmmzd,Anamet Laboratories

“Worb absolutely beautifully; exceIlent performance and
applimbility.” -ffaul Duran,Micmgenics Instruments

VDSS/2S6$595(Pemmal$199),VOSS/Windmm$750(Persoml$299)
(Personalvemionsexcludeitemsmarked(rip)).

[0’~ ~tiwk=a~a~~.fid,c~pti.Pleawadd$15brstiwiW.
anticydiscountsfrom30%for twom morecopies,(Askfordetails)

~R T S LogicArts Ltd 75 Hemi@md Road,Cambridge,Engkmd,CB13BY
TEL:+44 223212392 FAX +44223245171
11 inch pages.”
‘self pages * self pageSiseInPixels

page8iseInPirrela
“Answerthe sizeofone8.5 x 11 inch page (with 1/2 inchmargins),

scaled by the number of pixels per inch (72). Thisnumber is
calculated as: ((7.5@10) ● 72) rounded.”

‘540@ 720

To ensure proper scaling of the scrolled objea SrnaU-
DrawViewdetines the following method

daWrctent
‘self displayobjectbounds extent * self displayScale

Scroll bars rely on a scrolling grid in which the inherited value
for scroUGridis l@l.Using pasteOi&t, SrnaUDraNlewcarsbe
defined so that scrolling occurs in larger intervals. SmaUIhawVkw
provides a menu option to turn the grid on or off and SmalLDraw-

ConhoUeruses its view’s grid for selecting points in the view.
Opening Sznall.Drawwith a scrolling view is done as before

by placing the SmalLDrawViewin an EdgeWidgetWrapperbut now
a horizontal scroll bar is also included (see Figure 4):

opescScroUirsg
“Sma1L02awnew open.krolling”
ScheduledWindownew

label: ‘Smallhavf;
component: (EdgeWldgetWrapperon:

(SmaUDrawViewmodeh self)) useHorizontalScrollBar;
openWithExtent:200@200

Figure4. Two scrolling views (25% and 100%) and LWO pagas side by sids.

SUMMARY
Building on the first two SmallDraw articles, this final article

has presented further enhancements to SmallDraw to demon-
strate Release 4 graphics and MVC application construction.

Though far from perfect, it should give beginners a good start
on their own development.

Certainly many improvements and enhancements can be
made to SmallDraw. New types of graphic objects, such as
Text, Images, and Bezier curves (included in Release 4.1),
can be added. Other object operations can be defined, such
as rotation, smoothing of polygons, editing individual points

on a polygon, undo, or auto scrolling of the drawing while
translating or scaling objects beyond the extent of the view.

Advanced functionality can be provided to allow for saving
drawings to files, PostScript or LaTeX printing of the draw-
SEPTEMBER 1992
ing (e.g., a GraphicsContext subclass that outputs
PostScript), or sharing of graphic objects with other
Smalltrdk applications.

The complete source code corresponding to each of the
three SmallDraw articles can be obtained from the University
of Illinois and Manchester archives. They are identified as
SmallDrawl, SmallDraw2, and SmallDraw3. The source code
is available to all with no restrictions. I ask only that proper

credit be given so that I may hear from those who have
benefited. I also encourage those who make improvements or
additions to SmaUDraw to make them available through the
archives for others’ education and use. ❑

Dan Benson completed hisPhD in Elem”ud Engineering at the Uni-
versi~ of Washingtonwhere he developeda 3-D spats-aldatabasefor
human anatomy uring Smalltalkand the GemStone ODBMS. He is
now a ResearchScientistnith Siemeru workingin the area of Image
Managment and Dirti”bution.He may be contactedat: Siemerrs
CorporateResearch, Inc., 755 CollegeRoad East, Princeton, Nj
08540, or by errcaiJ:bensotrt?siemens.siemens.com.
13

— —— ———

HE BEST OF comp.lang.smalltalk

What eke iswrong with 00P?

Alan Knight
T
his might more accurately be called “What else do peo-
ple on USENET think is wrong with 00P?” While there
are certainly areas in which OOP could be improved,

there are many misconceptions and false criticisms-so many,
in fact, that I ran out of space for them last month and am
continuing the topic here,

Let’s start with one of the most common complaints: appli-
cation areas for which OOP is inappropriate.

OOP CAN’T HANDLE PROBLEMS LIKE...
Harry Erwin (erwin@trwacs.fp,trw.tom) writes:

OOP can be a disadvantage if the problem domain does

not lend itself conveniently to object representations. For
example, many algorithms consist of a primary control
loop operating on passive things, and a Paaal or Ada pro-
gram of the traditional mode is more efiaent and clearer.

If true, this represents a severe restriction of the OOP do-
main. Many algorithms fit the pattern of a loop operating on
passive things; if 00P can’t handle them, most programming
is nded out. Objects will have to be relegated to simple GUI
tasks, error handling and other algorithmically trivial areas.

In my opinion, it is not difficult to describe many algo-
rithms in terms of a main loop. The loop can be written as:

aBunchOfPassiveThingsdo: [:paasiveThhgI
algorithmklanagerprocess:passivetig].

The code gets more complicated if we include initialization
and post-processing code, or ifit has to use a more complex

method of choosing the next item, but I do not think a Pascal
or Ada program could be clearer.

The complicated part is the processing of each “passive
thin~” which usually consists of elaborate manipulations of
various data structures. The algorithms literature considers it
good form to describe these manipulations in terms of opera-
tions on abstract data types. 00P usually handles abstract data
types very well, so it is actually very good for this kind of work

BUT THAT’S NOT REALLY OBJECT ORIENTED
I’m quite happy with the general method of writing “tradi-
tional” algorithms using 00P because (1) the program struc-
tures correspond well with typical algorithm description, (2)
there’s good potential for reuse of abstract data type classes,
14
(3) it’s clearly suitable for implementation in an 00 language,
and (4) it nicely groups together the algorithm data in the
AlgoritlunlU4amger class.

A recurring theme among complaints about 00P is that it
is “not really object-oriented.” But 00P solutions to problems
are often rejected as not being faithful to the principles of

object orientation because of a misguided idea of what objects
are about.

THE PRINCIPLES OF 00P
What does it mean for a solution to be object-oriented? On
what basis are these kinds of solutions rejected? Are these ideas
valid and, if so, are they important enough to make us discard

good solutions?
The standard definition of an 00 language says that it

should support encapsulation, polymorphism, and inheri-
tance. True, but these are language features, not a set of guid-

ing principles. The dictionary is even less helpful Mine traces
the word object to the Latin objectum, literally meaning “some-
thing thrown before or against.” Its roots are the words ob
(against) and jacio (to throw). Since we are interested in per-

ceptions of 00P, let’s find out what people on USENET think.

David Myers (dem@meaddata.tom) writes:

Once people learn Object-Oriented Design, they seemto
fall into twoschoolsof thought. I’m interested in your

thoughts on which, if either, is more correct.
The iirst camp I’ll cdl “Strict 00D.” They believe that all
functions that need to modify some object must necessarily
be member functions of that object
The second camp I’ll call “Reality 00D.” They don’t be-
lieve in taking things as far as the lirst camp if the resulting
model wouldn’t fit with their perception of realityThe
Reality 00D folks want to build an 00 system so that its
components closely represent the world they are trying to
model.,..

and later expands:

You want to model a cow, and want to get milk from the
cow and put it in a vat...Strict 00D might say, “Just add a
method ‘Cow, milk yourself: which puts the milk right in
the vat. Leave the details to the cow.” Obviously, Reality
00D would say something different. “Cow, present ud-
THE SMALLTALK REPORT

■ THE BESTOF COHP.LANG
ders.Udders are the interface here, and we can ‘pass’ a cow
to a farmer object to get the cow milked and the milk in the
vat. The farmer contains the knowledge of how milking

should be done, not the cow.”
..,aay we now have a better way to milk a cow, with a rnilk-

iug machine, Strict 00D would say, “Modify the cow to

understand how to use the milking machine,..” Reality
00D would say, “Just ‘pass’ the cow to the new machine.
The cow doesn’t need to change as it already provides the
necessary interface.”
...hother example. Say you have some #ob of data, and
you want to run N validation processes against it...where
do these processes go? Strict 00D, “Part of the glob, obvi-
ously. That’s what they act upon.” Reality 00D, “They’re

separate horn the glob, and use whatever interface is pro-
vided by the glob to do their worlc”

This is quite interesting, because it’s a well-considered,
thoughtful posting based fundamentally on false ideas of 00P.
It arises from the basic question of where to put methods, but
in my opinion gets the principles wrong. I see the method
placement question as a conflict between the principles of
coupling and cohesion.

Consider the validation example, which expresses this most
clearly. A Vslidator class is a good idea. It groups related meth-
ods (for testing) together, and removes clutter from the class
being tested. It’s easy to add additional validation checks, and
seems to be the only method that generalizes to consistency
checks involving several different objects.

On the other hand, we should hide internal representations
to minimize coupling. The internals of a class should not be

exposed, and we expect validation to require access to these de-
tails at least some of the time.

A good compromise is to use both techniques. Use class
methods to implement tests that depend on intend representa-
tions, preferably using a consistent naming scheme. Tests that

w be done through the public interface should be implemented
through a Validator class, which when validating an also invoke
the appropriate self-testing methods in the iodividusl CISSS.

The above posting is based on two false ideas, one in each
camp. Mr. Myers presents “Strict 00D” as the orthodoxy of
the 00P gurus. It dictates that any method modifying an ob-

ject’s state must belong to the class of that object. On the sur-
face this sounds reasonable, very much like encapsulation, but
it’s an overgeneralization that simply cannot work in practice.

Encapsulation restricts the set of methods that can access
an object’s internal representation to those in its class. This is
enforced in SmaUtalk, but it is possible to short-circuit the re-

striction by writing getiset methods for each instince variable.
A method that accesses an object’s state through message sends
could be placed anywhere, but if it operates primarily on one
object it is good style to make it a method in that class.

There’s a big difference, however, between good style and

an enforced rule. In particular, the “strict” position does not
allow the possibility of methods that modify (or even access)
more thars one object. This disallows such a simple thing as a
SEFI13MBER 1992
bank transaction, where one account is incremented and arl-
other decremented.

The “Reality 00D” camp allows such methods, but then
runs back into the question of method placement, as K. Srini-
vasan (srini@gtsurya. gatech.edu) points out

I am interested in developing 00 models to represent
manufacturing enterprises. I ran into the very same prob-
lem you’ve described — A method “process a part” seems
to alter the states of the part object, the machine object and
the operator object, and hence is a candidate for being a

method belonging to any of them. To make it a method of
one, say “part,” and make that object a client of other two
objects (operator and machine) will work. However, it
seems to be a highly arbitrary decision.

I agree wholeheartedly, If two or more things interact, and
the states are all changing, then the decision to place a method
handling this interaction is arbitrary. If the interaction is
sufficiently important, it maybe worthwhile modeling it as an
object itself. Ralph Johnson (johnson@cs.uiuc. edu) discusses
this in the context of the milking example.

The real issue is how to divide responsibilities among ob-

jects Why not give the vat responsibility for taking the

milk from a cow? Without knowing anythiig about the
real world domain and what is liiely to change, any of
three possibilities is just as likely. We have a transaction

between object C and object V, and the question is whether
we should introduw a new object F to model the transac-
tion (transactor) or we should make the transaction a
method of C or V. In general, it all depends! ...If we have a

simple system whether nothing changes, then it might
make sense to put the responsl~ilty for the transaction in
C. If we knew that the transaction itself was never going to
change, and that C W, (i.e. we want to milk sheep, goats,
horses, y~ etc.) then it might be better to put it in V. If

the transaction itaelfis going to change (i.e. use a milking
machine) then it would be better to make it an object.

Once again we hear the cry that this solution is “not really
object-oriented,” which brings us to the second, and more im-
portant, fallacy.

00P AND THE REAL WORLD
Choosing the right name for something is important. A name
should be short, easy to remember, and clearly communicate

the essential idea. Unfortunately, “object-oriented” fails in the
last category,

The problem is that everyone knows what an object is. We
intuitively “know” that object-oriented programming is all
about objects: concrete, physical things that we can, with
enough machinery, pick up and throw. Processes can’t be ob-
jects. Relationships can’t be objects. Concepts can’t be objects.
00P is “good” because it writes programs that perfectly mimic
the real world, and an 00 program is “good” in direct propor-
tion to its mimicry-like neural networks, which we all know
15

■ THE BESTOF COMP.LANG
work just liie human brains. Being told that 00P is good for
simulation and that it naturally models the problem domain
only makes these misconceptions worse.

SmaUtalk programmers tend to transcend these ideas more
quickly than others because they’re confronted with examples of

Schedulers, Controllers, Awociations, and other non-concrete
classes. Even so, the misconceptions are very widespread. Let’s
look at some concrete examples.

Objects are alwaysconcretenouns
Dan Weinreb (dlwt?odi.tom) writes:

This topiccomesup again and again whenever semantic
data modeling is being discussed. I’ve seen it in papers horn

over ten years ago. After reading a bunch of the literature in
this area I have come to the conclusion that there doesn’t
seem to be any completely satisfying answer. Either you end
up haviug these objects that ordy model relationships rather

than modeling “things” in the problem domain, or else you
end up inventing constructs that are annoyingly complex
and often disturbingly similar to objects themselves.

and Doug MacDonald (dougt%oftwords.bc. ca) writes:

This thread raises what I have always considered to be a
shortcoming of 00 scheme of modeling the world while it

allows us to capture complex classifications and instances,
it does NOT provide the idea of relationships among ob-
jects. Y-we can “send messages” among objects, provide
well-structured access functions. But this does not address

the central problem. We end up with forced concepts like
relationship classes to deal with the cow-milk type puzzles.

This Iitersl interpretation of objects corresponding orLIyto
physial “things” is probably the single most prevalent miscon-

ception about 00P. It is the main reason people reject solutions
that include an AlgorithmManageror a class representing the rela-
tionship between cows and farmers. I’ve seen many other exam-
ples, including database discussions that assumed an ODBMS
could model only physical things, and that an RDBMS could

only model relationships. In a similarly literal vein, I’ve seen C
described as a functional language because it has functions.

Naturally, there are many who do not share these beliefs.
Eric Smith (eric@tfs.tom) Writex

There is nothing “forced” about relationship classes. Rela-
tionships are objects, period. The word “relationship” is a

noun. A relationship object should contain references to its
target objects, tictions to return information about its
target objects and about various aspects of the relationship

between them, and functions to modifi the relationship,

Mike Wirth (mcwfi?cs,rice.edu) writes:

Nothing unnatural about it at all. Associations between ob-

jects are every bit as much “real worid” objects as the objects
being asociated. Ask your spouse or “signi.6cant other.”

And Mph Johnson (johnsont%s.uiuc.edu), who seems to
16
have encountered these ideas before, anticipated the objections
in the same posting quoted above:

There is NOTHING wrong with having objects that repre-
sent processes. It is true that novice 00 designers make a
lot of such objects that are bad design, but good 00 de-
signers make those kinds of objects, too. You just need to

have a good reason for introducing a new object.

The fundamental point of 00P is abstraction. A good 00P
design should correspond to ideas in the problem domain.

Whether those happen to be ideas about things that can be
touched or about relationships, processes, or concepts is irrele-
vant. One of the best metrics for this is naming. If someone fa-

miliar with the domain can look at a class name and immedi-
ately have some idea what it does, then it’s probably a good
class for that domain,

There is exaetlyone “right” 00P designfor a problem
Given that the objective is a perfect model of reality, then all
00 designs should converge. After all, there’s only one real
world. This results in much disappointment when people dis-
cover that OOP, like any other kind of programming, still has

design decisions and trade-offs.

David A. Hasan (hasan@ut-emx.uucp) writes:

...the “map” between 00 methods/objects and what is go-
ing on in the real world is NOT unique. There can be
different interpretations on which objects should carry out
which methods based on how the real world activities are
“best modeled” Therefore a choice must be made in speci-
fying object interfac% and making this choice might un-
duly constrain future versions of the system...

This is entirely true, but it is based on vastlyinflated expecta-
tions of what OOP can do.

bobm@Ingres.COM(Bob McQueer) replies:

What problem you are trying to solvedefines “proper,” I
think I can see us having the same problems wehave al-
wayshad when trying to “grow” newfunctionalityinto a
design that didn’t anticipate growth in that direction. Note
that expediency will dictate that you m’t make provisions
for EVERY possl%le direction of growth, also as it always
has..,, I think what I’m saying is that while the 00

paradigm is a useful tool, you -’t expect the existence of
a paradigm to do all your work for you, There is NOT a

unique map, and it takes proper use of the tool to define
the map which serves your purposes.

THE REAL WORLD AGAIN
The idea of modeling the real world in detail is fallacious.In
what we call “reality,” most things are human-imposed con-
cepts.Realityconsistsmostly of interactions between elemen-
tary particles; the higher-level structures we perceiveare ab-

afltitwedon page ,?2...
THE SMiULTUK RSPORT

ETTING REAL Juanita Ewing

Extending the Collection hierarchy
I
n my last column, I discussedcreating subclassesand two
heuristics for selecting superclasses. This month I will con-

tinue the discussion on subclassing with a ae study that
extends the Collefion hierarchy. We will create a new Collection
class that contains unique elements and also maintains the or-

der of these elements.

HEURISTICS REVIEW
A key step in creating anew subclass is to select a suitable su-
perclass, The heuristics for selecting a superclass are:

Heuristic One Look for a class that fits the is-kind-of or
is-type-of relationship with your new subclass.

Heuristic TWLZLook for a class with behavior that is similar
to the desired behavior of the new subclass,

CASE STUDY
We want to create a new data structure class that holds ele-

ments in order and disallows duplicate elements. When sent a
request to add a duplicate object, the request should be quietly
ignored.

This new data structure class contiins elements similar to
Arrays, Wings and other CoUeelion subclasses. Because of these
similarities, we will begin our search for candidate superclasses
in the Collection hierarchy. Two classes immediately stand outi

oOrderedCoklions keep elements in order.

“Sets store each element only once, disallowing duplicate
elements.

The combination of these characteristic is what we want
for our new class. A good descriptive name for our new class is
OrderedSet.

APPLY HEURISTICS
Where should we insert our new class, OrderedSX into the hier-
archy? Our first heuristic is to look for potential superclasses
that match the is-kind-of criteria. We use is-kind-of as a short-
hand for categorization based on characteristics. The significant
characteristics and their classes used in this determination are:

● vary number of elements (Collection)

“store arbitrary objects (ColIefion)

● dynamically add and remove elements (Collection)

wenumerate (Collection)
SEPTEMBER 1992
● store elements in order (OrderedColletion)

. store unique elements (Set)

The desired characteristics of OrderedSet are closest to those
of OrderedCollection and Set, so OrderedSet could be a-kind-of
Set or a-kind-of OrderedColleclion.

In a system that supports multiple inheritance, we might be
tempted to have two superclasses, Set and OrderedCollection. In

Smalltalk we must choose a single superclass, either Set or Or-
deredColletion.

Our second heuristic is to choose candidate superclasses with
suitable public behavior. Let’s compare the candidate classes
we’ve select~ Set and OrderedCollection,in terms ofbehavior.

Set and OrderedCollectionhave a common superclass, Coksdion,
so we can ignore public behavior from the Col.leclionon up.

If we were to make OrderedSet a subclass of Set, it would in-

herit these methods from Set:

add
do:
includes
occorencesOk
rernove:ifAbsent:
sise

All of these methods also have an implementation irr the
abstract superclass Colleciio~ so Set doesn’t add any new public

behavior to the behavior from the common superclass.
If OrderedSet were a subclass of OrderedColleclion, it would

inherit behavior from OrderedCollefion and IndexedCollection
(or OrderedCollectionand SequencableColledion in Object-

works\ Smalltalk). OrderedCollectionhas adding and removing
methods and many more methods related to its element-
ordering characteristic. The list of methods includes

add addfirsk
add:after: addLast:
addafterIndex remove:ifAbsenti
add:before: removeF~st
addbeforehdex: removebst

Many of these methods are extensions of the public behav-
ior from the common superclass Collection.

The public behaviors for Sets and OrderedCollefions have
some similarities. In fact, the behavior of Set is a subset of the
behavior of OrderedCollection,which makes Set the behavioral
supertype of OrderedColleciion. Set doesn’t add any additional
17

■ EXTENDINGTHECOLLECTIONHIERARCHY
behavior, so we just need to determine whether the additional
behavior in OrderedCoUeciionis desirable.

Because instances of OrderedSet maintain elements in order,

we will need public behavior to support the ordering charac-
teristic. The behavior in OrderedCollection is a good set of be-

havior for supporting this characteristic. In addition, if the be-
havior of OrderedSet is the same as for OrderedCoUetion, the

interchangeability of the classes is better and therefore the
classes are easier to reuse. Based on behavioral analysis, the

best superclass for OrderedSet is OrderedCoUetion.

IMPLEMENTATION
We can also look in more detail at what is required to imple-
ment OrderedSet. The implementation of OrderedCoUecbonuses
an indexable portion or indexable object, as well as instance

variables to keep track of valid indices, Set is implemented with
hashing for efficiency in determining uniqueness of elements.
If a Set already contains an element, it quietly ignores the re-
quest to add an element.

OrderedSet needs to support instances with a large number
of elements. Hashing the elements is a good way to support
large numbers. OrderedCoUetions would potentially have to ex-

amine every element before determining if the addition of an
element would be a duplication. To maintain order and en-
force uniqueness we will use two structures, one to implement
the unique elements characteristic, and one to implement the
ordering characteristic, as shown in Figure 1.

❑truet.rfa for structure for

maintaining ❑rder M-f ordng uniquenes.

v

E%o00R
F~re I. Using mutiple strucwres.

Now we will examine the implementations with each of our
candidate superclasses. If OrderedSet is a subclass of OrderedCol-

lection, we inherit the portion that stores elements in order and
we need to implement the portion that hashes and enforces

uniqueness. The structure and behavior for maintaining order
is inherited from OrderedCoUetion, and the structure for en-
forcing uniqueness cars be stored in an instince variable. This
structure could be an instance of Set.

With this alternative, some inherited methods would need
to be overridden. All the add and remove methods must po-
tentially be altered to maintain both structures. As seen in the
list of public behavior, there area number of these methods,

such as add, add:afte~, add:afterIndex:, adti.st, removeht and
removeLast. Fortunately, not all these methods have to be over-
18
ridden because some of them call each other. We would want
to override includes: because the hashing used in the unique-

ness structure gives us a quick lookup of elements. We would
not override do: because it operates on the inherited structure
that maintains order.

If OrderedSet were a subclass of Set, the inherited structure
is the one that enforces uniqueness; an auxiliary structure for

maintaining order is referenced from an instance variable. Pre-
sumably, the order maintaining structure would be an instance
of OrderedCoUetion.

We would also need to override adding and removing
methods-there is just one of each. The majority of coding is

in implementing behavior that implements the element order-
ing characteristic. We would not need to override includes: be-
cause we inherit the version that makes use of hashin~ but we
would need to override do: so that we process elements in the
ordered defined by the order maintaining structure.

NAMING
Other criteria that might bias our judgment are implications of
a class’s name. If a class hierarchy is part of the public interface
for a library, it might be easier for users to locate a class located
in a logical place in the hierarchy. With a class called Ordered-

Set, users are more likely to look for this class as a specializa-
tion of Set. They might not find it as easily if it is a subclass of
OrderedCoUefion,

CONCLUSION
We make OrderedSet a subclass of OrderedCoUeclionbecause

. The behavior of OrderedCollectionis more suitable than the
behavior of Set.

● It is more likely that the behavior will be interchangeable if

the relationship between the two classes is explicit.

● There are fewer methods, overridden and new, that must be
implemented in OrderedSet.

Furthermore, by browsing the CoUecdonhierarchy, develop-
ers will generaUy examine several Collefion classes at a time, and
will probably notice OrderedSetas a subclass of OrderedCoUeclion.

The is-kind-of heuristic is useful for generating candidate
superclasses. Its intuitive nature can be an advantage. How-
ever, analysis of public behavior often yields abetter selection.
If we only used the is-kind-of heuristic in our case study, we
would be most likely to make OrderedSet a subclass of Set. On
the other hand, when we use the public behavior heuristic, we

conclude that OrderedCoUefion is a better choice. ❑

Juanita Ew”ngis a senior staflmember of Di@alk Proffisional Ser-
vices(formerlyInstanti-ati-onsInc.). She has been a project leaderfor
severalcommercial O-O softwareprojec& and isan expert in the de-

sign and implementation of O-O application%frameworks, and sys-
tems,In a previouspositionat TektronixInc., she was responsiblejbr

the developmentof the classlibrariesfiwthe,lirstcommercial-quality

Smalltalk-80system.Herprofessional activitiesinclude Worbhop

and Panel Chairsfor the annual ACM 00PSLA conference.
THE SMALLTALK RBPOnT

—— —————

MALLTALK IDIOMS

VklueModel idioms

————— .—

Kent Beck
M
y last column outlined ways of using dependency as
embodied in SmaJltalk’s update and changed mes-
sages. ParcPlace’s release 4 of Objectworks\Smalltrdk

introduced a significant refinement of dependency called Val-

ueModel which addresses some of the shortcomings of the
classic style of dependency management.

CLASSIC SMALLTALK SIYLE
Here is another example of the classic style of Smalltalk change
propagation. A Marrdelbrotrenders a portion of the Mandelbrot
set while it measures performance.

Mandelbrot
superclass:Model
instance variables: regionflops

A MandeLbrotobject renders the portion of the Mandelbrot

set in region (a Rectangle with floating point coordinates) on
an Image when sent displayth. Assume we have implemented
a primitive rendering method that returns the number of float-
ing point operations it initiates as it displays. The DisplayOK
method divides the number of operations by the rendering
time to compute the number of floating point operations per
second, which will be stored in flops.

&splayOn:anImage
I time ops I
time:= TimensiiliseeondsToRun:

[ops:= seLFprimDisplayOn:an.Image].
self flops: ops/ tie / 1000

The model responds to openflops by creating a window that

displays the value of flops.

openflops
I window I
window:= ScheduledWindownew.
windowaddChiid (TextWewon self aspect #llopsString

change:nil menu: nil)
windowopen

Some users complain that putting an open method in the
model allows too much of the interface to leak through. But in
my opinion one is free to open any kind of window, and if the
model offers a default way, so much the better. Putting open in
the model keeps the code togethe~ if more flexibility is needed
later it can always be moved.

TextView’ssymbol flopsStrirrg is used by the view both to rec-
ognize an interesting broadcast and as a message to the modeJ
SzrmhnsSIR1992
to return a string suitable for viewing. The model thus needs to
respond to flopssh-ing.

flopsstig
“selfflopsprintString,‘flops’

Now all that remains to update the view is to propagate a
change whenever the flops change.

flops:Wunber
flops:=aNumber.
selfchanged #flopsStdng

Already the intefice is beginning to leak into the model. Be-
cause the example interface uses the symbol #flops.Sbing,the

model must have this particular symbol built in. Other interfaces
viewing other aspects of the model dependent on the measured
flopswill require additional broadcasts when the flops change.
The model is no longer insulated from changes to the interface.

Let’s refine the model a bit to see where this style of change
propagation begins to fall apart. What if instead of displaying
the last value of flops we want to display the average of recent
values? flops holds an OrderedCollection instead of a Number.

initialize
flops:=OrderedColledonnew

The setting method adds to the collection instead of chang-
ing the instance variable.

flops:aNunrber
flopsaddl.a.sbalhsmber.
selfcharrged:#RopsWng

The accessing method has to compute the average instead
of just returning the value.

flops
tips isEmptyill’roe:[“iloatzero].
“(flopsinject:float zero into: [:sum :each I sum+ each])

/ flopssize

The above code is still fairly clean from an implementation
perspective. From a design standpoint, though, it is a danger-
ous path.

The first problem is that the needs of the interface influence
our implementation of the model. Conversely, our concept of
an interface is constrained by the way we have implemented

the model. The separation of model tlom interface, supported
at the implementation level by broadcasting changes, merely

reappears as a design problem, In other words, the letter of
19

Universal Database
OBJECT BRIDGE m

This developer’s tool allows Smalltalk to read and tite to:
DRACLE, INGRES, SYBASE, SQLIDS, DB2, RDB, RDBCDD,

dBASEIII, Lotus, and Excel.

IntelligentSystems, Inc.
j

■ VALUEMODELIDIOMS
“separate model and interface” is satisfied beeause the model
makes no direet reference to the interface, but the spirit ia vio-
lated because interface decisions have caused us to change a
model that should be oblivious to such concerns.

Other viewa with other aspects require inserting more hard-
wired broadcast messages. In large projects, this process of
broadcast accretion leads to a bewildering profusion of broad-
casts, often with intricate time dependencies.

Another problem is that this style of programming discour-
ages reuse. Each instance variable is a speeial ease, to be handled
by speeial eqae code. For example, suppose we are working in a
multiprocessor environment and want to view a running aver-
age of the number of processors active during rendering. We
could add an instance variable, utilisatio~ with accessing and
setting methods that are copies of the respective messages for
flops, but we could do no better at reuse than copy and paste.

This last point suggests that state change and change propaga-
tion somehow must be folded together into a new object. This ob-
ject will be used instead of a bare instance variable as a model for

views.We earscreate a family of these objeets to model the dii7er-
ent ways ofviewing atate changes over time. By using various
kinds of objects in varying circumstances we ean change the inter-
action supported by the model without changing the model itself

The most common solution to these problems is to separate
the model into a “browser” object and a clean underlying
model without broadcasts (see Figure 1). The browser medi-
ates between the user interface and the “real” model, translat-
ing user requests into messages to the model and propagating
changes back to the interface. Although fairly simple conceptu-
ally, this style of programming introduces another layer of ob-
jects between the user and the model without addressing the
problem of multiple browsers on the same model (for exam-
ple, the problem of updating the source code of a method ap-
pearing in more than one Browser).

VALUE MODEL STVLE
ValueModels in Objeetworks\Smalltalk Release 4 fill the role of

an interaction model. Rather than appearing between the do-
main model and tbe interface, ValueModels are placed “be-
neath” the domain model. This allows the view to interact di-
rectly with the state of the domain model and does not clutter
the model itself with interaction concerns.

Here’s how an ideal implementation can be applied to our
example:
20
ValueModel
superclass:Model
instancevariablesvalue

value
“value

value srrObject
value:= rmObject
selfchanged #value

We can recast Mandelbrot to use this simple ValueModel.
First, the initialization method sets flops to a ValueModeL

irdtiah
flops:=VahseModelnew

When accessing or setting the value you must remember to
send messages to flops and not just use the instance variable.

Religious use of accessing and setting methods, though, can
hide this detail from the rest of the object.

flops
%ps value

..“-

Note that when the value is set the Mandelbrot no longer
needs to propagate changes.

flOpS: eNumber
flopsvalue: aNrsmber

When making a view to display flops the ValueModel is the

model of the TextView, not the Mandelbrot.

Openflops
I window I
window:= Schedrdedh%downew.
windowaddtild (TentViewon flops aspect: #value

change: ml menu: nii),
windowOpen

We now have a system with the same functionality as the
simplest one described above, Figure 2 diagrams the relation-
ships between the various components in the value model-style
Mandelbrot.

The worth of ValueModelsbecomes apparent when we dis-
play a running average rather than a single value. The change is
made creating a subclass of ValueModelcalled AveragingValue-
Model,which accumulates a history of values in response to
value:messages.

AveragingValueModel
superclass ValueModel
inahce variables: none

w
%4

Mandelbrotarowser

Flgsme1. Claesicseparationof model and interl%ce.
THE SMALLTALK REPORT

z iPPY Object Oriented Database

Object
Management System

‘l’%.ONLY ODBMS for Smdltdk

orimkeull
forwndar $1000 that deli..ra Pe.utent
Objrnt Starqe . . Disk &. Zippy
B+T- D&e Rotria.al Engine!

M emery w

dp n

Hierarchical ~~

for slMlbkwv Applicdi.na

ad sd- 14iauitesl (SE) 1357-~117
~ Platfwnu $199.95 12407 ~&N., %ta #lLN)2.66
smu’ca C3da L&dad AMth, Tx7a7ds
initilize
value:= OrderedCoUeciionnew

value
value isSrnptyiP1’nre:[’Float zero].
“(vaiue inject Float zero into: [:sum :each I sum+ each])

/ value size
value anObjert

value addlaak anObject

We can install the new behavior by changing

MandellsroO>initilize.

initialize
fbps:= AveragingValueModelnew

No other changes to the model are necessary. When we want
to open a window on a running average of processor utiliza-

tion we can create another AveragingValue?40del,We do not
need to duplicate any code.

The model has acquired a large measure of independence
from changea mandated by the interface. For many interface
changes we no longer need to touch code in the domain model
beyond modifying the initialization. We instantiate a new kind
ofValueModel and the rest of the model remains unchanged.

THE REST OF THE STORY
Theabove code still doesn’t quite work. The TextViewexpects a
String or a Tart licsm its model, and the ValueModelin this case
returns a Number. The release 4.1 solution is to interpose an-
other objem called a PluggableAdaptor, between the model and
the view. A PluggableAdaptor contains three blocks. The first is
invoked when it receives the message value. The block takes one

argument the adaptor’s model (in this case the ValueModel),
and by default returna the result of sending value to the model.

The block can be used to arbitrarily transfirm the value. In our
case we want to create a stig Ilom the number:

operdlops
I windowadaptor I
window:= ScheduledWindownew.
adaptor:= AspectAdaptoron ilops.
adaptor getBloek: [:m I m value printstring,’ tlops~.
windowaddtltibt (TextViewom adaptor aspeti #value

change: ml menu nil).
windowopen

The second block in a PluggableAdaptor is evaluated when
the adaptor receives the value: message. The block is invoked
with the model and the new value as iuguments. By default it

passes the message along to the model. This block translates
the value liom a form the view understands to one the model

f

Rgura2ValuaHddu r@asqandon dmoddardhrarfsm
sWr2MBEn lgg2
understands. If it was possible to change the flops rating, we

might write something like this:

Opentlops
I windowadaptor I
window:= ScheduledWmdownew.
a&ptor:= AspeelAiaptor on: flops.
adaptor getBloetc [:m I m value printig, ‘flops’].
adaptor putBloclc [:m :v I

m value: (NumberreadFrom:v readSheam)].
windowaddChiW (TerrtViewon: adaptor aspect #value

change: nil menu: nil).
windowOp~

The final PluggableAdaptor block is used to falter update
messages. The block takes three arguments: the model, the as-
pect from the update message,and the optional parameter

from the update message. The block evaluates to a boolean
that is used to decide whether or not to forward the update. In
our example we may not want to update the text if the flops

rating is too low. We could change openflops as follows:

Operdlops
I windowadaptor I
window:= ScheduledWindownew.
adaptor:= AspeetAdaptoron: flops.
adaptor getBlock [:m (m value print.%ing,’ flops’].
adaptor putBloelc [:m w I m valu% (NumberreadFrom:v

r-earo)].
adaptor updateltloclc [:m :a :p I m value> le6].
windowaddChild:(TerrtViewon: adaptor aapeek#value

change:nilmenu:nil).
windowOpen

When an object is dependent on two or more ValueModelsit
is often important to distinguish which one is generating the
broadcast message. One solution is to tie advantage of the full
generality of the update message

A cleaner solution is to use the update block of a pluggable
adaptor to generate dfierent updates for each ValueModel.The

initialization would look like this:

iniWizeWitk mod!ell* modelz
j adaptorl adaptor2 I
adaptorl:= PluggaMeAdaptorOSEmodell.
adaptorl updatelkk ~m w :p I v== #value

il’hue: [adaptorlchanged:#vahsel]].
adaptorl addltepfmderrkself.
adaptor2:=IlhggabMdaptor osKmode12.
adapW2updateBlock[:mw T I v== #value

ithue: [adaptorlelranged: #vahse2]].

amfl ~mmd~ self

Then the update method can look like thix
21

■ VALUEMODEL IDIOMS
THE BEST Ol?...continudfiom page 16

stractions useful in some specific domains. Reality can have
very poor software engineering principles,

Jeff Alger (alger@applelink. apple.tom) writes:

Seldom are you ever modeling the real world in software.

The real world is the problem why would you want to just
simulate it? Objects and classes in a piece of software are
nothing more than metaphors. In fact, direct simulations
of real-world objects lead to very poor object-oriented ar-
chitectures with little or no modularity and that are highly

unstable. Early on one learns that a Paycheck object should
print itself and a Block object should move itself around on
a screen. This is not the real world.

And Philip Santas (santas@inf.ethz. ch) points outi

There is no such thing as information hiding in the real
world.

CONCLUSIONS
Since this column has been devoted to what’s wrong with 00P,
I ought to conclude with what I think is righti

1. 00P is not a panacea. OOP is good for improving reuse; it
does not make reuse automatic. If I write a Carclass for
modeling traffic flow and you write a Carclass for modeling
the physics of collisions, our chances of being able to use
22
the same class are small. Programs should carefullychoose
what they’re trying to model.

2. Don’t try to model the real world in detail. Make appropri-
ate abstractions, try to make your classes correspond to sen-
sible entities, but don’t get caught up in the question of

whether or not something is an object. If it makes sense as a
concept, it’s probably a reasonable object. Good software
engineering is more important than good modeling.

Fundamentally, the difference between 00 and procedural
programming lies in what entities are most important, In a
procedural language, procedures are the important thing, and
data is secondary. The basic insight of 00P is that many func-
tions can be expressed as operations on a data type, and that
this clarifies the design.

Other benefits spring from this insight. Using polymorphism
we can dynamically select semantically similar operations on
different data types, and specify data types using inheritance for
incremental modification. The essential idea is to place the data

type at the center. But not everything fits neatly into this model,
and it’s not the r.dtimate answer to all programming problems: it
is only an improvement on the preceding model. ❑

Alan Knight is a researcher in the Department ofMechanical and
AerospaceEngineering at Carleton UniversiY, Ottaw~ Canada, KIS
5B6. He can be reached at +1 613788 2600x5783, or by e-mail as
knight@mrco.car[eton.cu.
update a.$rnbol
asyrobol== #vahrel HTruti [self rrpdateValuel].
asyrobol== #value2 ifhua [selfupdateValue2]

The preceding information is written assuming ValueModel

holds values. In the real system, though, ValueModel is an ab-

stract superclass, and the subclass acting as ValueModel above is

really called ValueHolder. Pluggabksldaptor is also a subclass of

ValueModel. Other subclasses (like AveragingValueModel) should

arise as the full utility of the ValueModel style becomes apparent.

LAZY VIEWS
A final idiom that accompanies Objectworks\Smalltalk release 4
and later is lazy updating of views. Back when dinosaurs ruled

the earth and Smalltalk did its own window management it was
common to dwectly redisplay a view in response to an update:

update:a.$ymbol
(selfinterestedImaSymbol)ifl’rue:[se~displayView]

A serious problem with this strategy is that the view will be

redisplayed several times if multiple update messages come in.
Multiple updates look bad and slow your programs down. This
is especially true with the expanded use of broadcast messages
in release 4.

When you implement views in release 4 and later, you
should never directly redisplay the view. Instead the view
should send itself an invalidate message
update: aSyrrrbol

(self interestedIrc asyrnbol) ifllue: [se~ invalidate]

These invalidations are pooled together. The next time a
Controller sends itself poll (or someone explicitly sends check-
ForEvents to ScheduledControllers) all views with some invalid
area will be asked to display. This ensures that if there is a
change to a model causing several views to update they will re-
display as simultaneously as possible.

CONCLUSION
TheValueModelstyle of coding manages complexity by strictly
separating interface and model.

We have just begun to explore the range of possibilities in-
herent in the ValueModelstyle. You can expect to discover new
uses as you begin using it yourself. If you find new ValueModels,
or new uses for the existing ones, please drop me a line so I can

publish them here. H

.— .-
Kent Beck has been discoveringSmalltalkidiomsfor eightyears at
Tektronix, Apple Computer, and MasPars Computer. He is also the
founder of First ClassSoftware,which developsand distributesre-
engr”neeringproductsfor Smalhalk. He can be reached at Fir~tClass
Software,P.O. Box 226, Boulder Creek, CA 95006-0226
THE SMALLTALKREPORT

—

ProductAnnouncementsarenotreviews.T&yareabstractedfimpressrebesproviied byvendorsand no endorsement is implied Vendors intereftti in being
includedinthis@ure shouldsendprcm rekases toour editorialofiu?s,ProdzutAnnouncements Dept., 91 second AVG Ottawa,Ontario KIS 2H4, Camzia.
The American Information Exchange Corp. (AMIX), a
subsid~ry of Autodesk Inc., announced the opening of the first
of several key online markets for information and consulting
services, At the AMIX SmalItalk Components and Consulting

Market customers cars buy and sell Smalltalk/V, Smalhalk-80,

and other object code as well as consulting and training ser-
vices. AMIX establishes transaction rules, facilitates negotia-
tions, and automates payments and collections.

For more information, contact AMIX, 1881 Landings

Drive, Mountain View, CA 94043-0848,415.903.1000.

Digitalk Inc. has announced a new version of SmalltalkfV for
Windows that simplifies the complex task of writing programs
for Microsoft’s popular Windows environment.

The new version of Smalkalk/V includes support for Win-
dows Multiple Document Intertice (MDI), a ToolPane (a row
of buttons that perfosm functions when selected), a StatusPane
that displays information on the status of applications, an Ob-
jectFiler for sharing objects with other applications and develop-
ers, HelpManager support for non-US character sets, and per-

formance improvements. In addition to standard SmalItalk/V

features, the package provides interfaces to Dynamic Data Ex-

saPTEhiaERIgjn
change (DDE), allowing information to be shared between
Smalltalk/V programs and other programs, and Dynamic Link
Libraries (DLLs), which provide a mechanism for calling code

written in other languages from within Smalltalk/V.
For more information, contact Digitalk Inc., 9841 Airport

Boulevard, LCISAngeles, CA 90045,310.645.1082, fax
310.645.1306.

Zoom (Zppy Object-Oriented Memory) isa simple
object-oriented database written in Smallw for the 286, Win-

dows, PM, and Mac platforms. Zoom offers variable length keys
for random access messages at:, at:put:, removeKey and seqeun-
tial messages do, firsL next, prior, and last. A size method is
available and class method open. starts any database file while

new guarantees anew file. Zoom works best by providing
keyed access to Digitalk Loader/Dumper object representation,
but an sdternative representation requiring programming is
supplied. References between fled objects must be made by
name in your application.

For more information, contact Expertek, P.O. Box 611,
Clatskanie, OR 97016, 503.325 .45g6.
Excerpts from industry publications
SMALLTALK
,.. If Smalltalk is so powerful, why does it have such a small
following compared with C++? Dan Shafer, author of the
book Practical Smalltal~ suggests that Smalltalk is so com-

pletely different from any other development environment
that the first reaction of procedural programmers is
panic... Smalltals’s classes and methods are not just a class li-

brary but an integral part of its environment that makes up
Smalltalk. Everything interacts with everything else. This cars
be quite disconcerting for the beginner, and the fear of break-
ing something can often serve as the greatest deterrent to
learning Smalltalk...Ultimate1y, we return to the original
question Why Smalhlk? Because you want an environment

built around object-oriented programming, not derived from
procedural programming. You want an environment that
provides extensibility while managing your code. You want
the flexibility of an interpretive language in which you can
play with and test your code, coupled with the performance
of a compiler. You want an interactive debugging environ-
ment that lets you inspect and modify your code and vari-
ables on the fly with instant results, instead of saving, compil-

ing, and linking between changes.

Why not Sma/ka/k7 WWicrmScott Hemdon,

UNIXREV/EW,5192
PREDICTIONS
. . .The object-oriented programming revolution may be the
beginning of the biggest programming advance in the history
of computers. It may prove to be the software equivalent of the
microprocessor, allowing the mass creation of more capable,
less expensive so&are. We say “may” simply because it may
also be that object-oriented programming is just the beginning
of that revolution and will itself be swept away in a compara-

tively short time by the new technologies it makes possible

Objectmriented methodology, OPW SOFIW4RE jOURN& voWro. I I 992

STRATEGIES
. . .Robert E. Lee said “Plan no more than necessary.” His ulti-
mate defeat was probably due more to the implementation of
this philosophy than its validity. The problem in development,
again, as in war, is how to know when to stop planning and
start moving, The answer is never stop planning but never let

planning prevent progress. The best methods today facilitate
iterative development. Use one with object-oriented tech-

niques for the appropriate tasks to get the most powerful and
complete approach available.

FkmninS Ioakcsheadand @“m/ing into control, Adrian Bow/es,

o&KT MAGAZINE7ai92
23

wnvDowsANDos/2:
PRm EN)DEWERY

NowmGo
In Windows and 0S/2, you need prototypes.You have to get a sense

for what an application is going to look like,and feel like,before you an write
it, And you can’tafford to throw the prototype awaywhen you’redone.

With Smalltalk/~ you don’t.
Start with the pmtotype.Theds no development system you can buy

that lets you get a working rncdel working faster than Smalltalk/V
Then, immzrnentally,grow the prototype into a finished applica-

tion. ‘E-yout new ideas. Get input from your users. Make more changes.
Be mtive.

Smallfzdlr/Vgivesyou the freedom to experiment without risk. It’s
made for trial, And error. You make changes, and test them, one at a time.
Safely.You get immediate feedback when you make a change. And you can’t
make changes that break the system. It’sthat safe.

And when you’redone, whether you’rewriting applications for
Windows or 0S/2, you’llhave a standalone application that runs on both.
Smalltallt/V code is portable between the Windows and the 0S/2 versions,
And the resulting application carries no nmtime charges. All for just
$499.95. - ‘-

So takea look at
SrnaUldk/_Vtoday. It’stime to make Smiiutaiklv
that pmtotyping time productive.

Smalltalk/V is a registeredtrademarkof Digitalk,Inc.Otherproductnanmsamtrademarksor registered
wademarksof theirmspsctiveholders.
Digitdfs,Inc., 9S41h-pm-t Bfvd.,k Angeles, CA 90045
(800)922-S255; (213) 645-1OI32; Fax (213) 645-1306

LOOK WHO’S TALKING

HEWLETT-PACKARD NCR
HP basdsvslopsd a network troubk.- NCR bm aa im%gmtui test program &usJo#
shooting tool cafkd the Network Advim-z metal environment far digit.d, analog and
Tbe Network Advikor offers a com@reben- mtied mo& pn”ntsd ci~uit board tzsting.
siue set of took including an s.xps-rtsysbsm,
stiti.rtics, andpmtocol dsa&s to q%sd MIDLAND BANK
pmbkm tiobztkm, Tbe NA u.rer intsq%.e b Midbmd Bmk buiIt a Wi%dowsd Z&bnical
buih on a windowing systim wbkb aIIowx Trading Emsimnmsntfor currency, fntures
multipk app[icutionsto be s.zwtai atui stock tmdsrs ming .%uzfltdk V
SimuIta?k?oUrlJ!

KEYFthims
■ Wxld’s leading,award-winningobject-

OrielmdprogrammingSystem
■ CompletePmtotype-@deliverysystem
H Zero-costruntirne

H Simplifiedapplication&liveryfor
cmiting standaloneaecutable (.EXE)
applications

■ CodeportabilitybetweenSmalltalk/V
Wind&vsartdSmrdltallC/VPM

■ Wrappemfor allWindowsand 0S/2
mntmls

■ Support for new CUA 71 controlsfor
0S/2, includingdrag and ~ booktab,
containq valueset, sliderand more

■ ‘lkansparentsupport for DynamicData
Exchange(DDE) and @lMXTliC Link

Library(DLL)C*

■ Fullyintegratedpqmrnming environ-
ment, includinginteractivedebu~,
sourcecode bromers (allsourcecode
included),worlds most extensiveWin-
dowsand 0S/2 classlibraries,tutorial
(printedand on disk),extensivesamples

H Extensivedevelopersupport, including
technicalsupport, tmining,electronic
developerforums, frkeuser newsletter

9 BroadbaseOfthird-party SUppOlt,
including add-onSrnalltalIC/Vproducts,
consulting services,books,user groups

This Srnalltslk/V Windowsapplication
CSpt~ he pC WeekShootout award-and
it was completed in 6 hours.

SmsUcslk/V PM applicationssm used tn
cbdop state-of-the% CUA-ccanptiant
apptidons-snd they’repln-wbleto
smslftSlk/vwindows.

	By Article Title
	Experiences with Smalltalk on a Large Developement Project
	Extending the Collection Hierarchy
	SmallDraw-Release 4 Graphics and MVC, Part 3
	Value Model Idioms
	What else is wrong with OOP?

	By Author Name
	Beck, Kent
	Benson, Dan
	Ewing, Juanita
	Knight, Alan
	Selic, Bran

	By Topic
	comp.lang.smalltalk
	Getting Real
	Smalltalk Idioms

