
Smalltalk-
The Interactive Programming
Environment
Adele Goldberg
Xerox Palo Alto Research Center

A Addison-Wesley Publishing Company
Reading, Massachusetts · Menlo Park, California
London · Amsterdam · Don Mills, Ontario · Sydney

This book is in the
Addison-Wesley series in Computer Science
MICHAEL A. HARRISON

CONSULTING EDITOR

Library of Congress Cataloging in Publication Data

Goldberg, Adele.
Smalltalk-80.

Includes indexes.
1. Smalltalk-80 (Computer system) I. Title.

II. Title: Smalltalk-eighty.
QA76.8.S635G6381984 001.64 83-11856
ISBN 0-201-11372-4

Copyright © 1984 by Xerox Corporation.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permis-
sion of the publisher. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-11372-4
EFGHU-HA-89

Preface

The user interface to the Smalltalk-80 system is a multipurpose inter-
face, designed to facilitate text and graphics creation and manipulation,
program development, and information storage and retrieval. You, as
the user create, manipulate, save, or retrieve, either a visual form or
specific information within such a form. You interact with the system
on a bitmapped display screen, using a typewriter keyboard and a
pointing device.

The Smalltalk-80 system includes utilities typical of a computer's op-
erating system: compiler, debugger, text editor. These are brought to-
gether on the display screen in the form of a collection of rectangular
areas or views of information. One rectangular area might view the text
of a program under development. Changing the text is accomplished by
pointing to the parts to be changed, and typing new text or issuing an
editing command such as delete. When the text is considered correct,
an accept or compile command is issued. If any syntactic errors are
detected, they will be indicated in the text in the window so that they
can be corrected right away. Once all syntactic errors are corrected, the
text is compiled into object code and linked into the system, as the sys-
tem is running. The new code can then be tested by typing an appropri-
ate expression, selecting it, and issuing an evaluate command. This
process is immediate; no exchange of editing, compiling, filing, or execu-
ting "modes" is required.

Part One of this book is an introduction to the user interface to the
Smalltalk-80 system. Part Two is an explanation of the support provid-
ed for finding information about objects that exist in the Smalltalk-80

IV
Preface

system. Part Three is an illustrated description of how to explore the
class descriptions available in the system, and of how to use the editors
for implementing new class descriptions. Part Four presents the sup-
port available for finding and correcting errors, while Part Five intro-
duces access to external files and system housekeeping support such as
crash recovery and change management. Parts One through Five ex-
plain how to manipulate the components of the user interface. They are
written to encourage specific practice and exploration; each section in-
cludes suggested exercises. A brief introduction to the Smalltalk-80 lan-
guage is also provided in order to explain the ways in which the
interface components provide access to the language components.

If you have access to a Smalltalk-80 system, you will need to read
the book only once, after which you can rely on the on-line aids provid-
ed by the interactive system. The on-line aids consist of a menu-orient-
ed interface to remind you of available functionality, comments for each
class and method, an "explain" capability that can identify the tokens
in a method, and a spelling corrector. This book is not intended as an
introduction to programming in the Smalltalk-80 language. If an in-
depth understanding of the language is desired, you should use this
book in conjunction with Smalltalk-80: The Language and its Imple-
mentation, by Adele Goldberg and David Robson (Addison-Wesley,
Reading, Mass., 1983), which includes reference material for the system
classes. Because of the detailed scenarios and figures, this book can be
used independent of a running system to learn about the components of
the user interface, and about the process of working with a graphical-
oriented, interactive system development environment.

About the
Described
System

The system described in this book was released for general licensing in
May, 1983, by the Xerox Corporation as the "Smalltalk-80 System Ver-
sion 2." Version 1 was a preliminary version of the system that was
originally released to several companies participating in a review of the
formal specification of the Smalltalk-80 virtual machine, and provided
by Xerox Electo-Optical Systems (now Xerox Special Information Sys-
tems, Pasadena, Calif.) in 1981-1982 as one of their software offerings
on the Xerox 1100 Scientific Information Processor. Version 2 added
functionality to the system, notably the spelling correction used in com-
piling and debugging methods; special browser queries about instance

Preface

and class variables, class references, and class hierarchies; and special
inspectors. As a language, the Smalltalk-80 system Version 2 includes
support for multiple inheritance and multiple language compilers. Some
of the examples provided in this book use system user interface compo-
nents from Version 2 that do not exist in the Smalltalk-80 System Ver-
sion 1.

The larger examples of Smalltalk-80 definitions given in this book
are provided to Xerox customers or system licensees as part of the files
on their disk or magnetic tape. This includes the protocol and project
browsers described in Chapter 15, the model for financial histories de-
veloped in Chapters 17, 18, and 19, and methods for viewing and
interacting with financial histories listed in Appendix 1. Glenn Krasner
and Evelyn Van Orden have been the main motivators and supporters
in getting the system releases and examples completed for this kind of
distribution.

Acknowledg- As the Smalltalk-80 system evolved and was tested by nonXerox
ments commerical organizations and universities, this book evolved from a user

manual to a general description of the programming environment. The
choice of content and organization benefited from review by many peo-
ple. Norman Meyrowitz of Brown University was especially instrumental
in pointing out omissions of detail. I wish also to thank Susanne Bodker,
Glenn Krasner, Michael Madsen, Paul McCullough, Michael Rutenberg,
Rachel Rutherford, and Evelyn Van Orden, (all of the Xerox Corpora-
tion); David Casseres (Apple Computer), Pavel Curtis (Cornell Univer-
sity), Steve Draper (University of California, San Diego), and Trygve
Reenskaug (Central Institute for Industrial Design, Oslo, Norway).

The Smalltalk-80 System is the result of research and development
of the Software Concepts Group of the Xerox Palo Alto Research Cen-
ter. As the group manager, I took responsibility for documenting the
system. It is not possible to identify the individual contributions made
by each member of the group in the creation of the complete system.
However, I would like to point to several aspects of the system docu-
mented in this book, and acknowledge several contributors: the system
browser was first introduced by Larry Tesler and then enriched by Dan
Ingalls, the debugger was introduced by Dan, the change manager by
Peter Deutsch, the version handler by Steve Putz, the special inspectors
and the file list view by Glenn Krasner, and the form and bit editors by
Bob Flegal and Diana Merry. The first version of spelling correction
was implemented by Steve and then incorporated into the system com-

γι

Preface

piler by Dan. Ted Kaehler created the explanation utility on a sugges-
tion by Ellis Cohen of Brandeis University. In addition, the example of
a protocol browser given in Chapter 15 was suggested by Dave Wallace
from the University of California, Berkeley, and that of the combina-
tions of elements of a collection by Steve Putz. Many new ideas and bug
fixes came from our colleagues at the Xerox Special Information Sys-
tems, including Evelyn Van Orden, who maintains the customer release
version of the system (a system that includes network communication
facilities), Rae Conrad, Bob Lansford, and Michael Malcolm (whose clev-
er scrolling additions to the text editor are included in Version 2).

Glenn Krasner, Dave Robson, and Steve Putz helped me complete
Version 2 of the Smalltalk-80 system, create the images of the display
screen for the book figures, and produce the magnetic tapes for the
typesetter. As in the other books in the Smalltalk-80 series, the original
text for this book was supplied to the publisher on magnetic tape that
included formatting codes identifying the various types of textual entity
in the manuscript. The software for the conversion from the Xerox in-
ternal formats to that of the typesetter was written by Dave Robson.
The timely manner in which the production process was handled was
due both to Dave's software and personal support, and to the efforts of
Eileen Colahan of the International Computaprint Corporation and
Fran Fulton, the production editor.

The original syntax diagrams shown in Chapter 5 were prepared by
Janet Moreland. All the figures that represent the Smalltalk-80 display
screen graphics and the chapter opening artwork were created by me
using the Smalltalk-80 system. They were printed on the Platemaker
system developed by Gary Starkweather and the Imaging Sciences Lab-
oratory of PARC. I would like to thank Gary, Eric Larson, and Julian
Orr for making the Platemaker available.

Registered trademarks mentioned in this book are Lisa, (Apple Com-
puter Inc.); VAX 11/780 and VAXstation (Digital Equipment Corp.);
and Smalltalk-80 (Xerox Corp.).

Adele Goldberg
Palo Alto, California
October 1983

Contents

PART ONE The General System Interface 1
1 Introduction to the Book and the System 3

1.1 Appearance of the Hardware System 6

1.2 Getting Started 14

1.3 Try It, Just to See 15

1.4 Stopping a Work Session 22

1.5 Summary of Terminology 26

2 Basic User Interface Components 29
2.1 Display Screen Visual Cues 30

2.2 Designating Rectangular Areas on the Display
Screen 34

2.3 Menus 35

2.4 The System Menu 41

2.5 Standard System Views 46

2.6 Summary of Terminology 49

3 How to Use the Text Editor 51
3.1 Text Selection 52

3.2 Inserting Text 57

VII

VIM
Contents

3.3 Issuing an Editing Command 57

3.4 The System Transcript 65

3.5 Summary of Terminology 65

4 How to Use Projects 67
5 Fundamentals of the Smalltalk-80 Language 75

5.1 Objects, Messages, and Methods 76

5.2 Expression Syntax 80

5.3 System Components 95

5.4 Overview of the Programming Process 99

5.5 Summary of Terminology: General Concepts 102

5.6 Summary of Terminology: Syntax 103

6 How to Evaluate Expressions 105

6.1 The do it Command 106

6.2 The print it Command 110

6.3 The System Workspace 111

6.4 Examples 112

6.5 Summary of Terminology 116

7 How to Make Pictures 119
7.1 Making Pictures with the Form Editor 120

7.2 Making Pictures with the Bit Editor 133

7.3 Making Pictures with Expression Evaluation 136

7.4 Summary of Terminology 139

PART TWO How to Find Information in the System 141
8 Finding Out About Instances 143

8.1 The Structure of an Inspector 144

8.2 Changing the Values of Variables 147

8.3 Sending Messages to an Object 154

8.4 Special Kinds of Inspectors 156

8.5 Finding Out About a Running Process 159

9 Finding Out About System Classes 161
9.1 The Structure of a System Browser 163

9.2 Messages to a Class versus Messages to an
Instance 168

[Χ

Contents

9.3 Browser Menu Commands 172

9.4 Browsing a Subset of the System 187

10 Finding Out About Messages and Methods 195

10.1 Which Methods Send a Particular Message? 196

10.2 Which Classes Implement a Particular Message? 199

10.3 Which Messages are Sent in a Particular
Method? 201

10.4 Which Methods Reference a Particular
Variable or Literal? 206

ART THREE How to Modify Existing Classes and Create New Classes 215

11 Modifying Existing Class Descriptions 217

11.1 Modifying Existing Methods 218

11.2 Modifying Protocols 224

11.3 Adding New Methods 233

11.4 Modifying Class Comments 249

12 Modifying Existing Class Definitions 251

12.1 Name of Superclass 252

12.2 Name of Class 254

12.3 Instance Variable Declarations 260

12.4 Class Variable Declarations 266

12.5 Pooled Dictionary Declarations 267

12.6 Class Category 268

13 Creating a New Class Description 273

13.1 Define a New Class 274

13.2 Define the Class Protocol 278

13.3 Define the Instance Protocol 284

14 Improving Performance 295

15 Examples of Creating or Changing Browsers 299

15.1 A Protocol Browser 300

15.2 A Project Browser 322

15.3 Modify Class Project 339

15.4 Change the System Menu 346

Contents

PART FOUR How to Find and Correct Errors 351
16 Spelling Correction 353

17 Syntax Errors 363

17.1 Variable Name or Message Selector Errors 364

17.2 Poorly-Formed Statements or Methods 369

18 Notification of an Execution Interrupt 375

18.1 Incorrect Message Selector 376

18.2 Other Runtime Errors 383

19 Examining and Debugging Execution State 385

19.1 The Activation Stack 386

19.2 The Structure of a Debugger 388

19.3 The Context of a Message Receiver 394

19.4 The Context of an Interrupted Method 395

19.5 Evaluation Within the Context of an Interrupt 396

20 Kinds of Execution Interrupts 401

20.1 Breakpoints 402

20.2 User Interrupts 409

20.3 Running Out of Space 409

20.4 Recursion in the System Error Handler 411

21 Single-stepping Through an Execution 415

PART FIVE External Files 429
22 The File System 431

22.1 Writing Code onto a File 432

22.2 Accessing the Contents of a File 436

22.3 Retrieving the Contents of a File 450

22.4 Getting Started Revisited 457

23 System Backup, Crash Recovery, and Cleanup 459

23.1 Saving Your System State 460

23.2 The System Change Set 462

23.3 The System Audit Trail 467

23.4 Creating a "Clean" System 477

23.5 Version Management 480

X[
Contents

Appendixes
1 Financial History Views and Controllers 485

2 Smalltalk-80 Software Development Do's and
Don'ts 499

Indexes
System Workspace Index 503

Menu Command Index 510

Subject Index 512

PART ONE
The General System
Interface

The Smalltalk-80 system consists of an object-oriented programming
language and an integrated collection of tools for interacting with com-
ponents of that language. In the Smalltalk-80 language, the fundamen-
tal way to indicate that something should happen is by sending a
message to an object. An object is a representation of information con-
sisting of private memory, and a set of operations to manipulate infor-
mation stored in the private memory or to carry out some actions
relative to that information. Sending a message is the Smalltalk-80 way
of asking the object to carry out one of its operations.

All information in the Smalltalk-80 system is represented as an ob-
ject. Each object knows the messages it can understand. Associated with
each such message is a method that describes how the object should re-
spond to the message. The user interface to the Smalltalk-80 system
can be viewed as a graphical way in which to identify objects and to
choose messages to send to objects. When an object is sent a message,
the appropriate method is invoked and some action is taken. The pur-
pose of this book is to describe the varied ways in which objects and
messages can be identified and methods invoked; its purpose is also to
describe some useful ways in which information about objects can be re-
trieved.

This book is written in a tutorial or "try and see" style. Each section
describes the functionality of a part of the user interface and then en-
courages you to employ that functionality. Although this book does not
substitute for a detailed exposition about the language, an overview is
provided and a summary of the language syntax is included. The over-
view is sufficient information so that you can understand the chapters
on evaluating expressions, on accessing objects already in the program-
ming system, and on creating new objects.

The tutorials are presented in an order designed first to give you
practice in controlling the hardware devices that support interaction
with the graphical elements of the display screen, and in reading and
responding to the visual cues. Visual cues include differently-shaped
cursors, highlighted text, flashing rectangular areas of the screen, and
prompters and confirmers. Next, the basic editing functions are intro-
duced: creating rectangular areas on the screen, called views, in which
to access information; and invoking menus in which to choose com-
mands to send to objects, editing text, and editing pictures. Special
views called projects allow you to manage several separate screens of in-
formation. Each project or screenful maintains its own history list of the
views you have created and of the changes you have made to the sys-
tem. After a description of how to create and edit projects, you are in-
troduced to the Smalltalk-80 language, and how to evaluate expressions.

1
Introduction to the Book
and the System

1.1 Appearance of the Hardware System
Appearance of the Display Screen
Pointing Device "Buttons"

1.2 Getting Started

System Files

1.3 Try It, Just to See

1.4 Stopping a Work Session
Saving Information

1.5 Summary of Terminology

Introduction to the Book and the System

The Smalltalk-80 system runs on a microcomputer that includes a high-
resolution bitmapped display screen, a typewriter keyboard, and a
pointing device. The display is used to present graphical and textual
views of information to the user. The keyboard is used to present textu-
al information to the system. The pointing device is used to select infor-
mation on the display screen. The pointing device controls the
movement of a cursor on the screen; the cursor shows the location cur-
rently being selected. The pointing device can be, for example, a mouse,
a graphics tablet, or function keys on a keyboard.

There are a variety of hardware configurations on which the
Smalltalk-80 system runs. These configurations might have different
resolutions for their display screens, different layouts of keys on their
keyboards, and different types of pointing devices. Photographs of sever-
al Smalltalk-80 systems are shown in Figure 1.1.

Several sections of this book depend on the particular hardware con-
figuration that you, the user, have available. These are Sections 1.1 and
1.2, on the hardware system and on how to get started, and the chap-
ters of Part Five on the use of an external file system. Much of the in-
terface to external files is the same for all hardware configurations, but
the particulars of naming files and creating system back ups may differ.
For a description of the hardware devices you have available, the initial
start up sequence you must follow, and the file-naming and back-up
conventions you should use, you must obtain information specific to
your system that is not provided in this book.

Throughout the book, an indented paragraph of small print is used to
provide information at a level of detail that may be of interest to yoii if
you want to know a bit more about the structure of the Smalltalk-80
system.

For example, the names of classes that support a user interface component may be
given, along with messages that implement a particular user interface function.

You can skip over these comments without losing information needed
to interact with the system. Also, alternate designs are given in small
print as suggested exercises that you might try if you are proficient
with the language and the programming environment.

Figure 1.1

Top: Tektronix Magnolia, experimental workstation (photo by Edward L. Reuss, courtesy of Tektronix Inc.),
Apple Lisa, experimental software (photo courtesy of Apple Computer Inc.); middle: Hewlett-Packard
Laboratories, development station (photo by Rich Marconi, courtesy of Hewlett-Packard), Digital Equip-
ment Corp.,VAX-ll/780 with VAXstation display (photo by Charles W. Gamage Jr., courtesy of Digital
Equipment Corp.); bottom: Xerox Dorado and Xerox implementation on the SUN Microsystems Inc. work-
station (photos by Κ. Ο. Beckman and Wes Dorman, courtesy of Xerox Corp.).

Introduction to the Book and the System

Introduction to the Book and the System

1.1

Appearance of
the Hardware
System

The significant parts of the hardware on which the Smalltalk-80 system
runs are identified in Figure 1.2: the keyboard, the display screen, and
a pointing device. These are the parts that play a significant role in the
user interface of the system.

In Figure 1.2, keys that play a specific role in the Smalltalk-80 text
editor are labeled. Henceforth, the names of the keys as indicated in
the following keyboard map are used, rather than the key-cap label. To
use the system, you must determine the correct mapping for the hard-
ware system you have available.

Also in Figure 1.2, the coordinates of the corners of the display
screen are marked. Notice that position 0, 0 is at the upper left corner
of the screen, and that the y-coordinate increases as you move down the
screen.

Figure 1.2

1024.0

Display Screen

Τ 2 l 3 I 4 [5 Τ 6] Γ] β | 9 I ° I I ° Ι ΐ F̂]

TAB | Q | W | E | R | T | Y | U

I CTRL 1 A | S | D | F | G | H | J | K | L | | RETURN

I SHIFT | Z | X | C | V | B 1 N 1 M | , | | / | SHIFT 1 I

Pointing
Device

Space Bar
Keyboard

1.1 Appearance of the Hardware System

key names

backspace
carriage return
control
delete
escape
line feed
space bar

key cap label

BS
RETURN
CTRL
DEL
ESC
LF
no label (bottom row, large
single key)

" The display screen has a light gray background. White rectangular
Appearance of the areas containing text and/or pictures are placed against this back-
Display Screen ground. Each of these areas is called a view. The content of a view is the

text and/or picture within its rectangular border that you can examine,
create, store, and retrieve. A sample image of a Smalltalk-80 display is
shown in Figure 1.3.

Most of the views on the Smalltalk-80 display screen are standard
system views, meaning they provide some standard functions. In partic-
ular, you can

• visually identify a standard system view by a label

• change the screen location of a standard system view

• change its size

• replace it with an area containing only the label

• remove it from the screen

In Figure 1.4, there are several standard views. Each has a label in the
upper left corner. Some, such as the two views in the center of the fig-
ure, consist only of a label. These are referred to as collapsed views.
The views in the figure are in different locations and have different
sizes. The view at the top of the figure consists of five parts or subviews.
The content of a subview might depend on the content of one or more
of the other subviews.

When you are working on several different tasks, the tasks can be
presented in a variety of ways: with each in a different view, with some
or all in the same view, or with some tasks, such as background pro-
cesses, in no view at all. Views are known to a special system object
called a control manager. This manager's job is to let you move the
cursor within the border of a view, and to interact with either the view
itself or with the information inside it.

8
Introduction to the Book and the System

Form Edit or I !

fl
I 1I' 1

/ \Μ \

m m
mP - -JIB

fife; ffl
Β • 9

File List|
+ ,st

'Γί a 11 e y Fo rm - c 1 a. s s - fro m G a. 11 e y -. s t ,
La s t Pa. re η t - S c r e e η 0 u t - c h a. n g e s. s t .
PressOut.st,
ScreenOut.st.

'Fro m 8 m a 111 a. 1 k - 8 0 ο f 18 A p ri I 19 8 3 [V 3 1] ο η

2 5 April 1983 3:04:56 pm PDT (M o n d a y) ' !

IFile D i r e c t o r y class met hods For: 'u t i l i t ies ' !

files Μ a. t c h i η g: file D e s i g η a. t ο r

"Answer a col lect ion of the names of files

that match the string, file Designator,

Ε χ a rn pie: File D i re c t ο ry files Μ a t c h ing:

• System>*,errors' "

| dir pattern |

dir ·*- self directory From Name:

fileDesignator setFileNarne: [ipat tern] .

tdir files Matching: pattern!

Ό y s t e m Τ r a n s c r ί ρ 11

S y s t e m W ο rl· .s ρ a c e

S m a l l t a l k - 8 0 of April 1 , 1 9 8 3

Copyright (c) 1 9 8 3 Xerox Corp.

All rights reserved.

Create File System

Source Files «- A r r a y new: 2,

Source Files a t : 1 put: (File Stream

ο 1 d Fi 1 e Ν a m e d: ' S m a 111 a 1 l·18 0, s ο υ re e s').

Figure 1.3

_9
1.1 Appearance of the Hardware System

System Browsgr

Numeric-Ma gni tud

Collect ions-Abst r=
Collect ion s-Unordi:
C ο 11 e c t i ο η s - S e q u θ

Fraction
Integer
Large Negative I nte mathematical func
La rcj e Po s i t i ν e I n t e g I test i η g

message selector and arqun

"comment stat ing purpo

| temporary variab

statements

Point +
Smalllnteqer +

+ aNumber

"Answer the sum of the receiver and

a Number,"

self s u b c I a s s R e s ρ ο η s i b hit y

b y 51 e m W ο rl· s ρ a c e

Smalltalk-80 of April 1, 1983

Copyright (c) 1981, 1982, 1983 Xerox Corp,

All rights reserved,

Create File System

Source Files *• Array new: 2,
Source Files at: 1 put: (FileStream oldFileNamed: 'SmalltalRSO. sources'),
SourceFiles at: 2 put: (FileStream oldFileNamed: 'SmalltalkSO.changes').
(SourceFiles at: 1) readonly,

Figure 1.4

10
Introduction to the Book and the System

Svstem Browser

Numeric-Magnitu<
Numeric-Numbers
Collections-Abstr
Collect ion s-Unord
' I: o 11 e c t i ο η 5 - S e q υ s
Collections-Text

c I a s s

System Worl· span

Create File Syste

Source Files *• Arr
Source Files at: 1
oldFileNamed:
'Sma.lltalR8O.sour
SourceFiles at: 2
oldFileNamed:
'Srnalltall· 80.change.

bitmapped display screen, a typewriter
Rev board, and a pointing device, The display is
used to present graphical and textual views of
information to the user, The keyboard is used
to present textual information to the system,
The pointing device is used to select information
on the display screen, The pointing device
controls the movement of a cursor on the
screen.; the cursor shows the location currently
being selected, The pointing device can be, for
example, a mouse, a graphics tablet, or function
Revs on a keyboard.

There are a. variety of hardware configurations
on which the Small talk- 80 system runs, These
configurations might have different resolutions
for their display screens, different layouts of
keys on their keyboard, and different types of
pointing devices, Photographs of several
SrnalltalR-SO systems are shown in Figure 1,0,

Several sections of this book depend on the

Figure 1.5

π
1.1 Appearance of the Hardware System

Pointing Device
"Buttons"

Available screen space has been optimized by allowing the views to
overlap, partially or wholly. The active view (the view in which you are
currently working) is automatically moved to the top of any stack of
overlapping views. Since a view often contains more information than
can be displayed at any given time within its boundaries, an additional
scroll bar area is associated with each view, where appropriate. A scroll
bar presents a method by which you can specify the part of the avail-
able information that you want displayed.

In Figure 1.5, a view of textual information is the active view, the
one labeled Workspace. Its scroll bar area is shown at its left side. The
fact that the gray area of the scroll bar fills only part of the scroll bar
height indicates that you see only part of the information that can be
accessed using this view.

A likeness of a pointing device used by the Smalltalk-80 system devel-
oped at the Xerox Palo Alto Research Center is shown in Figure 1.6. It
is called a mouse. The cursor on the display screen is moved by moving
the mouse over a flat surface. The mouse has buttons on it which are
used to make different kinds of selections.

Some hardware configurations for the Smalltalk-80 system have but-
tons on the pointing device that can be used to select display positions
or to request the display of a particular menu. Other configurations use
keyboard function keys for the same purpose. Each configuration shares
an identical collection of techniques for accessing objects and messages,
and an identical collection of tools for manipulating objects. For exam-
ple, each system shares a common editor for creating and modifying
text or pictures.

The Xerox mouse has three buttons on it. These buttons are identi-
fied in Figure 1.6 as red button, yellow button, and blue button.

Figure 1.6
red yellow
button button

blue
button

12
Introduction to the Book and the System

The names are for historical, not visual reasons. Some of the original Xerox mice
had colored buttons.

Throughout the standard Smalltalk-80 system,

• red button is used to SELECT information

• yellow button is used to get a menu for EDITING the CONTENTS
of a view

• blue button is used to get a menu for EDITING the VIEW itself

In referring to the use of the buttons, we will use the following termi-
nology:

press push and hold the button down

release remove finger from button, letting the button up

click press button, then release it, without moving the cursor

double click click two times in succession, without moving the cursor

Some people refer to selection using a click as bugging. Their expressions take the
form of "bug that command" or "bug outside the view."

Note carefully that we distinguish between pressing the button down
without releasing (press), and pushing the button down and releasing
(click). Note also that a selected item is highlighted, typically by
complementing it. To complement text, black characters on a white
background are changed to white characters on a black background.

For many operations, pressing the button down is a separate action
from releasing the button. Pressing down the yellow or blue button, for
example, causes a list of items to appear on the screen; releasing the
button chooses the selected item. This list of items is referred to as a
menu. While the button is down, the system provides feedback about
what can occur. For example, a menu item may be highlighted to indi-
cate that it will be the one chosen if the button is released. This gives
you a chance to confirm visually that it is the desired item, or to move
the cursor to a different item and to see it selected (highlighted) before
you release the button. Releasing the button chooses the item. The dis-
tinction between pressing and releasing a button is a significant one to
learn in order to be able to interact with the Smalltalk-80 system. Most
actions occur as a result of releasing a button. There are only two
places in the system where the action is invoked when the button is
pressed down: in controlling the scroll bar, and in selecting text.

In Figure 1.7, notice the image of the pointing device at the lower
left side. The image consists of a rectangle with three subareas; one of
the three subareas is filled with black, the others are white. Each area
denotes one of the buttons you can press. In the picture, the image indi-

. 13
1.1 Appearance of the Hardware System

Figure 1.7
010

This is some text that has

been typed into a work:

This is some text thi
been typed into a
workspace,

waaym

a.ccQpt
This is some text that]cancel
been typed into a workspace.

a g a ι η
undo

ρ a s t e
do it

print it

cates that the yellow button is currently being pressed, causing a menu
to appear and an item in the menu to be highlighted. This image is
used throughout this book in order to illustrate pressing a button, even
though the three buttons on the hardware system you are using may
not be grouped or packaged on a single rectangular-shaped device.

The four possible button images that may appear at the lower left
side of a figure are shown in Figure 1.8. Each button image represents
a press of one or no button. When we wish to denote "clicking" a but-
ton, two button images will be displayed at the lower left side of the
screen image. The first button image designates the button to press,
and the second indicates that a release should follow. Figure 1.9 shows
the three possible images for button clicks.

000 100 010 001
denotes no denotes red denotes yellow

Figure 1.8 button pressed button pressed button pressed
denotes blue
button pressed

Figure 1.9

100
000

010
000

001
000

click red
button

click
yellow
button

click
blue button

14
Introduction to the Book and the System

1.2
Getting Started

System Files

In order to get your Smalltalk-80 system started, there should be a sep-
arate document for you to consult that describes your particular hard-
ware system and file-naming conventions. It will identify the files you
need, the procedure for turning the power on, and the commands or
buttons to push in order to install the Smalltalk-80 system.

On most of the Xerox systems, for example, there is a small button
located at the back of the keyboard that you push (called the "boot"
button). A herald will appear announcing the Xerox Executive. If the
Xerox Executive is installed with the proper files, you can then type

@st80.cm

and then press the "carriage return" key.
After a few moments, an image of the Smalltalk-80 programming in-

terface should appear on the display screen.

Although different implementations may have different start up proce-
dures, and perhaps require different sets of system files, the basic Xerox
Smalltalk-80 system requires four significant files.

ST80< Version >.im

ST80 < Version > .sources

ST80 < Version > .changes

ST80< Version >.run

This is the Smalltalk-80 system image. It contains
the compiled form of each method, as well as the
initial bitmap that appears on the screen when
the system is installed, and all the other system
objects.

This file contains the text for each method in the
system. The compiled form of each method in-
cludes an index into this file so that the text can
be retrieved upon user request. In the Xerox sys-
tems, when a network-based file server is avail-
able, this "sources" file resides on the file server
and is shared by all Smalltalk-80 users.

Initially this is an empty file. When the user in-
teracts with the Smalltalk-80 system, each action
that involves evaluating an expression is stored in
this file. If the system crashes, it is possible to re-
cover your work by evaluating the expressions
stored in this file. See Part Five for more details.

This is the "run file" or virtual machine emulator
for the Smalltalk-80 language. The system is in-
voked by executing this file with the name of the
image file as its single argument. The file
ST80.cm is a "command" file; it is an indirect
way of naming the two files.

1.3

15
1.3 Try It, Just to See

Wherever we have written < Version > in naming a file, we mean that
the file name actually contains a date indicating a particular system re-
lease. Typically the date should be the same for all the files. In the Xe-
rox systems, capitalization in file names is not meaningful.

Try It,
Just to See

The next chapters present details about the basic user interface compo-
nents, the text editor, and how to evaluate Smalltalk-80 expressions.
Before reading these chapters you might wish to try the system, just to
see what you can do. This section illustrates an example interaction you
can try in order to get an early introduction.

You already know that the display screen has a light gray back-
ground and that there may be one or more rectangular areas contain-
ing text. Move the cursor so that it is not inside any rectangular area,
that is, move it so that it is over the light gray background. Press the
yellow button; do not release the button. A menu appears (Figure
1.10a).

Figure 1.10a
0101

iiiiiiii S y s t e m T r a n s c r i p t j |M Π=Μ ΠΜ Μ Μ Μ Π Μ=̂=Μ i=

::·:·:: ::::::::::::::i^i^i^i^i^:::::::::::::::::::::-:::;::i::::r:!:::::::!:::::::;::::

ijiiiij Workspace

Wm S y s t e m W ο r k s ρ a c e |ϊΗΜ!ΗΠΠΠΠΗΜΐ:ΠΠΠΠΠί!ΠΠΙΠΠΝΜΠΜΠΠπΠ!ΠΟΗΠΠΠ

| i Smalltalk-80 of April 1, 1983 m
iiiiiiii Copyright (c) 1983 Xerox Corp. iiiiiii
iiiiiii All rights reserved, iiiiiii

iiiiiijii Create File System iiiiii

ijiiijiii SourceFiles *• A r r a y new: 2. jjjjiij

:::;::;;: bourceFiles a t 1 put: (Fi lebtrearn :j;j:;;

Ι;:;:;!:; ο 1d Fi 1 e Ν a. in e ό \ ' I a s 11 a. s ΐ ρ a. r<k η t , s ο u re e s •). ;:;;;::

;iiiiij This is some text that has been typed into a iiijii
iiiiiii workspace. iiii

:;::!:; This is 5ΟΓ e text tnat ηas ο ien t y p e d into a i;i;

iiiiiii workspace, iiiii;

iiiiiij This is some text that has been i;|
iiiiiii typed into a workspace. ui

!;!;!;; restore display MMM
m\ ex i t project W&M
ml project · iiiiiiiiiiiiii!
Μ file list iiiiiliiiiij
!|l||li b r o w s e r ιϋϋϋϋίιϋϋ

iiiiiii system transcript iiiiiiiiiiiiiii
iiiiiii system workspace iiiiiiiiiiiiiii
iiiiiii s a v e iiiiiiiiiiiiiii
iiiiiii quit iiiiiiiiiiiiiii

w

16
Introduction to the Book and the System

Move the cursor up and down, noticing that different menu items are
highlighted. Move the cursor so that the item workspace is highlighted.
Release the yellow button.

The cursor changes shape (Figure 1.10b). Move the cursor anywhere
towards the center of the screen and press the red button. You have se-
lected the upper left corner of a rectangular area. The cursor changes
shape again (Figure 1.10c). Move the cursor around to select the lower
right corner of the area. Release the red button. You have now created
a small workspace on the screen (Figure l.lOd).

Figure 1.10b 000

jiililii S y s t e m Transcript|||ΗΠ!ϊΐ!Η!Η|!:ΠΗΙ|!!!Η

W ο r k s ρ a c e |ΠΗΠίΗΗίΗϊ;ΗΠΠΗΗ=Η!ΗΗΗ;ΗΠΗΠΗ=ίΗΝ;!

|!i|ii:!i System Workspace!

yMiiii; Srnalltalk-80 of April 1, 1983

iiiiiiii! Copyright (c) 1983 Xerox Corp,

inUHU A " f ights reserved.

jiiiijiij Create File System

ι!:!!!;!! SourceFiles *• Array new: 2.
liiijiili SourceFiles at: 1 put: (FileStream
ijijliili oldFileNamed: 'lastlastparent.source;').

This is some text that has been typed into a
workspace.

This is some text that has been typed into a
workspace.

This is some text that has been
typed into a workspace. r

_π

1.3 Try It, Just to See

Figure 1.10c 100

S y s t e m "Transcript|Πϋϋϋϋ1ΙϋΠίΗΗϋ

W o r k s p a c e |ΐΠΙΜΜϋϊΙΗΗΜΐϊΠΠΜΜΗΜ!ΜΠϊΜΜΐϋϋΠ

J!ijjj|jjj|j|j; System Workspace

1 1 1 Srnalltalk-80 of April 1, 1983
|j|!|j|!|j|ii;! Copyr ight (c) 1983 Xerox Corp,

|;|!|lii|!i!j|i All r ights reserved,

ΙΙϋϋΐϋ Create File System

!;!|!;!;!;!|!:! S o u r c e F i l e s *• A r r a y n e w : 2,

ijiiijiiijijlji S o u r c e F i l e s a t : 1 p u t ; (F i l e S t r e a m

ijiiijijijijij: oldFile N a m e d : ' l a s t l a s t p a r e η t ,s n u r c e s ') ,

This is some text that has been typed into a
workspace.

This is some text that has been typed into a
workspace,

This is some text that has been
typed into a workspace.

J

Figure l.lOd TOO

System T r a n s c r i p t

W ο rl· s ρ β c e I

This is some t

workspace.

This is some t

wort space,

S y s t e rn W ο rl· s ρ ace

Srnalltalk-80 of April 1, 1983
C ο ρ y ri q h t (c) 19 8 3 - e ro • C ο rp,

All rights reserved,

This is some text that has been
typed into a workspace.

y new: y,

ut: (FileStream

β s t ρ a re η t, s ο υ re e s'),

18

Introduction to the Book and the System

Make certain the cursor is inside the workspace. Type

3 + 4

and then press the "escape" key. The three characters, 3, -f, and 4
should be highlighted (Figure 1.11a). If not, place the cursor just before
the character 3, press the red button, move the cursor past the charac-
ter 4, and then release the red button. The characters should be
highlighted. Note that they make up a Smalltalk-80 expression.

Figure 1.11a
000

System Transcrcript[

Worl· spa e e l

This is some ti
workspace.

Τ hi 5 if. some t
worl· spece

iystem Wort space

Smalltalk-80 of April 1, 1983
C ο ρ y ri q h t (c) 19 8 3 :'. e ro · C ο rp.

All right5 reserved,

y new: 2.
ut: (FileStream
a s t ρ a re η t. s ο υ re e s').

This is some text that has been
typed into a workspace.

Be sure that the cursor is still inside the workspace. Press the yellow
button so that another menu appears (Figure 1.11b). Move the cursor so
that the item print it in the menu is highlighted (Figure 1.11c). Now re-
lease the yellow button. Notice that the expression has been evaluated
and the result printed in the workspace. The result 7 is highlighted
(Figure 1.1 Id).

19
1.3 Try It, Just to See

Figure 1.11b Bio

Systern Τranscrip11

W o r l · s ρ a e e l

This is some ti
workspace.

This is some t
worf.spa.ee,

System Workspace

Srnalltalk-80 of April 1, 1983
C ο ρ y right (c) 19 8 3 X e r ο χ C ο r ρ.

All rights reserved.

This is some text that has been
typed into a workspace.

y new: 'd.
ut: (FileStream
a s t ρ a rent, s ο u re e s').

Figure 1.11c Bio

System Tra η script. I

W ο r\ s ρ a c e I

This is some ti

workspace.

This is some t

worl· space.

System Worl· space I

Srnalltalk-80 of April 1, 1983
C ο ρ ν ri q h t f c) 19 8 3 '•'• e ro • C ο rρ,

All r ights reserved.

a g a ι η
υ η d o

This is some text that has been
typed into a workspace.

,• new: 2,
ut: (FileS t re am
a st pa rent, source;

20
Introduction to

Figure 1.1 Id

bhe Book

000

and the System

b ν ."tern Tra Ί ; Ι ; ri

Workspace ||||!

This is some ti
workspace.

Τ h i ; Ί ; ; o r n e t

υ Γ Γ·._· ρ -r·. L y,

This is some
typed into a i

^ Workspace g

3 + 4 ^

text that has
•vorkspace.

by i t e m V'.i'nrf ι

Srnalltalk-80

'Jinpynqht (.:

All nqhtj

been

p a c e

of April 1, 1983
I ^ o o :*ro. . jorp.

r e ; e r v e d .

,. ne·//: 2.

Jt ι1 File s t r e a m

a ; t p a rent ;ourc e ;).

Press the blue button so that another menu appears (Figure 1.12a).
Move the cursor so that the item close is highlighted (Figure 1.12b). Re-
lease the blue button. A special menu called a confirmer appears. You
have requested closing a workspace, but the contents have not been
saved. This is acceptable to you. Notice that as you move the cursor
around, the shape of the cursor changes. When the cursor is over the
part labeled yes, it is shaped as a hand with a thumb pointing up; when
the cursor is over the part labeled no, it is shaped as a hand with a
thumb pointing down. If you move the cursor outside the confirmer, it
will "flash" or "blink" to indicate that you must answer the confirmer's
question before proceeding.

Move the cursor over the part of the confirmer that is labeled yes.
Press the red button (Figure 1.12c). The item labeled yes is framed by a
gray box as a way to indicate it is selected. Release the red button. The
workspace will disappear.

If you were able to follow the example, you successfully created a
new view on the screen, used the text editor, evaluated an expression,
and closed the view.

21
1.3 Try It, Just to See

Figure 1.12a Bui

S y 51 e m Τ ra η s c ri ρ t

Worl· space I

This is some text tl
workspace.

This is some text t
workspace.

System Workspace Iji

Srnalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp.

All rights reserved.

This is some text that has been
typed into a workspace.

y η e w: ϋ.
ut: (FileStream
a s t ρ a re η t. s ο u re e s'),

Figure 1.12b

S y s t e rn Τ ra n s c ri ρ t

Workspace

This is some text tl
workspace.

This is some text t
workspace.

3+4

System Workspace!!

Smalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp.

All rights reserved.

y new: 2.
ut: (FileStream
a s t ρ a re η t, s ο υ re e s').

under
move
frame

[collapse]

This is some text that has been
typed into a workspace.

22
Introduction to the Book and the System

Figure 1.12c 100

SystQm Transcript!

Wort-spacel

This is some text tl
workspace.

This is some text t
'/vorl· space

System Workspacel

Smalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp.

All rights reserved,

3 + 4

y new: 2.
ut: fFileStream

Contents have not been saved, Are you
certain that you want to close?

This is some text that has been
typed into a workspace.

jurces').

1.4
Stopping a
Work Session

When you are ready to stop using the system, you choose a menu com-
mand quit.

Move the cursor so that it is over the light gray background. Press
the yellow button to obtain the menu and move the cursor so that the
item quit is highlighted (Figure 1.13a). Release the button.

Figure 1.13a 010

System Transcriptl;|

restore display
exit project

project
file l i s t

browser
w ο rks ρ a c e

system transcript
s y s t e m w ο rks ρ a c ei

save

S y s t e rn W ο rks ρ a c e l

Srnalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp,

All rights reserved,

Create File System

SourceFiles *• Array new: 2,

SourceFiles at: 1 put: (FileStream

ο I d Fi I e Ν a m e d: 'la s 11 a s t ρ a re η t, s ο u re e s').

23
1.4 Stopping a Work Session

Another menu appears (Figure 1.13b), giving you three command
choices.

Figure 1.13b 000

3ystem Τranscr ip11 System Workspace

Smalltalk-80 of April 1, 1983

C ο ρ y ri q h t f c) 19 8 3 : '• e ro • C ο rp.

All rights reserved.

Create File System iiijjil

Source Files *- Array new; 2. i;i:ij;

SourceFiles at : 1 put: (FileStream jiijjii

ο 1 d Fi 1 e Ν a m e d: Ί a st lastpa rent,sources'), ijiiiii

;;;i::i!|:;;ilj;|ii;i;:|;;;;:ij;ji:i; b a v e , t h e n q u i t

iiiiliiiiiiiiiiiiiiiiiiiiiiUiiiiiii! Q u i t , w i t h o u t s a v i r q

;ί&;:ί;ί£ί;ϋ!:!ϋ:ί;ί;ίίί;;ί;;ί; C o n t i n u e ^

iiiiiiiiiilliiliiiiliiiii

Save, then quit

Quit, without saving

Continue

Creates a snapshot as described later in this section, and

then takes you out of the system.

Takes you out of the Smalltalk-80 system. (Each imple-

mentation of the system will differ as to what happens

next. In the Xerox systems, you are returned to the Xerox

Executive. You then type quit followed by a "carriage re-

turn" to blacken the screen.)

Erases the menu and continues your use of the system.

Choose one of these commands by moving the cursor over the menu,
press the red button, move the cursor until the item you prefer is
highlighted (Figure 1.13c), and then release the button.

Figure 1.13c 100

S y s t e m Transscr ipt | System Wort s p a c e l

Smalltalk-80 of April 1, 1983
C ο ρ y ri q h t (c) 19 8 3 " e ro • C ο rp.

All rights reserved.

Create File System

SourceFiles

SourceFiles at

old File Named:

Array new: ^.

1 put: (FileStream

I a s 11 a s t ρ a re η t, s ο υ re e s'),

24
Introduction to the Book and the System

Clicking the red button outside the boundaries of the menu will also
erase the menu and allow you to continue your use of the system.

Saving
Information

There are times when you will save the current state of your work us-
ing a command in the user interface to create a snapshot. What you
save is a version of the system image, that is, the compiled methods
(the system ones and any you may have added to the system), all other
system objects, and a representation of your current display screen.
This saved image is referred to as a snapshot, and is stored on a file
named

snapshot.im

If you create a snapshot and then quit, you can use the saved version of
the system, rather than the original image, by executing the run file
with the name snapshot.im as its single argument. Most Xerox systems
include a command file for this purpose, so that you simply type

©snap.cm

and then press the "carriage return" key.
Sometimes more than one user will share a computer and its disk

space. Each may wish to maintain their own snapshot. Some care must
be taken to manage this situation by maintaining both the "snapshot"
file and "changes" file (backing up on a separate disk or changing the
name on the current disk). Both files must be maintained in a coordi-
nated way because the snapshot refers to source code written on the
changes file. When you restart a snapshot, you must also be sure to use
the same run file and the same sources file that were used when the
snapshot was created. See Chapter 23 for more details about the coordi-
nation requirements.

Π Create a Snapshot Try to create a snapshot. There are two ways.
Follow the instructions for stopping your work session given earlier and
choose the menu item Save, then quit. Alternatively, choose the item
save. That is, move the cursor over the light gray background, press the
yellow button to obtain the menu, and move the cursor so that the item
save is highlighted, as shown in Figure 1.14a. Release the button.

A view called a prompter appears (Figure 1.14b). The name of the
current snapshot image file shows in the prompter. Let's assume that
you wish to use this same name. With the cursor inside the lower half
of the prompter, press the yellow button and move the cursor so that
the item accept is highlighted (Figure 1.14c). Release the button to
choose the displayed name as the name of the snapshot. As an alterna-
tive to choosing the command accept to complete your response, you
can type the "carriage return" key.

1.4 Stopping a Work Session

System Transcript}!!!

restore display
exit project

project
file list

browser
workspace

system transcript
[system works ρ a c el

Srnalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp.

All rights reserved.

Create File System

SourceFiles <- Array new: 2.

SourceFiles at: 1 put: (FileStream

oldFileNamed: 'lastlastparent.sources'

Figure 1.14a

Figure 1.14b

a y s t e m W ο rks ρ a c e

Srnalltalk-80 of April 1, 1983

Copyright (c) 1983 Xero • Corp

All rights reserved.

Create File System

SourceFiles <- Array new: 2.

is at : 1 put: (FileStream
Enter name for irnaqe file:

π e d: Ί a. s 11 a s t ρ a re η t. s ο υ re e s' ι

Sy31em Workspace I

Figure 1.14c

Enter η am

again
undo
copy
cut

paste

Srnalltalk-80 of April 1, 1983
Copyright (c) 1983 Xerox Corp.

All rights reserved.

Create File System

SourceFiles *• Array new: 2.

• ^ s at: 1 put: (FileStream
i.ge file: ned: 'last last parent, sources'1!.

26
Introduction to the Book and the System

The system now takes control to create the file. The cursor changes
first to a slanted arrow with a star attached, meaning execution is tak-
ing place. It then changes to an hourglass shape, meaning "wait." If
you make a snapshot prior to quitting, then you will be taken out of the
Smalltalk-80 system once the snapshot file is created. Otherwise, the
cursor shape changes back to the normal slanted arrow shape and you
can continue working.

In some of the Xerox systems, the screen turns to white while the snapshot file is
being created. This is done to improve the speed with which the disk interactions
are carried out.

When the prompter appears, you can choose to change the name of
the file into which the image is copied. Simply edit the bottom text
subview of the prompter before you choose the yellow button command
accept (see Chapter 3 on how to use the text editor). The system will
copy the existing changes file into a file whose name is the one you
typed followed by a period and then the characters changes; the image
file name is the name you typed followed by a period and then the
characters im.

You must respond to the prompter. If you move the cursor outside
the prompter boundaries, the prompter will "flash" or "blink" to indi-
cate that a response is required. If you have changed your mind and do
not want to create a snapshot, then delete all the text from the prompt-
er response area and choose the yellow button command accept. The
prompter will disappear and you can continue using the system.

1.5
Summary of
Terminology

button

red button
yellow button

blue button

button action
press
release
click

double click

Button on a pointing device, or function key on a keyboard,
that is used to request some action.

Used to select information. (Left button in all illustrations.)

Used to get a menu for editing the contents of a view.
(Middle button in all illustrations.)

Used to get a menu for editing the view itself. (Right but-
ton in all illustrations.)

The physical use of a button.

Push and hold the button down.

Remove finger from button, letting the button up.

Press the button, then release it, without moving the
cursor.

Click two times in succession, without moving the cursor.

confirmer

control manager

cursor

file

changes file

image file

sources file

menu

message

method

mouse

object

prompter

scroll bar

snapshot

subview
system image

view

27
1.5 S u m m a r y of Terminology

A "binary-choice" kind of menu, that is, a menu with two
items from which to choose.

A system object that maintains a list of screen views; it
lets you point to a view and interact with either the view
itself or with information inside the view.

A locator of information on the display screen, presented
as a small graphical image, superimposed on the screen
and controlled by a pointing device.

Refers to a sequence of characters on an external storage
device, such as a disk.

Initially an empty file; when the user interacts with the
Smalltalk-80 system, each action that involves evaluating
an expression is stored in this file.

A file that contains the compiled form of each method and
the initial bitmap that appears on the screen when the sys-
tem is installed.

A file that contains the source text for each method in the
system.

A list or collection of selectable items; choosing an item
from a menu invokes some action.

A request for an object to carry out one of its operations.

A procedure describing how to perform one of an object's
operations.

A pointing device that the user manipulates in order to
move the cursor.

A component of the Smalltalk-80 system represented by
some private memory and a set of operations.

A "fill-in-the-blank" kind of menu in which you must type
your choice.

A menu associated with a screen view; you use a scroll bar
to specify which part of the available information you want
displayed in the view.

A file in which you save the current state of your
Smalltalk-80 system image.

A view contained as a subpart of another view.

A set of compiled methods and global variables, and the
initial display screen to be shown when the system is first
installed.

A rectangular area on the display screen in which to ac-
cess information.

28
Introduction to the Book and the System

active view
collapsed view

standard system
view

The view in which you are currently working.

A standard system view that displays only its label part,

but can be selected and expanded to show the entire view.

A view that provides standard interface functions for ma-

nipulating itself, for example, for moving, framing, collaps-

ing, and closing. 2
Basic User Interface
Components

2.1 Display Screen Visual Cues
Cursors
Highlighting
Flashing Screen Areas

2.2 Designating Rectangular Areas on the
Display Screen

2.3 Menus
Scroll Bars
Confirmers
Prompters

2.4 The System Menu

2.5 Standard System Views
Standard Blue Button Menu

2.6 Summary of Terminology

30
Basic User Interface Components

2.1

In the Smalltalk-80 programming environment, a bitmapped display
screen is used to present to the user graphical and textual views of the
information about objects. Menus and views are the primary ways in
which objects are visually presented. A cursor is used to select items in
menus or in parts of a view.

Display Screen
Visual Cues

Cursors

A cursor takes on different shapes in order to provide visual feedback
about where you are pointing and what system activities you are cur-
rently doing. Highlighting is used to indicate menu, view, and text se-
lections. Flashing screen areas draw your attention to attempts to
initiate inappropriate actions.

There is only one active cursor and it is controlled by the pointing de-
vice. In the following table, each cursor is listed with its name, its visu-
al form, and its typical use in the system. The cursor takes on different
shapes when it is used in editors for text, pictorial images (Form Edi-
tor), and magnified images (Bit Editor); in controlling the views on the
screen; and in interacting with the external file system.

name image use

normal

execute

origin Γ

corner J

The cursor looks like this most of
the time. The point of cursor selec-
tion is at the upper left corner, at
the tip of the arrowhead.

Wait. The system is executing
some time-consuming expression.
During this time, you cannot do
anything else.

Indicates that you should desig-
nate the top left corner of a rect-
angular area by moving the cursor
to where you want, and then
pressing, but not releasing, the red
button.

Indicates that you should desig-
nate the bottom right corner of a
rectangular area by keeping the
red button depressed while you
move the cursor to where you
want the corner to be, then releas-
ing the button.

31
2.1 Display Screen Visual Cues

read

write

crossHair

down (previous
information)

up (next
information)

marker (jump)

wait

thumbs up

thumbs down

Wait. Information is being read
from an external file.

Wait. Information is being written
on an external file.

In the Bit Editor, indicates the lo-
cation of the bit at which editing
will occur.

In a scroll bar, indicates scrolling
the text to see the preceding text.

In a scroll bar, indicates scrolling
the text to see the succeeding text.

In a scroll bar, indicates the pro-
portional location to which you
want to jump.

Wait. The system is carrying out
some file operation that is time
consuming.

Answer yes in the confirmer.

Answer no in the confirmer.

The Form Editor prefers to let the cursor take on arbitrary shapes that
depict the current painting tool. To do this, the cursor is made blank,
and the editor itself provides an image of the painting tool at the loca-
tion of the cursor. The confirmer uses the cursor in the shape of a hand
with either thumb up or thumb down, depending on which item is se-
lected.

Some versions of the system include storage reclamation in the form
of a compactor; when compaction is taking place, an animated image of
a cartoon character appears.

Class Cursor is defined in the Smalltalk-80 system as the representation of cursor
forms. Cursor knows about several cursor forms that are predefined in the system
and used in the interface. With the exception of the last two Cursors, the name of
the cursor given in the preceding table is also the name of the unary message that
should be sent to Cursor in order to gain access to the instance, for example, Cursor
normal. Since a cursor is a kind of Form, it can be edited by sending it the message
edit or bitEdit. See Chapter 7 "How to Make Pictures" to learn how to use the editors
(the Form Editor and the Bit Editor) that you access in response to these messages.

Sending the message show to an instance of class Cursor sets the form of the visible
cursor to be that of the instance. For example, sending the object, Cursor normal,
the message show, makes the visible cursor look like a slanted arrow (as explained
in Chapter 6, sending such a message directly involves typing the expression Cursor

32
Basic User Interface Components

normal show in a workspace, selecting it using the red button, then choosing the
yellow button command do it. The expression Cursor normal returns an instance of
class Cursor; all instances of Cursor respond to the message show.) You can create
cursors, instances of class Cursor, and use them as visual cues in your applications
systems.

In using the Smalltalk-80 system, you will select various views or parts
Highlighting of views. For example, you will often select a sequence of characters us-

ing the text editor. When you do so, the system will highlight the se-
quence to indicate which one will be affected by the next editing
command. Similarly, when you press a button to obtain a menu to
choose one of its items, the system will highlight an item to indicate the
current selection; the current selection is the one you choose by releas-
ing the button. And when you select any standard system view, the sys-
tem will highlight its label (located just above the view's top left corner)
to indicate that it is the active view.

When you invoke a menu, the current selection is the item that you chose the last
time you obtained this menu.

To highlight a selection, the system complements it. In
complementing, the black bits on the screen are turned to white, and
white bits to black. In particular, black text on a white background is
turned to white text on a black background.

All views except the single active one are "inactive." Selections in in-
active views are generally not shown. Selections in menus that are tex-
tual lists are still shown, but their visual emphasis is "toned down" a
little—the background of the selection is changed from black to a gray
tone.

As a design decision, standard system views allow for only one active view. Using
the multitasking capabilities of the Smalltalk-80 system, you can create multiple
simultaneous activities, including "active" views that operate in tandem with sys-
tem views.

Figure 2.1 shows examples of highlighted text within a sequence of
characters (in the active standard system view labeled System
Workspace), several lists of items with highlighted selections (in the in-
active standard system view labeled System Browser), an inactive stan-
dard system view (labeled Project), and an inactive standard system
view labeled System Transcript. Menu items that appear in inactive
standard system views are highlighted using a gray background.

33
2.1 Display Screen Visual Cues

Project I

This project gives

access to several

e-arnples of Browser;

Change Management and Crash recovery

"Create a blank view for change

recovery,'

"Create a view for change recovery

from a given file' L·

C h a n g e Li s t V i e w open Ο π: (C h a n g e Li s t

new recoverFile: (FileStrearn oldFileNarned:

'fileName')).

"After a crash, crea.te a view to brows*

changes sine* tne lest snapshot:'

S ν stem Browser

Interface-
Interface-
Interface-
Interface-
Interface-

Browser
•Inspectc
•Debuggs
File Mod
Transcr

'JFiFilllnThsBIa nl· Oc

FilllnTheBlankCont
FilllnTheBlankView

instance liiiiii

instance creation e · ample 1

e · arnpleG

example 2

"Example waits for you to click red button somewhere on the screen,

The

view will show where you point, Terminate by choosing menu

command accept or

typing carriage return,"

FilllnTheBlank

request: 'Type a. name for recalling a source Form,"

display At: Sensor wait But ton

Figure 2.1

34
Basic User Interface Components

Flashing Screen
Areas

A flashing area refers to an area of the display screen rapidly alternat-
ing its black and white bits so as to draw your attention to it. This is
used in the programming interface to indicate that what you are trying
to do is currently disallowed or not appropriate. Flashing will occur, for
example, if you attempt to invoke a menu where no such menu is avail-
able, or if you do not complete a response to a confirmer or a prompter.

2.2
Designating
Rectangular
Areas on the
Display Screen

Several interactions in the Smalltalk-80 system expect you to designate
(to show location and size of) a rectangular area of the display screen.
When this happens, the system will jog your memory by changing the
cursor shape to look like the top left corner of a rectangle. A possible
screen image is shown in Figure 2.2a.

Figure 2.2a

After you have moved the cursor to where you want the top left cor-
ner of the rectangular area to be, press and hold down the red button.
In response, the cursor will change shape again, this time to look like
the bottom right corner of a rectangle. Where the corner first appears
will delimit the minimum-sized rectangle for that particular kind of
view. The cursor is shown on the screen in Figure 2.2b.

While still holding down the red button, move the cursor around.
You will see that, as the cursor moves, a flashing image of the rectan-
gular area changes correspondingly on the screen. The area shown al-
ways maintains any minimum size that may have been assigned by the
constraints of the view that will fill the area. When you are satisfied
that the selected area is the size you want it to be, release the red but-
ton. A possible resulting workspace is shown in Figure 2.2c.

35
2.3 Menus

Figure 2.2b

Figure 2.2c 000

A

2.3

Menus A menu on the display screen is similar to one in a restaurant: it shows
you the available items from which to choose. An item in a menu repre-
sents a message. The item workspace in one of the menus you used in
Chapter 1, for example, represents a message that creates a new view
in which text can be created and edited. In the Smalltalk-80 interface,
menus are displayed as lists of words or of phrases.

Menus come in several varieties, including fixed and pop-up. Exam-
ples of fixed menus were shown in the view labeled System Browser in
Figure 2.1.

36
Basic User Interface Components

• To make a selection in a fixed menu, place the cursor over the de-
sired item and press the red button; this will highlight the item.

• When you release the button, the system will carry out the action
corresponding to the highlighted item, leaving the selection
highlighted until you select a new item.

• To deselect the current selection without choosing another item,
simply choose the same item again (that is, move the cursor over
the item and click the red button).

To allow best utilization of space on the display screen, many menus in
the Smalltalk-80 system have been designed to be pop-up menus. Fixed
menus are already on the screen; pop-up menus appear when you press
the appropriate button. The menu displays itself directly beneath the
cursor. To see a pop-up menu, move the cursor into the background
area of the display screen, outside the boundaries of any view. Press
and hold down the yellow button. A pop-up menu will appear. (If you
tried the various examples in Chapter 1, you have already seen several
pop-up menus.)

In order to make a choice, continue to hold down the button, move
the cursor around until the desired item is highlighted, and release the
button. When you release the button, the menu will disappear. In order
to make no choice, continue to hold down the button, move the cursor
outside the menu area until no item is highlighted, and release the but-
ton.

Another variety of menu is one that appears in response to some
user action. This kind of menu remains on the screen until you either
choose an item using the red button, or until you click with the red but-
ton at a location outside the menu area. One example is a confirmer.
This is a menu with a noneditable text subview that describes a binary
choice, and two items: yes and no. If you create a workspace, type some
text, and then try to close the workspace, a confirmer will appear to
verify that you want to delete unsaved information. Recall that this ex-
ample was presented to you in Chapter 1. Another example is the menu
that appears when you decide to stop your work session. As described in
Chapter 1, when you choose to stop a work session, a menu appears
from which you can choose to create a snapshot, quit immediately, or
change your mind.

A particular kind of fixed or pop-up menu is called a list menu. List
menus appear as a sequence of lines, each one containing a menu item.
For aesthetic purposes, and to help identify groups of items, lines of
text in a list menu may be separated by a drawn line. Fixed list menus
are used for choosing class names and messages in a system browser,
for choosing class message pairs in a message-set browser or a
debugger, and for choosing variable names in an inspector. (The differ-

37
2.3 Menus

ent browsers, debuggers, and inspectors, will be described in detail in
subsequent sections.) List menus appear in standard system views in re-
sponse to your pressing the yellow or blue button. If you press the yel-
low button while the cursor is in the background gray area, the list
menu we refer to as the System Menu will appear (see Section 2.4). You
can create different standard system views by selecting items from the
System Menu.

If a menu flashes when you try to make a selection, it has become
locked. The system will lock a menu when you have not yet completed
the activity associated with your current selection. This flashing is used
as one of the ways to indicate that you have been editing text, but have
not yet issued the command cancel or accept. (The use of a confirmer is
another way the system indicates that text has not been saved.) The
locked menu will become unlocked as soon as you properly complete the
associated activity. Most of the subviews of the system browsers, which
are the views for accessing class descriptions, fall into the category of
lockable menus.

Whenever the user interface directions say that you should choose an
item from a pop-up menu, the directions will state which button to press
(yellow or blue) and which command to choose. Selection in fixed menus
is done using a red button.

A view on the screen may not be large enough to display all the infor-
Scroll Bars mation appropriate to that view. Additional user interface control is

given to such views in order to assist you in exploring all the informa-
tion. Especially in views of textual information, this control is provided
in the form of a scroll bar. Assume you wish to examine a large docu-
ment of information, and that you have created a view on the screen
for this purpose. The view is likely to be too small to display all of the
document. So a rectangular area known as a view for often called a
window) is defined by mapping from the area allotted on the display
screen to a corresponding-sized area of the document. The mapping de-
termines how much document information can actually be displayed in
the screen view. The purpose of a scroll bar is to change the area of the
document that can be seen in the view.

A scroll bar is a rectangular area, displayed adjacent to the left side
of the view it controls. The scroll bar appears in the active view only
when the cursor is actually inside the view. If you move the cursor out-
side the view (without pressing a button), the scroll bar will disappear.
It will appear as soon as you move the cursor back inside the viewing
area. Thus the scroll bar is a useful visual cue that the view will notice
your typing or button pressing. Scroll bars appear only in those views
for which scrolling is appropriate, typically in any view in which text
can be edited or in list menus.

38
Basic User Interface Components

The length of the scroll bar area is meant to represent the length of
the entire document that can be examined. Inside the area is another
rectangular area filled with a light gray tone. The length of this gray
area represents the height of the window onto the document (as illus-
trated in Figure 2.3). The gray area is located within the scroll bar at a
point relative to the location of the window: if the gray area begins at
the top of the scroll bar, then the window is at the beginning of the doc-
ument. If the gray area fills the entire scroll bar, then you can assume
that all of the document is currently displayed (see Figure 2.4).

Figure 2.3

This is the document
with text in it. This
is the beginning of the
document,

This is the part
of the document that
is displayed,

This is the end.

This is the part of the
document that is displayed,

Figure 2.4

window at
the bottom of
document

window at
the top of
document

window
shows
entire document

39
2.3 Menus

You can change which part of the document is displayed by moving
the window through the document. This action is called scrolling. It is
done in one of three ways.

scroll next

1
scroll previous

1
jump

The line of text nearest the cursor is moved to the top of
the view. Move the cursor into the scroll bar area, in the
right one-third of the rectangle and outside of the gray
area. The cursor shape becomes that of an up arrow. Click
the red button. Scrolling occurs.

The line of text at the top of the view moves to become the
line nearest to the cursor. Move the cursor into the scroll
bar area, in the left one-third of the rectangle and outside
of the gray area. The cursor shape becomes that of a down
arrow. Click the red button. Scrolling occurs.

Displays a view of the document beginning with a location
in the document relative to the gray area in the scroll bar.
Move the cursor into the scroll bar area, in the middle one-
third of the rectangle and outside of the gray area. The
cursor shape becomes that of a right arrow. Press the red
button and hold. The gray area moves to the cursor loca-
tion and then tracks the cursor until the red button is re-
leased. The displayed document jumps to the appropriate
location. While the red button remains pressed, a lighter
gray image is left in the scroll bar area to indicate the pre-
vious position of the gray area.

In an earlier design of the scroll bar, jumping was done by moving the cursor into
the gray area. The cursor shape changed to a small dot. While the red button was
pressed, you moved the gray area to the desired location. This design was aban-
doned because users found it difficult, if not impossible, to grab the gray bar when
it was very small. Another design that has been used in an application was to di-

40
Basic User Interface Components

Confirmers

vide the scroll bar into three parts horizontally, rather than vertically. When the
cursor was in the small top part, the resulting action was to scroll next; when the
cursor was in the small bottom part, the resulting action was to scroll previous. As
programming exercises, you might like to experiment in creating different types of
scroll bars.

Π Practicing To start learning how to use the Smalltalk-80 system,
try using the System Menu. Get the menu by first moving the cursor
into the light gray background area, then pressing and holding down
the yellow button. This will cause a pop-up menu to appear. As long as
you keep the button down, you can move the cursor around in the
menu, deciding between various selections.

You don't actually choose the highlighted item until you release the
button, so be sure you have selected the item you want before you re-
lease the button. If you decide you don't want to make any choice, sim-
ply move the cursor out of the menu area completely (so no item is
highlighted) and release the button. The menu will disappear.

Practice getting the System Menu and moving around in it. Become
comfortable using the System Menu without making any selections, so
that it becomes a habit to move the cursor outside the menu when you
are undecided. Read the subsequent sections to find out what choosing
each of the System Menu items will do.

A confirmer is a "binary choice" menu. That is, a confirmer is a menu
with two items in it, where each choice represents opposing points of
view. A confirmer consists of three parts, the top part is a statement or
question; the other two parts are possible opinions about the statement
or answers to the question.

An example is shown in Figure 2.5. It is a confirmer that appears
when you choose the yellow button command close in a workspace, af-
ter you have typed some text without accepting it. Choose one of the
answers, yes or no, by placing the cursor over the answer and clicking
the red button.

Figure 2.5 000

Thio ίο 5ΟΠΊΘ tQ • ΐ ^

ContQnts have riot been saved. Are you

certain that you want to close?

yes ^ no

41
2.4 The System Menu

Prompters

A prompter is a "fill-in the blank" menu. That is, a prompter is a menu
in which you must type your choice. It consists of two parts: the top
part is a statement or question, and the bottom part is a workspace in
which you type.

Two kinds of prompters are available in the system, as shown in Fig-
ure 2.6. One has a label and acts like a standard system view, with both
yellow and blue button menus accessible. This kind of prompter is
called a scheduled prompter. The other kind of prompter is unscheduled.
It preempts activity and requires you to give a response. You press the
"carriage return" key to indicate that your answer is completed. To
give no response, type only the "carriage return" key. Unscheduled
views like this prompter do not have a title label.

Figure 2.6

1
'•ISi

Type a. response

Type the name of the file,

chapter 1, text

Type a. n am Θ for recalling a. source Form.

A

2.4

The System
Menu

As noted earlier, the menu obtained by moving the cursor into the light
gray background area and then pressing the yellow button is called the
System Menu. It is shown in Figure 2.7. Each item or command in the
System Menu is described briefly.

42
Basic User Interface Components

Figure 2.7 010

restore display
e.-.it project

project
file list

browser
workspace

system transcript
s y s t e m w ο rks ρ a c e

save
quit

restore display

exit project

project

file list

browser

Redraws the display, getting rid of anything which is not

known to the control manager. Often the display screen

gets cluttered with the side effects of drawing or the re-

sults of erroneous actions. Whenever things look especially

bad, you can redraw the views by choosing this command.

Another effect of restoring the display is to reset the cursor

to the slanted arrow (normal) cursor.

It is possible to create several different collections of views

of information, each one called a project. Each project

takes up an entire display screen for the presentation of its

views. A project is accessed by creating a project view and

then choosing the yellow button menu command enter.

Once inside a project, it is possible to return to the project

from which it was entered by choosing this command. At

the topmost project, this command is equivalent to restore

display. See Chapter 4 "How to Use Projects" for a more

detailed description.

Creates a new project view. You are asked to designate a

rectangular area in which the project view is to be

displayed.

Short files can be read, edited, updated, and evaluated, us-

ing a view that is created by choosing this command. You

are asked to designate a rectangular area in which a file

list view is to be displayed. See Chapter 22 "The File Sys-

tem" for a description of this view.

A browser is a special view that allows you to access hier-

archically-organized information. Choosing this command

opens a system browser that allows you to traverse infor-

43
2.4 The System Menu

workspace

System Transcript

system workspace

save

quit

mation about the Smalltalk-80 system itself. You are asked
to designate a rectangular area in which the browser view
is to be displayed. See Chapter 9 "Finding Out About Sys-
tem Classes" for a description of this view of system infor-
mation.

Creates a blank area in which to edit text. You are asked
to designate a rectangular area in which the workspace is
to be displayed. See Chapter 3 "How to Use the Text Edi-
tor" for a description of how to use this view.

Most display screens in a Smalltalk-80 system have a spe-
cial view known as a System Transcript. Because messages
sent to the object Transcript affect this view, methods can
contain expressions that print information in the System
Transcript in order to create a form of user feedback. A
view of the System Transcript is created by choosing this
command. You are asked to designate a rectangular area
in which the transcript view is to be displayed. See Section
3.4 "The System Transcript" for a description of this view.

A special workspace is available that contains many useful
message expressions that you can edit and evaluate, nota-
bly expressions about accessing files, querying the system,
and recovering from a crash. You are asked to designate a
rectangular area in which this special workspace is to be
displayed.

Periodically you might decide that you have done a lot of
work that you want to save. One way to save your work is
to create a complete image of the system (see Section 1.4).
A new system image is created in an external file whenev-
er you choose this command.

When you are done working, choose this command (see
Section 1.4 "Stopping a Work Session").

Q Keep Practicing Several exercises are provided here so that you
can practice with menus, scrolling, and creating workspaces.

Exercise 1: In the System Menu, choose workspace (Figure 2.8a).
Designate a rectangular area in order to specify the location and size of
a workspace (an example workspace is shown in Figure 2.8b). Do this
several times so that there are three or four workspaces on the screen,
some overlapping others (as shown in Figure 2.8c). The last workspace
that you created is the active one. Notice that the label of this
workspace is highlighted and that a scroll bar appears at its left side.

44
Basic User Interface Components

Figure 2.8a 010

::·::::::::::::::::ί::::::::::;:::::;:::::::::::::::;

:;:;:;:;:;:;i;;f:;:;:;:>::::f:;:;:::::;:;:::;:;:;:-:

•.::•:•·.'•:.::•:':::.•/••.'•:•:•:••.'•:•:'••.••:•:'•·.:•.••.':••.:•.

: : ; : ; : ; : ; : ; : ; : ; : : : ; : ; : ; : : : ; : : :) : : : ; : : : ; : : : ; : ; : : : ; : ; : •

• : • • . - • . ' • • . • • . ' • • . * - • . • •.·::·.:-.;ι.:ι.:·.:-.:-.:ι.:'.:·.:ι.:;:·.::·:-::::

:::::::::":::::::·::ί::>:::::;::·:::;;·:::::::':::::

υ:::;:;:::::::;:;:·:::::;:::·:::·:::::·:::::::!:::·;·;

restore display
exit project

proiect
file" list

browser

system transcr^jit
s y s t e rn w ο rks ρ a. c e

save
quit

• : : : : : : : : : : : : : : ; : ; : : : : : : : : : ; : : : : :

: : : : : : : : ! : ; : : : : · : • ; : ; : · : ; • : : ; : : : ; : ; · ; : ; ; ; : ! : ; • ; : ; : ; : ; : ; :

·ΐ!:!:!:;ΐ;:·:;:!ϋ!::;ϋ:;ϋ:!:;ϋ:·:;:!:;ϋϋ:::;::;;ϋ:;ϋ:;ϋ;::;!;:;:·:::!:;:;:·!·:ΐ:;ϋϋϋ:!:;ϋ:·!·:!:ϋ;:·ϋ;ϋ::;:;:ϋϋ::::::

Figure 2.8b

Figure 2.8c

Γ"

45
2.4 The System Menu

Move the cursor outside the active view and into the gray back-
ground area. Click the red button. Notice, as shown in Figure 2.8d, that
the workspace is no longer active, in particular, that its label is no
longer highlighted. We refer to this action as deselecting a view. Typi-
cally, however, you do not explicitly deselect a view. Rather, the
deselection takes place automatically when you select another view.

Figure 2.8d
100

Workspace Ιϋϋϋϋ

Worf space]

iilliiiliiil WorRspaLceΙιίΗϋΙϋΙϋΗϊΐΒΠΗΪΠϊΗΠΗιΗΜΜϋΗΗίΜΜΝΪ

Workspace

Suppose no view is active (which would be true if you click the red
button in the gray background area outside of all the views). Move the
cursor into a workspace. Without your pressing a button, this
workspace will become the active view. When all the views are inactive,
whichever one you place the cursor into next becomes the active one.

Place the cursor in one of the other workspaces and click the red
button. We refer to this action as selecting a view.

A view can be deselected as described, or as a result of a message sent by selecting
a menu item, or as a result of evaluating an expression. You can deselect a view by
moving the cursor outside it, into the gray area or into another view, and then
clicking the red button. Actually, you can press the yellow or blue button as well,
which, in addition to deselecting the active view and selecting a new view if the
cursor is inside one, may cause a menu to appear.

Exercise 2: To practice scrolling, choose the command System
Workspace from the System Menu, or, if you have a workspace labeled
System Workspace already open, select it. The System Workspace
should have a lot of text in it. Try scrolling using it. Learn how to con-
trol the positioning of the cursor by watching for the change in cursor
shape. Make the workspace larger by choosing the command frame
from the blue button menu. You will be asked to designate a rectangu-
lar area. Notice the change in the scroll bar.

46
Basic User Interface Components

2.5

Exercise 3: Make an existing or new workspace active. Type a lot of
keys on the keyboard and notice that the characters are displayed in
the workspace; do not worry about typing correctly or meaningfully.
Notice that the scroll bar does not change while you are typing. The
scroll bar only changes (is updated) when you make a new selection, or
you move the cursor into the scroll bar area or out of the view bound-
aries and back in again. Do not worry about editing the text just now.

Deferred update of the scroll bar can be changed so that the update occurs while
you are typing. Once you acquire Smalltalk-80 programming expertise, you might
try to make this change to text views.

Move the cursor outside the workspace without pressing a button.
Type some keys. The characters do not show up in the workspace; they
do not show up anywhere. Move the cursor back into the workspace
and notice that the characters now appear.

The cursor must be inside the active (text) view when you are typing
keys on the keyboard in order to see the corresponding characters
displayed immediately in the view.

Select a different workspace. Again, type some keys on the keyboard.
Press the yellow button and notice the menu that appears. Release the
button without choosing any command. Select another workspace. Ob-
tain the yellow button menu; notice that it contains the same items in
both workspaces.

Standard There are a number of kinds of views that can appear on the display
System Views screen of the Smalltalk-80 system. Most of these are standard system

views, meaning, among other things, that they are seen as rectangular
areas with labels above the top left corner. They become active when
you place the cursor inside their bounded area and click the red button.
Each standard system view provides a general interface accessed
through a pop-up menu. Standard system views can be moved,
stretched, and removed from the screen; other abilities depend on the
particular kind of view. Abilities shared by all views are presented in
the blue button menu; abilities of a particular kind of view are present-
ed in the yellow button menu.

Access to the currently scheduled standard system views is
maintained by a system component called the control manager. The ref-
erences to views are stored in the control manager in a seemingly arbi-
trary order; ordering occurs as a by-product of the order in which the
views are created and the order in which they become active. This or-
dering affects the way you can select views under one another.

47
2.5 Standard Sys tem Views

This control manager is referenced by the system variable ScheduledControllers.
This name reflects the fact that the control manager consists of references to kinds
of Controllers that provide interfaces to Views. The active view is always the first
element of ScheduledControllers.

Standard Blue
Button Menu

When you press the blue button while the cursor is inside a standard
system view, the pop-up menu shown in Figure 2.9 appears. Each of
these menu items represents a message to the view. They are

Figure 2.9

under

move

001

under
rn ο ν Q
frame

collapse
close

\

Since standard system views can overlap, this menu item is

a request to give control to (to make active) the view locat-

ed underneath the currently active view and underneath

the cursor location. A view can be overlapping several

views—the one that appears on top when you choose under

depends on the ordering of the references in the control

manager; under might have to be chosen several times in

order to locate the desired view. Also, a view might be un-

derneath the currently active one and not underneath the

cursor, in which case it will not be selected.

The view disappears with only its label remaining, and the

cursor changes to the shape of the origin cursor. Move the

cursor around. The label of the view tracks the cursor.

When you press the red button, the view reappears so that

the label is at the last location to which you moved it.

When you move a view, space that is simply gray area appears in its place. The
standard system does not try to keep a clean, refreshed display, since it assumes
you can clean up by choosing the command restore display from the System Menu.
Solutions to fix this problem of redisplaying hidden parts of overlapped views exist,
but were not included in the standard Smalltalk-80 system.

frame The view disappears and the cursor changes to the shape

of the origin cursor. You then designate a new rectangular

area in which the view should reappear.

48
Basic User Interface Components

Collapse The view disappears with only its label remaining, and the

origin cursor appears. Move the cursor around. The label

of the view tracks the cursor. When you press red button,

the label portion only of the view reappears on the screen

at the last location to which you moved it. This considera-

bly smaller area can be enlarged to show the full view by

selecting it and choosing the blue button menu command

frame.

Close The view disappears. Unless you have a reference to it,

that is, it is referenced by some other object, it can not be

made to reappear.

If the task in the view is not complete (typically completion is indicated
by choosing the yellow button command accept), an attempt to close the
view results in another view. This is a confirmer. The cursor moves au-
tomatically into the confirmer's area, and the confirmer becomes the
active view. The message in the confirmer is a warning that a task or
information will be lost by closing the view. If the view has several
subviews, a gray box is drawn around any information that will be lost.
An example is that a part of a system browser was changed but not
saved before the close command was chosen. The gray box surrounds
the lower part of the browser, and a confirmer appears. Choose yes to
indicate that close is really intended; choose no to continue using the
original view. If you close a view, it is irrecoverably gone.

You can only recover it if you have made a snapshot and start over using the saved
image, or if you have stored a reference to it. You can think of other messages to
the view itself to put in the blue button menu. In some of the Xerox Smalltalk-80
systems, the message edit is available. When you choose edit, you can move the bor-
ders of the subviews (either up and down for horizontal lines, or left and right for
vertical lines) in order to modify the layout of subviews within the view.

Q More Practicing Select different workspaces. Try the various blue
button commands such as under, move, and frame. Try the command
collapse and then frame again. Collapsed views save space on the screen
yet allow direct access to the task represented in the view—simply se-
lect the view and choose the blue button command frame.

Try to close a workspace in which you have typed some characters. A
confirmer view appears. Choose yes. The confirmer disappears and then
the workspace disappears.

Again try to close a workspace in which you have typed characters.
Before doing so, choose the yellow button command accept. Now try to
close the workspace. No confirmer appears; the workspace disappears.
Because you issued the command accept, the system believes you have
"saved" your work.

49
2.6 Summary of Terminology

2.6
—

Summary of
Terminology

Bit Editor

browser

confirmer

cursor

file list
flashing area

Form Editor
menu

fixed

list

locked

pop-up

system

project

prompter

system transcript

system workspace

A set of operations used to modify pictorial images that are
presented in a magnified format (8 times original size).

A view that allows you to access hierarchically organized
and indexable information.

A "binary-choice" menu, that is, a menu with two items
from which to choose.

An image on the display screen that is used to select infor-
mation such as text, menu items, or parts of a view.

A view that provides access to short files of text.

Rapidly alternating the black and white bits of an area of
the display screen (black to white, white to black).

A set of operations used to modify pictorial images.

A list or collection of selectable items.

A menu, typically associated with a view, that remains
displayed on the screen as long as the view is displayed.

A menu appears on the screen as a sequence of lines, each
containing an item; it can be of the fixed or pop-up variety.

A menu that is in a state such that you are not allowed to
change the current selection.

A menu that appears when you press a button, and disap-
pears when you release the button.

A pop-up list menu that is obtained by pressing the yellow
button while the cursor is located over the gray back-
ground area.

A collection of views of information that takes up an entire
display screen for the presentation of its views.

A "fill-in-the-blank" menu, in which you must type your
choice.

A workspace. Text in a transcript can be edited as in any
workspace. In addition, text can be printed in a transcript
as the result of expression evaluations.

A workspace that contains many useful message expres-
sions that you can edit and evaluate, notably expressions
about accessing files, querying the system, and recovering
from a crash.

3
How to Use the Text
Editor

3.1 Text Selection
Extending Text Selection Beyond the

Visible Text
Selecting Text with the Escape Key

3.2 Inserting Text

3.3 Issuing an Editing Command
Moving and Copying Text
Searching for Text
Issuing Editing Commands Using Keys

and the "Control" Key
Inserting Delimiters About a Selection

3.4 The System Transcript

3.5 Summary of Terminology

52
How to Use the Text Editor

3.1

The same text editor is used everywhere in the Smalltalk-80 system
views. Learning how to use the text editor involves learning how to:

• make a text selection

• issue an editing command using a menu or the keyboard

Note that this is a text editor for a single paragraph of text, not for a large docu-
ment. Paragraphs have extensive format and style knowledge; however, the gener-
ally-used text editor is a simple one that does not provide a menu-based interface
for changing the format nor the style. More sophisticated document-creation sys-
tems can be created that provide function-key or menu-based access to these as-
pects of a paragraph.

Text Selection Text is selected using the pointing device and the red button. Text
editing can be carried out in those system views in which the informa-
tion is textual. Examples are a workspace, a transcript, a project, a file
list, and the parts of browsers that provide editing areas for
Smalltalk-80 methods.

Select a view that contains text, such as a workspace. A small caret
(an inverted "v") appears near the point you selected in order to make
the view active. If there is no text in the view, then the caret will ap-
pear in the top left corner. Figure 3.1a shows a workspace containing
text. The caret appears at the end of the first sentence.

Type some text. Move the cursor somewhere else in the view, either
at one of the characters or between characters or at the end of the pas-
sage of text. Click the red button. The caret appears at the cursor loca-
tion or at the gap just before the character. Notice that you are asked
to point at a character or between characters, not under a character.

Move the cursor to one end of the passage of text and press the red
button (as shown in Figure 3.1b). Hold it down while moving the cursor
to the other end of the passage (Figure 3.1c). The text that is traversed
is highlighted. This activity is called draw through. It is not necessary
to traverse intermediate characters en route to the destination (that is,
when drawing through several lines). When the cursor reaches the oth-
er end of the passage, release the button (Figure 3.Id). The selected pas-
sage remains highlighted. The highlighted text is called the text
selection.

Pointing to a place in the text and clicking the red button creates a
zero-width selection. The method of clicking once between characters is
the one to use if you want to insert text. The method of drawing
through a passage of text is the one to use if you want to replace, copy,
delete, or change the font or emphasis (bold or italic face) of the text.

53

3.1 Text Selection

ίοϋο

This is a workspace t h a t
Γ ο η t a i η • s ο rn e t e • t

The t e >: t ο a n be e rn ρ h a size d
in bold, italic, underlined, or
m i χ t u re s s υ c h a s bold and
under Mined
The text can be in
different fonts,
emphasised in bold,
italics, or underlined.
The text can be in different
fonts, emphasized in bold,
italics, or underlined. 100

This is a. workspace that
*o η t a i η s s ο rn e t e χ t,

The t e χ ΐ c a π be emρha s i ζed
in bold, it-ilk, underlined, or
mixture; such as bold and
underlilned
The text can be in
different fonts,
emphasised in bold,
italics, or underlined,
The text can be in different
fonts, emphasized in l)old,
;'ta Ii.;•s, οr underlined,

Figure 3.1a Figure 3.1b

100

The t e >• t c a n b e e rn ρ h a s i ζ e d
in bold, i t a M.;, under l ined, or
rn i •·• t u re." :• u c h a s bold and
underlilned.
The text can be in
different fonts,
emphasize':! in bold,
italics, or underlined.
The text can be in different
fonts, emphasized in hold,
italics, or underlined. 000

Mi

The text can be emphasized ii
in bold, italic, underlined, or ii
mixtures such as bold and ii
underlilned. \i
The text can be in |
different fonts, |i
emphasized in bold, |j
italics, or underlined. !;
The text caii be in different ii
fonts, emphasized in bold, ij
italics, or underlined, ii

Figure 3.1c Figure 3.Id

Clicking the button twice with the cursor in the same location selects

different passages, depending on the cursor location.

To select Double click

a whole word Within a word, or just before or just after the

word if the word is not just inside a delimiter (as

demonstrated in Figure 3.2a, first click, and Fig-

ure 3.2b, second click).

54
How to Use the Text Editor

100
000

I
1

I
1

This is a workspace t h a t ii
c o n t a i n ; s o m e i e ·:ΐ. ii

The te<t can be emphasised ii
in bold, italic, underlined, or ii
mixtures such si- bold and ii
underlilned i
The text can be in ii
different font·;., i
emphasized in bold, ii
italics, iM underlined. ii
The· text can be in different ii
fonts, emphasized in bold, ii
itoiicj, or underlined. ϋ

Figure 3.2a

a delimited text

100
000

T h e t e •• t c a n b e e rn ρ hi a ; i ; e d

in b o l d , italic, u n d e r l i n e d , o r

m i :•: t υ r e s s u c h a ; b o l d a n d

underlilned.
The text can be in
different font·;.,
emphasized in bold,
it a lies, or underlined.
The tj?;.;t can be in different
fontj., emphasued in ftold,
:'tο!ics, οr underlined.

Figure 3.2b

Just after the left member of a pair of delimiters
or just before the right member (the delimiters
themselves are not selected); recognized delimit-
ers are parentheses, square brackets, angle brack-
ets, braces ("curly brackets"), single quotes, and
double quotes (see Figures 3.3a and 3.4a, first
clicks, and Figures 3.3b and 3.4b, second clicks).

100
000

Figure 3.3a

Τ hi 5 ι; a workspace that
contains some text delimited
b >

ιparentheses)

[square brackets]

angle brackets:·

'single quote'

"double quote"

100
oon

Figure 3.3b

This is a w o r k s p a c e t h a t
c o n t a i n ; some t e c t del imited

55
3.1 Text Selection

s is a workspace that
contain; some text delimited
by...

Figure 3.4a

all text in the view

100
000

This is a. workspace that
contains some text delimited
by...

(parentheses)

[square brackets]

'jingle quote'

"double quote"

Figure 3.4b

At the beginning or the end of everything in the
view (as demonstrated in Figure 3.5a, first click,
and Figure 3.5b, second click, and Figure 3.5c,
scrolling to see the rest of the text).

100
000

i
1

This is a workspace t h a t ii

C o n t a i n s some t e x t del imited i;

by... ii

(parentheses) ii

[square brackets] ii

<angle brackets':-· ;i

'single quote' ;i

"double quote" ii

•00::
0001

Figure 3.5a Figure 3.5b

56
How to Use the Text Editor

Figure 3.5c

11
I
III

Ε

mm

single quote'

double, quote"

Thir t e · t c ϋ η bs e m ρ h.? ;.: Ί e d
η bold, i'olici, underlined, or
ni · ture i ;uch β; bold and
jnderlined . ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ J

a line of text (If the line is delimited by carriage returns) at the
beginning of a line (just after a carriage return),
or at the end of a line (just before a carriage re-
turn).

Double clicking provides a faster way to make a text selection. Because
double clicking will always select the designated text, it makes it possi-
ble to select text that is not visible on the screen.

Extending Text
Selection Beyond
the Visible Text

Suppose you wish to select text that is not visible on the screen, but
that the text is not delimited in such a way that double clicking will
support selection. Try the following technique. Move the cursor to ei-
ther end of the passage of text that you want to select. Press the red
button. Hold the red button down while moving the cursor to the other
end of the passage. So far, this is the usual way to select visible text.
But the other end of the passage is not visible. You have to move the
cursor outside the boundaries of the text view (either above or below
the view). As long as you hold down the red button, the text in the view
will be scrolled (to the previous text or to the next text), and the text
that becomes visible will be selected. Keep holding down the red button
until you see the end of the passage. Don't worry about scrolling past
the end, because you can always move the cursor back into the view.
When you move the cursor back into the view, the scrolling stops. You
can then position the cursor at the desired end of the passage and re-
lease the red button.

The distance that you move the cursor outside the view affects the
speed at which the text scrolling takes place. The further outside the
view you move the cursor, the faster the scrolling.

Selecting Text
with the Escape
Key

57
3.3 Issuing an Editing Command

The "escape" key on the keyboard can be used to select text that was
typed since the last mouse click. Simply press the "escape" key when
you have finished typing. The characters you just typed will be
highlighted.

This is especially useful if, after typing in some text, you wish to
make it the current text selection so you can copy the text to another
place, or cut it, and so on.

The purpose of invoking this selection command from the keyboard rather than
from a menu is to support the fast typist who wishes to select a passage of text
that was just typed in order to issue a cut, a font, or an emphasis change command,
which may also be invoked from the keyboard. Perhaps you prefer to have an item
in the text editor yellow button menu that selects the most recently typed charac-
ters; changing the menu is an exercise you can try once you know enough about
the Smalltalk-80 system.

3.2

Inserting Text Pressing a key on the keyboard always replaces the current selection by
the typed character and automatically selects the gap following that
character. If nothing is selected, the "zero-length selection" at the caret
is replaced.

To replace a passage of text, first select it and then type the replace-
ment. The first keystroke deletes the original text. To insert between
characters, select the gap between those characters and then type the
insertion. Essentially, you are replacing nothing with something. The
destructive backspace function always deletes the character preceding
the selection, even if that character was there before the selection was
made.

3.3
Issuing an
Editing
Command

When you issue a text editing command, you are sending a message to
the text about the current selection. Selection always precedes com-
mands. Every command is executed immediately when you issue it. No
confirmation is required. Commonly-used editing commands are found
in the yellow button menu. A brief description of each follows.

again This command attempts to repeat the last replace, copy, or
cut edits you do.

58
How to Use the Text Editor

undo

010

copy

cut

paste

The main purpose of undo is to reverse the effects of the

last issued command. For example, paste in the last text

cut out; cut out the last text pasted in; delete the last text

inserted; or, if a text selection was replaced, paste it back.

(Issuing two undo commands in sequence should leave you

in the state you were in prior to the first undo.)

Place a copy of the current text selection into a buffer.

Delete the current text selection; save the text in a buffer.

This command is illustrated in Figures 3.6a and 3.6b.

Text is remembered in a buffer. Replace the current text

selection with the remembered text. Assuming the text re-

membered is the text cut in Figure 3.6a, then the next se-

quence of figures illustrates the use of the paste command.

Select the destination location (Figure 3.7a), select the com-

mand paste (Figure 3.7b), and then the inserted text be-

comes the selection (Figure 3.7c).

000
Figure 3.6a Figure 3.6b

Suppose you just selected some text (text A, such as demonstrat as
shown in Figure 3.8a) and replaced it with other text (text B, such as
illustrat as shown in Figure 3.8b). The command again will find text oc-
curring after the caret that is just like text A and will replace it with
text Β (as shown in Figures 3.8c and 3.8d on page 60). By holding down
the "shift" key on the keyboard while selecting again, the replacements
will be done as many times as is possible.

59
3.3 Issuing an Editing Command

100 i
UUUl:

I This is a illustration of the 1;

Wlor- i

υιυ

1 i

1
|l

AThis is a illustration of the i

text editor, ji

1 again 1 j:

™ i
print itl !|
accept! i
IcancelJ !:

Figure 3.7a Figure 3.7b

Figure 3.7c

Suppose you just selected some text A and cut it out. The command
again will find text occurring after the caret that is just like text A and
will select it. You can then decide to cut it. Similarly, if you copy some
text A, the command again will find text occurring after the caret that
is just like text A and will select it (thus providing a text search capa-
bility in the editor).

The again command is shared across views so that you can move into
several views in order to do the same replacement in each.

60
How to Use the Text Editor

000

This is a g^QmO^iun of the
text editor! This is strne text

used to demonstrate how to

move and how to copy text

using the text editor.

000

This is a illustration of the

text editor, This is \jme te

used to demonstrate how to

m ο ν e a n d h ο w t ο c ο ρ y t e ->•• t

using the text editor.

Figure 3.8a Figure 3.8b

010

This is a illustrator» of the

text editor. This is some text

used to demonstrate how to

move and how to copy text

using the text editor.

000

I
Thii is a illustration of the

text editor. This is some text jj

used to Q ^ ^ ^ ^ Q how to i

move and how to copy text \

using the text editor. ji

Figure 3.8c

Moving and
Copying Text

Figure 3.8d

From the menu description, you can see that there is a "buffer" of
information into which text that is typed, cut, or copied is stored. The
contents of the buffer changes whenever you type new text, or you issue
the cut or copy commands. It is possible to take information from one
view and paste it to another view because this buffer is shared across
views.

Some people refer to this buffer as the scrap. The text editor in the standard sys-
tem does not provide a way to view the information in the buffer; you can treat
viewing the buffer as a possible exercise.

Some common editing commands such as "move text from here to
there" and "copy text from here to there" cannot be issued by a single
menu command because they require two parameters: the source selec-
tion and the destination selection. They may even involve more than

61
3.3 Issuing an Editing Command

Searching for Text

Issuing Editing
Commands Using
Keys and the
"Control" Key

one view. A "move" is done by cut and paste. First, you select the
source text and choose cut. The cut command deletes the selected text
but leaves it in the hidden buffer where it can be retrieved by paste.
Then you select the destination and choose the paste command to com-
plete the move. This process was illustrated in Figures 3.6a and 3.6b.

The destination can be in a different view than the source. A copy
move is done by copy and paste, which is completely analogous to cut
and paste, but does not delete the original text.

There is no command for "searching for a sequence of characters." A
search can be done as follows. Type the sequence of characters you wish
to find, then select it and choose the cut command. Now choose the
again command. If the sequence appears anywhere after the current se-
lection (after the caret), it will become the text selection.

If one instance of the text you want to find is already visible, select
it, and choose the copy command. Then choose the again command.

Various text editing commands can be issued by pressing the "control"
key simultaneously with another key from the keyboard. When the
"control" key is combined with a number, it means change the font of
the current text selection. Conditional statements in the Smalltalk-80
language consist of the keywords ifTrue: and if False:. Since these are
frequently needed, "control" combined with "t" or "f" effectively types
the keyword ifTrue: or if False:, respectively.

A summary of the special editing keys is shown next. The symbol Ctrl
denotes the "control" key on the keyboard.

type keys action

Ctrl 0

Ctrl 1

Ctrl 2

Ctrl 3

Ctrl 4

Ctrl 5

Change the font of the text selection. The system
default is sans-serif 12-point font. Changing a
text selection to bold, italic, or underline is con-
sidered a change in font and is done by selecting
the appropriate font number. The numbers de-
pend on the current style being used.
Change the font of the text selection. The system
default is sans-serif 10-point font.
Change the font of the text selection. The system
default is sans-serif 10-point font, bold.
Change the font of the text selection. The system
default is sans-serif 10-point font, italic.
Change the font of the text selection. The system
default is serif 12-point font.
Change the font of the text selection. The system
default is serif 12-point font, bold.

62

How to Use the Text Editor

Ctrl 6

Ctrl 7

Ctrl 8

Ctrl 9

ctrlt
ctrlf
Ctrl w

"delete"
"backspace"

Ctrl -
Ctrl b

Ctrl c

Ctrl shift -

Ctrl shift b

Ctrl shift c

Change the font of the text selection. The system
default is serif 12-point font, italic.
Change the font of the text selection. The system
default is serif 10-point font.
Change the font of the text selection. The system
default is serif 10-point font, bold.
Change the font of the text selection. The system
default is serif 10-point font, italic.
Insert the text ifTrue:.
Insert the text if False:.
cut the text selection and the word preceding the
caret (typically used while typing and while there
is no text selection simply to delete the last word
typed).
cut the current text selection,
cut the text selection and the character before the
selection.
Underline the selected text.
Make the selected text boldfaced.
This is the system interrupt and should not be
typed while text editing unless a process inter-
rupt is desired (for details on such user inter-
rupts, see Chapter 20).
Remove any underline from the selected text.
Make the selected text not boldfaced.
This is a special system interrupt, used when the
system seems dead and everything else fails (see
Section 20.4).

Note that Ctrl w and "backspace" do a cut of the current text selection
and of the word or character preceding the text selection. The undo
command is supposed to be able to reverse the effects of a cut by past-
ing the saved information. However, in using Ctrl w or "backspace," two
cut actions are really taken and only the last, the word or character de-
leted, is remembered. Therefore, undo will only paste the deleted word
or character.

All fonts are instances of class StrikeFont and are stored as an array in an instance
of class TextStyle. The system default is accessible by sending TextStyle the message
default. The message fontAt: can be sent to a TextStyle to access the fonts. The de-
fault TextStyle has 24 fonts. Fonts are indexed from 1 to 24, where the first 9 are
the ones listed earlier; the one numbered 0 is actually font 10. Fonts are stored in
triples—base, bold, and italic. The system includes

fonts 10, 11, and 12—sans-serif 12 point

fonts 13, 14, and 15—serif 10 point underlined

63
3.3 Issuing an Editing Command

Inserting
Delimiters About
a Selection

fonts 16, 17, and 18—serif 12 point underlined

fonts 19, 20, and 21—sans-serif 10 point underlined

fonts 22, 23, and 24—sans-serif 12 point underlined

Suppose you want typing the "control" numbers to change the text font to a sans-
serif 10 point underlined, rather than a serif 12 point. You can change the affect of
the text editor keyboard controls by evaluating the following expressions.

TextStyle default fontAt: 4 put: (TextStyle default fontAt: 19)

TextStyle default fontAt: 5 put: (TextStyle default fontAt: 20)

TextStyle default fontAt: 6 put: (TextStyle default fontAt: 21)

Now when you type Ctrl 4 or Ctrl 5 or Ctrl 6, sans-serif 10 point fonts, underlined,
will display. Typically you should also store the fonts you replace so that you can
get them back again; either create a global variable or copy the TextStyle.

Make a text selection (including a zero-width selection), then type one
of the following control combinations in order to insert delimiters about
the text. The control combinations are toggles, that is, if the selected
text is already surrounded by the indicated delimiter, then the com-
mand removes it.

type keys insert delimiters

Ctrl [

Ctrl (

Ctrl <

Ctrl "

Ctrl '

[and]
(and)
< and >
" and "
' and '

An example of first delimiting some text using double quotes, and then
removing the delimiters, is shown in the next sequence of figures. Text
is selected in Figure 3.9a; in Figure 3.9b, the user types Ctrl " to delimit
the selected words. The text selection is the sequence of delimited char-
acters, as shown in Figure 3.9c; in Figure 3.9d, the user types Ctrl "
again to remove the delimiters.

64
How to Use the Text Editor

000

1
This is some text used to :
illustrate how to move and jl
how to 3 ^ f l 0 3 J ijjirig the ;
text editor, This i*a j;
illustration of the text editor, I;

000

1
Ι:;ί;:;:;:|:|:;:Ι:;:=:::^::;ί:::^:;Ι;Ι;:^:::^::;:::;:;:;!;:^:^:^:;:;:;:|:;::::|;::·:;:;;
HMtMMHMMMM:::^::::E:::i:i:E::::::^:::::::::i::::::i:::::::::i:::::U::::i;

This is some text used to |i
illustrate how to move and j|
how to "copy tex^' using the !i
text editor. This is a f.
illustration of the text editor, ii

Figure 3.9a Figure 3.9b

000

I
1

This is some text used to i|
illustrate how to move and r
how to " ^ ^ ^ ^ ^ ^ ^ " using the ij
text editor. This is a i;
illustration of the text editor, |

This is some text used to
illustrate how to move and
how to M M — « n using the
text editor, This is a
illustration of the text editor

Figure 3.9c Figure 3.9d

Clearly these kinds of commands could be placed on the pop-up menu as well, espe-
cially if you find it cumbersome to move from the mouse to the keyboard. There is
a tradeoff, however, in the size of the menu. Cascaded menus, where selecting an
item invokes a related menu, could be used. For example, the main text editor yel-
low button menu might include the item delimiters. Choosing this command would
invoke a new menu whose items were each of the possible delimiters. The first
menu could be left on the screen or not; leaving the first on the screen allows the
user to change his or her mind by returning to it to select another item, rather
than by aborting all action.

65
3.5 Summary of Terminology

3.4

The System
Transcript

A "transcript" is a special kind of workspace known as a text collector.
It is basically the same as a workspace in that you can use the text edi-
tor in it. In addition, it is possible to write and evaluate expressions in
which messages to store characters are sent to a text collector.

There is one special text collector that we refer to as the System
Transcript. It typically appears at the top left corner of an initial
Smalltalk-80 display. It is a standard system view, so it can be moved,
framed, collapsed, and closed. If it is open on the screen, you will some-
times see text appear, informing you of some system event. You can use
the System Transcript in the Smalltalk-80 methods that you write,
sending the System Transcript messages to store descriptions of objects
you create.

For example, type, select, and evaluate the expression

Transcript show: 'some text ' ; cr

For information on how to send messages by evaluating a typed ex-
pression, see Chapter 6. The System Transcript for the current project
is referred to by the system global variable Transcript.

The system transcript is primarily used as the place where comments
to the user appear as a form of feedback when other visual feedback
techniques are not available. For example, if the system scheduling
mechanism fails, a message stating the problem and what to do about it
is displayed in the System Transcript. When users are debugging meth-
ods and it is desirable to print periodic messages indicating the state of
evaluation (rather than to interrupt execution), the System Transcript
is a useful place in which to display the messages. When categories of
classes are filed out or classes are recompiled, the name of each class
appears in the transcript so you can tell what kind of progress is being
made.

If you do not already have a System Transcript on your display
screen, you can obtain one by choosing the System Menu command
system transcript.

3.5
Summary of
Terminology

text collector A workspace; the System Transcript is a kind of text col-
lector. Whereas most workspaces are used for editing text
directly, text collectors are primarily used for displaying
information determined in print messages included in class
methods.

66
How to Use the Text Editor

text editor A set of operations for creating and modifying a paragraph
of characters.

caret A symbol used to denote a text selection that contains no
characters.

draw through The activity of selecting a passage of text by pointing to
one end of the passage, pressing the red button, and then
moving to the other end of the passage before releasing the
red button.

text selection The sequence of characters of a paragraph that is current-
ly highlighted.

How to Use Projects

68
How to Use Projects

Projects support your ability to manage several programming tasks at a
time, without getting your work space too cluttered. You use projects
the way you might use several desks in an office or several offices in a
building—that is, as spaces in which to manage related information or
activities. You might, for example, be working on two applications pro-
grams at one time. So you might have two projects, the top one and an-
other; each application is developed in a different project so that you
can create workspaces with information related to just the one project.
Each project maintains information about the changes you make to
class definitions and methods while you are working in its views. Thus
you can use projects to keep separate records of the methods you devel-
op for each application. Or, you might use projects in order to keep pro-
gramming tasks separate from access to mundane daily work (letter
writing, receiving and sending mail, retrieving an address from a
database).

Any classes created in one project are immediately available to all
projects in the system. The global name space for variables is also
shared across all projects. Thus if you create a variable in one project
and change it in a second project, it will be changed as well in the first
project. The primary support provided by projects is

1. maintenance of separate lists of changes to classes, and

2. visual layout of a set of views.

The separate list of changes is a useful way to distinguish the changes
to the shared classes that were needed to support the application in an
individual project. (For information about how the system maintains
references to the changes you make, see Chapter 23.)

To practice creating and using projects, try the following sequence of
actions. Choose the System Menu command project (Figure 4.1) and cre-
ate the project view (Figure 4.2). You can type characters in the project
view that describe the project; this is a way of documenting the purpose
of the project.

In the project view, select the yellow button command enter. The yel-
low button menu is shown in Figure 4.3. The result of choosing the
command enter is shown in Figure 4.4.

The display screen is now blank—no views are displayed. No activity
has yet occurred in this project. Choose the System Menu command
workspace and the System Menu command system transcript. The two
views are shown in Figure 4.5. The views in the current project are not
immediately accessible from other projects.

Now choose the System Menu command exit project as shown in Fig-
ure 4.6.

69
How to Use Projects

Figure 4.1 Oio

Workspace

Workspace

restore display
ex i t p r o j e c t

SHBHBi
file list

b ro w s e r
workspace

system transcript
s y s t e rn w ο rks ρ a c e

qui t

Workspace

Figure 4.2 roo

Workspace

70
How to Use Projects

Figure 4.3 οίοι

W ο rl· s ρ 3 c e 1

lilllBl 1 again 1
^•••••••••\-\- _ _ _ _ _ i i r n i n L —

i i l i l l l l i i!gl^^-fc I copy l|ii|i||
!!;|!:|:!:!!||!! ^ ^ ^ ^ 9 | CUt m£

!i|; I A accept!
!i;i I [cancel |
ΗΓ: 1 E M M

i 1

Wort spec el

Figure 4.4

71
How to Use Projects

Figure 4.5

Figure 4.6 Ion

Workspace

restore display

project
f i l e l i s t

browser
workspace

s y s t e m t re. η s c rip t
s y s t e m w ο rks ρ a c 9

quit

System Transcript|j;!;j;j;jji|i;j;:i:iU!j:;j

72
How to Use Projects

The display screen clears and the first collection of views reappears,
including the project view (Figure 4.7). You can now do your work in
this (top) project. Or you can re-enter the other project as you did be-
fore. Try re-entering, then return to the top project. Select the project
view and then choose the blue button command close (Figure 4.7). Since
there are views open in the project you are trying to close, a confirmer
appears to warn you that you might be irreversibly destroying informa-
tion (Figure 4.8). If it is okay, choose yes. The project view disappears
and, with it, your access to the project's views and changes, if any.

Figure 4.7 GDI

Workspace

A

Γ u n d e r "
| move

frame
|c oil a p :• e

Wor^spacel

73
How to Use Projects

Figure 4.8
1001

i j Workspace|§|ΐ£

tamm

Worksp.: ,ce iiiniiiijiiiii

iii&i; Contents have not been saved. Are you

;;;;;;;; certain that ;

ί/ίΠ"ί=ί: ι ' ' 6 5

•'ou want to close';1

no

This particular implementation of projects creates a hierarchical or-
ganization, where the path to projects is through a view that exists in
the "parent" project; each parent can have several "children" projects.
The analogy is to workrooms whereby each room has several doors into
other workrooms. For this reason, some people call project views
"doors."

An alternative design is to create a project browser that can be
opened in any project by choosing an appropriate command from the
System Menu. A project could be named, described, and accessed by
choosing items in a project browser, in a way analogous to the way clas-
ses are named and described in a system browser. Creating a project
browser is an exercise you might try to do when you are proficient in
Smalltalk-80 programming. It is given as an example in Section 15.2.

Γ

Fundamentals of the
Smalltalk-80 Language

5.1 Objects, Messages, and Methods
Classes, Instances, and Subclasses
Advantages of Object-Oriented Programming

5.2 Expression Syntax
Class Descriptions
Method Determination, self and super

5.3 System Components
The System Class Hierarchy

5.4 Overview of the Programming Process

5.5 Summary of Terminology: General
Concepts

5.6 Summary of Terminology: Syntax

76
Fundamentals of the Smalltalk-80 Language

The particular kinds of user interface components provided in the
Smalltalk-80 system are designed to give you access to the elements of
the Smalltalk-80 language. To understand the descriptions for evaluat-
ing expressions and for finding information in the system, you need an
introduction to the concepts of object-oriented programming and the
syntax for expressions in the Smalltalk-80 language, and you need an
overview of the programming process. Subsequent sections suggest vari-
ous expressions to try and describe the system components that support
program development. You should turn to the companion book,
Smalltalk-80: The Language and its Implementation by Adele Goldberg
and David Robson, for a more thorough presentation of the program-
ming language.

5.1
Objects,
Messages, and
Methods

The Smalltalk-80 language is based on a uniform use of objects and
messages. An object is a uniform representation of information that is
an abstraction of the capabilities of a computer. The two capabilities of
a computer that are of interest in the language are the capability to
store information and the capability to manipulate information. An ob-
ject has the capability to store information. We say that an object has
"private memory." An object also has the capability to manipulate its
stored information or to carry out some activity. These are called the
operations of an object. The set of operations is referred to as the ob-
ject's message interface or message protocol.

An object carries out one of its operations when an object sends it a
message to do so. Each object knows the messages it can understand;
associated with each such message is a procedure or method that de-
scribes how the object should answer the message. A crucial property of
an object is that its private memory can only be manipulated by the op-
erations in the object's interface. Computing is viewed as an intrinsic
capability of objects that can be uniformly invoked by sending mes-
sages.

Linking these concepts to ones more familiar to you, an object is like
a computer consisting of data and procedures that operate on that data.
An operation is invoked by calling on some procedure. Sending a mes-
sage is the Smalltalk way to invoke a procedure; Smalltalk is a simula-
tion of many computers communicating with one another.

Objects and messages encourage modular design. The implementa-
tion of one object cannot depend on the internal details of other objects,
only on how they respond to messages. In the Smalltalk-80 system, ob-
jects and messages are used to implement the entire programming envi-
ronment. Objects are used to represent numbers, lists, text strings,

77
5.1 Objects, Messages, and Methods

dictionaries, spatial locations, areas, text editors, processes, compilers,
debuggers, and all other system components. Once objects and messages
are understood, the entire system is accessible.

The messages an object understands depend on what the object rep-
resents. Objects representing numbers understand messages that re-
quest arithmetic functions to be computed and their results returned.
Objects representing lists and dictionaries understand messages re-
questing that information be stored or retrieved (in the form of other
objects, naturally). Objects representing spatial locations and areas un-
derstand messages inquiring about their relation to other locations and
areas.

In many respects, you can think about real-world situations and
identify the parts or components that play a role in these situations.
These are the objects. These objects act out their roles by communicat-
ing with the other objects; that communication takes the form of a lan-
guage of words—commands or informational data. These are the mes-
sages that make up the interface to the objects.

A basic problem in designing Smalltalk programs is determining
which kinds of objects should be described and what message names
provide a useful language of interaction among these objects. In
Smalltalk, the choice of message names is arbitrary, although there is a
concrete syntax that must be followed. Appropriate choice of objects de-
pends, of course, on the purposes to which the application will be put
and the granularity of information to be manipulated. For example, if a
simulation of an amusement park is to be created for the purpose of
collecting data on queues at the various rides, then it would be useful to
describe objects representing the rides, the waiting lines, workers who
control the rides, and the people visiting the park. If the purpose of the
simulation does not include monitoring the consumption of food in the
park, then objects representing these consumable resources are not re-
quired. If the amount of money exchanged in the park is not to be mon-
itored, then details about the cost of rides do not have to be
represented.

There are many objects in the Smalltalk-80 system. Objects that re-
Classes, Instances, spond to the same messages in the same way are grouped together.
and Subclasses When they are grouped together, their private memory is represented

in the same way and their methods refer to their data with the same
set of names. A group of objects related in this way is called a class. Ob-
jects in a group are called instances of the class. Programming in
the Smalltalk-80 language consists of creating new classes, creating in-
stances of classes, and specifying a sequence of message exchanges
among all of these objects.

Every object in the Smalltalk-80 system is an instance of a class. All
instances of one particular class represent the same kind of system

78
Fundamentals of the Smalltalk-80 Language

component. Classes have names that describe the kind of component
their instances represent. Instances of a class named Point represent
spatial locations. Instances of a class named Rectangle represent rec-
tangular areas. Instances of a class named Process represent indepen-
dent processes.

Refining existing class descriptions is a powerful way in which to ap-
proach Smalltalk-80 programming. Such refinement is supported by the
ability to create a subclass of an existing class. A subclass describes a
group of objects that inherit information from an already existing de-
scription. A subclass can add new functionality or private memory, and
modify or prohibit existing functionality.

Consider the amusement park example. Suppose we wish to create a
simulation of this park. The first task is to determine the objects in-
volved in the park. What do you think of when considering an amuse-
ment park? There is a merry-go-round, cotton candy, ferris wheels and
roller coasters, tickets to buy, souvenirs to buy, a fun house, games, side
shows (animals, strange people), a train ride, ice cream booth, cafeteria,
sit-down restaurant, animal rides, lines of people waiting to get on a
ride or to get a ticket, someone selling balloons, and so on. Oh yes,
there are crying kids and crying parents, dizziness, stomach aches, and
sunburn.

Focusing our attention on the kinds of places, rather than the people
or animals, we can organize the parts of an amusement park into rides,
game booths, and places to buy things. One organization might divide
the parts into places where you buy things and places where you do not
buy things. Places where you buy things include rides, food vendors,
and nonfood vendors. To create a Smalltalk-80 simulation, classes must
be described for each of these kinds of objects. For example, we might
create the class Ride; instances of Ride may be ferrisWheel or
merryGoRound.

Each Ride has a waiting line of some kind made up of customers
waiting for service. This means that the private memory of each kind of
Ride includes a reference to a waiting line. This line must be an in-
stance of a class that describes the appropriate kind of data structure
that can reference an ordered sequence of customers. Since everything
is an object, and each object is an instance of a class, then a customer
must be an instance of a class, perhaps of class ParkVisitor.

At some time, a worker assigned to the ride announces "next, please"
to the line; the next customer waiting is given service. At various times,
customers arrive and enter the line, or they get tired of waiting and
leave. The customers in the waiting line can be different kinds of ob-
jects. However, they all must be able to carry out the behavior appro-
priate to waiting in line and getting out of the line. So customers might
be instances of ParkVisitor or they might be instances of a special kind
of visitor, say an ElderlyParkVisitor, who gets preferential treatment at

Advantages of
Object-Orien ted
Programming

79
5.1 Objects, Messages, and Methods

the park. ElderlyParkVisitor could be created as a subclass of ParkVisitor
so that all of the capabilities given a ParkVisitor are inherited by
ElderlyParkVisitor as well. In addition, ElderlyParkVisitor might act differ-
ently—always entering a waiting line at the front instead of the rear.

To create the Smalltalk-80 simulation, we will have to decide what
messages the ParkVisitor, and thereby ElderlyParkVisitor, will understand
—perhaps

goToNextRide

and

buyTicket

Programming in the Smalltalk-80 language consists of identifying ob-
jects, classifying them according to similarities and differences, and de-
signing a language of interaction among these objects. These are
important organizing skills and communication skills that can be
taught using this form of computer programming.

What are the advantages of this form of programming?

1. The information known privately to an object is protected—this
information can only be accessed directly by the methods of the
object. This means that the structure of an object (the representa-
tion of the information of an object) can be changed without af-
fecting interactions with instances of other classes. This ensures
that there is a structure or discipline by which objects interact
and that a user can make changes or additions to very complex
systems without getting caught in a maze of interdependencies.

2. The user accesses existing objects as well as creates new ones or
modifies existing ones. Modification is done by adding a new mes-
sage and its method to a class description, or by adding new data
slots to the private memory of all the objects in a class. This
means that the Smalltalk-80 language provides a simple and ex-
pressive model for the relationship among parts and wholes so
that the process of building a system can draw on one's intuitive
ability to synthesize and analyze.

3. The Smalltalk-80 system is built on the model of communicating
objects. Large applications are viewed in the same way as the fun-
damental units from which the system is built. The interaction be-
tween the most primitive objects is viewed in the same way as the
highest-level interaction between the computer and the user.

4. Objects support modularity. The complexity of the system is re-
duced by a minimization of interdependencies of system parts.

80
Fundamentals of the Smalltalk-80 Language

5.2

Complexity is further reduced by grouping together similar parts,
where this grouping is achieved through classes. Classes are also
the chief mechanism for extension in the system. And subclasses
support the ability to factor the system in order to avoid repeti-
tions of the same concepts in many different places. Managing
complexity is a key contribution of the Smalltalk-80 approach to
software.

Expression
Syntax

The syntax of the Smalltalk-80 language is simple, providing a way to
refer to objects and messages and arguments using alphanumeric
names. There is no restriction in the language on the length of a name;
there are some restrictions on the use of special symbols.

In this section, syntax diagrams for the language are presented. The
diagrams are like those used, for example, in the Pascal User Manual
and Report, Kathleen Jensen and Niklaus Wirth, Springer Verlag,
1978. The term being defined is shown at the left margin; each term is
defined with respect to other terms (shown in boxes) or literals (shown
in ovals or circles) in the language. The diagram helps determine
whether an expression is syntactically correct.

An expression is a sequence of characters that describes an object
called the value of the expression. The four kinds of legal expressions
are literals, variable names, message expressions, and block expressions.

Q Literals Literals are numbers, symbol constants, character con-
stants, strings, and array constants, as shown in Figure 5.1.

literal

number

symbol constant

> character constant

string

Figure 5.1
array constant

81
5.2 Expression Syntax

] Numbers The diagram for numbers is shown in Figure 5.2.
Example numbers are

3
30.45
-14.0
13772
8M53
16rAC.DC
1.586e-3
16r1e10

digit

0 1 2 3 4 5 6 7 8 9

digits

Figure 5.2

number

| digits \-p(*Cy+\ digiteK

• Characters The diagram for characters and character constants is
shown in Figure 5.3. Note that in the syntax diagrams, a character is
defined as any element from the ASCII character set other than double
quote (") or single quote ('); the definition of character constant is a
character or a double quote or a single quote.

Example character constants are

$a
$M
$-
$$
$[
$@

82
Fundamentals of the Smalltalk-80 Language

character
constant —̂

letter

character

special character

character

=) C@

Figure 5.3

83
5.2 Expression Syntax

Strings Figure 5.4 is the diagram for strings. Example strings are

' h i '
'the Smalltalk-80 system'
'can' ' t '

string

Figure 5.4

Symbols Figure 5.5 is the diagram for symbols.

identifier

symbol

symbol constant

Figure 5.5

identifier

binary selector

keyword

symbol

84
Fundamentals of the Smalltalk-80 Language

Example symbol constants are

#bill
#M63

There will never be two symbols with the same characters; each symbol
is unique—that is, any reference to a symbol made up of the same se-
quence of characters is a reference to the same symbol. Examples of bi-
nary selectors and keywords are given in subsequent sections.

If you do look ahead, you will notice that the following are symbols.

Smalltalk is an identifier
* is a binary selector
// is a binary selector
at:put: is a keyword selector

Q Arrays An array is a simple data structure whose contents can be
referenced by an integer index from 1 to a number that is the size of
the array (Figure 5.6).

array

number

symbol

string

character constant

array

array constant

Figure 5.6
•M # array

85
5.2 Expression Syntax

Figure 5.7

Figure 5.8

Example array constants are

#(1 2 3)
#('food' 'utilities' 'rent')
#(('one' 1) ('not' negative) 0 -1)

Q Comments In addition, comments can be placed anywhere within
an expression or sequence of expressions (Figure 5.7).

comment

Example comments are

"This is a comment"
" with an embedded quote " " symbol"
" and an embedded single quote ' symbol"

Q Variables The memory available to an object is referenced by the
use of variable names. A variable name is simply an identifier (Figure
5.8).

variable name

identifier

By convention, when identifiers are created by concatenating words,
the first letter of each additional word is capitalized. For example

BicPen
redButtonPressed
totalSpentOn:

Q Message Expressions Messages represent interactions between the
components of the Smalltalk-80 system. A message requests an opera-
tion on the part of the receiver. A message expression describes a re-
ceiver, a selector, and possibly some arguments. The receiver and

£6
Fundamentals of the Smalltalk-80 Language

arguments are described by other expressions; the selector is specified
literally. A unary selector is simply an identifier, and a binary selector
is either a minus sign or one or two consecutive special characters. A
keyword is an identifier with a trailing colon; the keyword selector is a
concatenation of the keywords in a message. The diagrams for unary
selector, binary selector, and keyword are shown in Figure 5.9.

Figure 5.9

unary selector

binary selector

identifier

special character

keyword

special character

> identifier

In the message expression

ages at: 'James' put: 25

there are two keywords, at: and put:. The keyword selector, that is, the
literal part of the message expression, is at:put:. The two arguments of
the expression are 'James' and 25; the receiver is ages.

Keyword selectors do not show up in expressions; hence there is no diagram for
them independent of the diagram for symbol. However, they are the symbols stored
as the keys of a class's message dictionary; they can be seen, for example, in one of
the subview's of the system browser as described in Chapter 9.

There are three kinds of message expressions: unary, keyword, and
binary. Diagrams for message expressions are shown in Figure 5.10.

The following are unary expressions.

theta sin
BicPen home
Pen new home

In the third example, a unary expression (Pen new) is parsed as a unary
object description that is sent a unary message (home).

87
5.2 Expression Syntax

primary

variable name

literal

block

unary object description

unary
expression

unary object description unary selector

binary
expression

binary object description binary selector — * unary object description

keyword
expression

binary object description keyword binary object description

message expression

unary expression

binary expression

Figure 5.10
keyword expression

88
Fundamentals of the Smalltalk-80 Language

The following are binary expressions.

3 + 4
previousTotal - expenditure
(sum / count) * reserve amount

In the third example, the binary expression is formed as a binary object
description ((sum count)) followed by a binary selector (*) followed by a
unary object description (reserve amount). The binary object description
is itself a unary object description that, as a primary, is a parenthesized
expression.

The following are keyword expressions.

3 max: 2
finances totalSpentOn: 'food'
anArray at: 3 put: 100
HouseholdFinances expenditures totalSpentOn: (reasons at: i)

In the fourth example, the keyword expression is formed as a binary ob-
ject description followed by a keyword (totalSpentOn:) followed by a bi-
nary object description. The first binary object description is a unary
expression that is the variable HouseholdFinances followed by the unary
selector expenditures. The second binary object description is a primary,
the parenthesized keyword expression reasons at: i.

Π Parsing When the receiver or argument of a message expression is
described by another message expression, the issue of how the expres-
sion is parsed arises. Parentheses can be used to indicate the order of
evaluation when that order is different from the ordinary parse. The
parsing rules are:

1. Unary expressions parse left to right

2. Binary expressions parse left to right

3. Binary expressions take precedence over keyword expressions

4. Unary expressions take precedence over binary expressions

5. Parenthesized expressions take precedence over unary expressions

For example,

expression parses as

4 + 5 - 3 (4 + 5) - 3
2 * theta sin 2 * (theta sin)
frame width: frame width:

otherFrame width * 2 ((otherFrame width) * 2)

cascaded message
expression

message expression

Figure 5.11

1
89

5.2 Expression Syntax

Q Cascaded Messages Cascading specifies multiple messages to the
same object. A cascaded message expression consists of one description
of the receiver followed by several messages separated by semicolons.
The diagram for a cascaded message expression is shown in Figure 5.11.

^ • unary selector

binary selector unary object description

Γ
keyword binary object description

For example, a cascaded message expression is

BicPen home; up; turn: 89; go: 50-H; turn: 91; go: 200

which is equivalent to

BicPen home.
BicPen up.
BicPen turn: 89.
BicPen go: 50+i.
BicPen turn: 91.
BicPen go: 200

Π Assignments A literal constant will always refer to the same ob-
ject, but a variable name may refer to different objects at different
times. The object referred to by a variable is changed when an assign-
ment expression is evaluated. Any expression can become an assign-
ment by including an assignment prefix, that is, a variable name
followed by a left arrow. For example

quantity - 19
index «- initiallndex
name «- ' Chapter 1 '
flavors «- # (vanilla chocolate strawberry rootbeer)
foo <- array at: 4
BicPen <- Pen new home; turn: 89

90
Fundamentals of the Smalltalk-80 Language

Thus the definition of an expression is a primary, a message expression,
a cascaded message expression, or an assignment, as shown in Figure
5.12.

Figure 5.12

expression

f—> variable nan

V «- J

primary

message expression

cascaded message expression

Figure 5.13

Q Block Expressions Blocks are objects used in many of the
Smalltalk-80 control structures. A block represents a deferred sequence
of actions. A block expression consists of a sequence of expressions sepa-
rated by periods and delimited by square brackets (Figure 5.13).

statements

expression

expression

block

Blocks may take one or more arguments. Block arguments are speci-
fied by including identifiers preceded by colons at the beginning of a
block. The block arguments are separated from the expessions that
make up the block by a vertical bar.

91
5.2 Expression Syntax

For example,

[quantity + 19]
[index <- initiallndex. index <- index + 1]
[:array | total <- total + array size]
[:x :y | BicPen goto: χ @ y]

Since a block is a primary, the following assignments are expressions.

savedAmount «- [quantity + 19]
incrementer «- [index — initiallndex. index «- index 4- 1]
sum — [:array | total — total + array size]

A block without any arguments is evaluated by sending it the message
value. A block with one argument is evaluated by sending it the mes-
sage value: anArgument. Blocks with multiple arguments are evaluated
by sending messages with a value: keyword and argument for each of
the block arguments.

For example,

[quantity + 19] value
[:array | total - total + array size] value: # (a b c d e f)
[:x :y | BicPen goto: χ © y] value: 100 value: 250

f j Control Structures Two kinds of control structure found in most
programming languages are provided in the Smalltalk-80 system: condi-
tional selection and conditional repetition. Conditional selection consists
of a message to a Boolean object with block expressions as the argu-
ments. There are four such messages whose keyword selectors are
ifTrue:ifFalse:, ifFalse:ifTrue:, ifTrue:, and ifFalse:. For example,

number < 0
ifTrue: [absValue «- number negated]
ifFalse: [absValue - number]

number < 0
ifFalse: [absValue <- number]
ifTrue: [absValue <- number negated]

number < 0
ifTrue: [number <- number negated]

number > = 0
ifTrue: [number <- number negated]

Conditional repetition is provided by a message to a block with the key-
word selector whileTrue: or whileFalse:, and another block as an argu-
ment. Evaluation of the argument continues until the receiver
evaluates to true or to false, respectively. These are like the Algol

92
Fundamentals of the Smalltalk-80 Language

"while" and "until" statements. Examples of two expressions that carry
out the same actions are

[index < = list size]

whileTrue: [list at: index put: 0. index - index+1]

and

[index > list size]
whileFalse: [list at: index put: 0. index «- index+1]

In each case, the idea is to put the value 0 in each position in an array
list, starting with some value of variable index and continuing until in-
dex exceeds the size of the array.

• Methods A method describes how an object will perform one of its
operations. A method is made up of a message pattern and a sequence
of expressions separated by periods. A message pattern contains a mes-
sage selector and a set of argument names for each argument that a
message with that selector would have. A method may obtain some oth-
er variables for use during its execution. These are called temporary
variables. A temporary variable declaration consists of a set of variable
names between vertical bars.

The default value of a method is the receiver itself. When another
value is to be specified, one or more return expressions are included in
the method. Any expression can be turned into a return expression by
preceding it with an up arrow. The diagrams for a method are shown in
Figure 5.14. Note that the up arrow is specified in the diagram for
"statements."

An example method in which a counter is incremented until the user
presses the red button, and in which the final count is returned, is

| tempVar |
tempVar <- 0.
[Sensor red Button Pressed]

whileFalse: [tempVar «- tempVar + 1].
TtempVar

The temporary variable is tempVar. It is initially assigned to the value 0.

tempVar <- 0

Then the expression

Sensor redButtonPressed

93
5.2 Expression Syntax

variable name

message pattern

unary selector

binary selector variable name

keyword variable name

Figure 5.14

method

message pattern

temporaries statements

Class Descriptions

is evaluated. This is a test of the hardware pointing device. As long as
the red button is not pressed, the expression

tempVar — tempVar + 1

is evaluated. This assignment changes the value of tempVar,
incrementing it by 1. When the user presses the red button, the current
value of tempVar is returned.

Each class has a name that describes the type of component its in-
stances represent. A class name serves two purposes; it is a simple way
for instances to identify themselves, and it provides a way to refer to
the class in expressions. Since classes are components of the
Smalltalk-80 system, they are represented by objects. A class's name
automatically becomes the name of a globally shared variable. The val-
ue of that variable is the object representing the class. By convention,
the first letter of names of shared variables are capitalized.

A description of a class has four parts.

1. A class name.

2. The superclass of the class.

94
Fundamentals of the Smalltalk-80 Language

3. A declaration of the variables available to instances.

4. The methods used by instances to respond to messages.

The methods in a class description are divided into categories; the cate-
gories have names that indicate the common functionality of the meth-
ods. The classes in the Smalltalk-80 system are also grouped into
categories. These two kinds of categorizations in the system are orthog-
onal to the semantics of the language; they are used to document the
intended use of classes and methods, and they are useful in providing a
way to index the system's functionality.

The methods in a class have access to five different kinds of vari-
ables. These kinds of variables differ in terms of their scope, and how
long they persist.

1. Instance variables exist for the entire lifetime of the object. They
represent the current state of an object.

2. Temporary variables are created for a specific activity and are
available only for the duration of the activity. They represent the
transitory state necessary to execute a method.

3. Class variables are shared by all the instances of a single class.

4. Global variables are shared by all the instances of all classes.

5. Pool variables are shared by the instances of a subset of the clas-
ses in the system.

The majority of shared variables in the system are either class vari-
ables or global variables, most of which refer to the classes in the sys-
tem.

Names of global variables are stored as the keys in a special dictionary named
Smalltalk. In order to declare a new global variable, you evaluate an expression of
the form

Smalltalk at: #VarName put: varValue

To evaluate an expression, you type the appropriate expression in a workspace, se-
lect the text of the expression, and then choose the yellow button menu command
do it. You can then use VarName in expressions that you evaluate in a workspace.

We said earlier that all Smalltalk-80 system components are repre-
sented by objects and all objects are instances of a class. Therefore, the
classes themselves are represented by instances of a class. A class
whose instances are themselves classes is called a metaclass. In the de-
scription of a class, it is necessary to distinguish between the messages
sent to the instances of a class and those sent to the class itself. Mes-
sages sent to the class itself are stored in the message dictionary of the
class's metaclass.

Method
Determination,
self and super

95
5.3 System Components

A class's metaclass is automatically created whenever the class is
created. In the programming interface to the system, a menu in the sys-
tem browser supports the user in specifying whether a message is to be
sent to instances or to the class itself. The programming interface also
supports creating class and message categories.

When a message is sent, the methods in the receiver's class are
searched for one with a matching selector. If none is found, the methods
in that class's superclass are searched next. The search continues up
the superclass chain until a matching selector is found.

The search for a matching selector follows the superclass chain and
terminates at the root of the class hierarchy, which in the Smalltalk-80
system is class Object. If no matching selector is found in any class in
the superclass chain, the receiver is sent the message
doesNotUnderstand: with an argument that is the offending message se-
lector (the one that could not be found). The response to the message
doesNotUnderstand: is found in class Object; the result is to report an
error to the programmer or user.

A pseudo-variable name is similar to a variable name, however, the
value of pseudo-variable name cannot be changed by an assignment.
The names of variables in a message pattern are pseudo-variable
names. In addition, there are special pseudo-variable names in the sys-
tem. The pseudo-variable self refers to the receiver of a message. When
a method contains a message whose receiver is self, the search for the
method for that message begins in the instance's class, regardless of
which class contains the method containing the pseudo-variable self.
The pseudo-variable super is also available for use in a method's expres-
sions. The pseudo-variable super refers to the receiver of the message,
just as self does. However, when a message is sent to super, the search
for a method does not begin in the receiver's class. Instead, the search
begins in the superclass of the class containing the method. The use of
super allows a method to access methods defined in a superclass, even if
the methods have been overridden in subclasses.

5.3
System
Components

The Smalltalk-80 system includes a set of classes that provide the stan-
dard functionality of a programming language and environment: arith-
metic, data structures, control structures, and input/output facilities.
The system includes objects representing both real and rational num-
bers. There are also classes for representing linear magnitudes (like
dates and times) and random number generators.

Most of the objects in the Smalltalk-80 system function as data struc-
tures of some kind. While most objects also have other functionality,

96
Fundamentals of the Smalltalk-80 Language

there are a set of classes representing more or less pure data structures.
These classes represent different types of collections. Objects and mes-
sages implement the standard control structures found in most pro-
gramming languages. They provide conditional selection similar to the
"if-then-else" statements of Algol and conditional repetition similar to
its "while" and "until" statements. Two classes are provided to support
these control structures. Booleans represent the two truth values and
blocks represent sequences of actions. Booleans and blocks are used to
create new kinds of control structures. Objects representing indepen-
dent processes and mechanisms for scheduling and synchronous inter-
action are also provided.

There are several classes in the Smalltalk-80 system that assist in
the programming process. There are separate classes representing the
source (human-readable) form and the compiled (machine-executable)
form of methods. Objects representing parsers, compilers, and
decompilers translate between the two forms of method. Objects repre-
senting classes connect methods with the objects that use them (the in-
stances of the classes). Objects representing organizational structures
for classes and methods help the programmer keep track of the system,
and objects representing histories of software modification help link the
efforts of other programmers. Even the execution state of a method is
represented by an object. These objects are called contexts and are anal-
ogous to stack frames or activation records of other systems.

Classes helpful for presenting graphical views represent points, lines,
rectangles, and arcs. Since the Smalltalk-80 system is oriented toward a
bitmapped display, there are classes for representing and manipulating
bitmapped images. There are also classes for representing and manipu-
lating the more specific use of bitmapped images for character fonts,
text, and cursors. Built from these graphical objects are other objects
representing rectangular windows, command menus, and content selec-
tions. There are also objects that represent the user's actions on the in-
put devices and how these relate to the information being viewed.
Classes representing specific viewing and editing mechanisms construct-
ed from these components provide views for classes, contexts, and docu-
ments containing text and graphics. The views of classes provide the
fundamental mechanism to interact with the software in the system.

The Smalltalk-80 system allows communication with external media.
The standard external medium is a disk file system. Objects represent
individual files as well as directories. If a connection to a communica-
tions network is available, it can be accessed through objects as well.

Figure 5.15 is of the system classes that are presented in the companion
The System Class book Smalltalk-80: The Language and its Implementation. Lines are
Hierarchy drawn around groups of related classes; the groups are labeled to indi-

cate the numbers of the chapters in which specifications of the classes
can be found. I

97
5.3 System Components

Object

Magnitude
Character
Date
Time

Number
Float
Fraction
Integer

LargeNegativelnteger
LargePositivelnteger
Smalllnteger

Stream
PositionableStream

ReadStream
WriteStream

ReadWriteStream
ExternalStream

FileStream

Random

LookupKey
Association

Link

File
FileDirectory
FilePage

UndefinedObject
Boolean

False
True

Process

Collection

SequenceableCollection
LinkedList

ProcessorScheduler
Delay
SharedQueue

Semaphore

ArrayedCollection
Array

Behavior
ClassDescription

Class
MetaClass

Bitmap
DisplayBitmap

J Point
Rectangle
BitBIt

CharacterScanner

10

RunArray
String

Symbol
Text
ByteArray

Interval
OrderedCollection

SortedCollection
Bag
MappedCollection
Set

Dictionary
IdentityDictionary

Pen

12

14

15

16

18

19

Figure 5.15

DisplayObject
DisplayMedium

Form
Cursor
DisplayScreen

InfiniteForm
OpaqueForm
Path

Arc
Circle

Curve
Line
LinearFit
Spline 20

98
Fundamentals of the Smalltalk-80 Language

Several classes available in the standard Smalltalk-80 system are not
listed in Figure 5.15. Some of these are the classes that support the im-
plementation of the user interface, including View, Controller,
ControlManager, and WindowingTransformation. The specific way in
which these classes and subclasses of View and Controller are used to
create the programming interface, as well as graphical and interactive
interfaces to applications, will be described in a future companion book,
Smalltalk-80: Creating a User Interface and Graphical Applications.
Some of the classes that describe the standard program development
tools are

Browser
Debugger
MethodListDebugger

FileModel
FileList

Inspector
Contextlnspector
Dictionary I nspector

StringHolder
ChangeList
FilllnTheBlank
Project
TextCollector

SyntaxError

There is a subclass of View and Controller for each of these; the subclass
of View supports the way information about the development tool
should be presented on the display screen, and the subclass of Controller
describes the way in which the pointing device, menus, and the key-
board are used to interact with the development tool.

There are classes for organizing classes and messages, and for keep-
ing track of changes to classes and methods; these are

ChangeSet
ClassCategoryReader
ClassOrganizer

SystemOrganizer

There are classes that describe parsing, compilation, and decompilation.

Compiler
ParseNode

AssignmentNode
BlockNode

99
5.4 Overview of the Programming Process

CascadeNode
Decompiler
Encoder
LeafNode

Literal Node
SelectorNode
VariableNode

MessageNode
MethodNode
ReturnNode

ParseStack
Scanner

Parser

And there is a class that describes creating a new version of the system.

SystemTracer

5.4
Overview of
the
Programming
Process

Programming in the Smalltalk-80 system involves the specification of
one or more class descriptions, creating instances of classes, and se-
quencing messages to the instances. In the course of using the system,
you interact with various views that give you access to the classes in
the system, messages, methods that implement messages, expressions in
which messages are sent to objects, and intermediate execution states.

The programming environment supports describing classes in an in-
cremental fashion. The "class editor" is presented in the form of a
browser, which is a way to present a hierarchical index to classes and to
messages. Browsers are set up to help you find classes either by name
or by category. You can find a message name under the class that uses
it, and, given the name, you can find its implementors or senders.

To determine the class of an instance, you send the instance the message class. To
determine the category of a class, you send the class the message category.

The browser is used to retrieve descriptions of existing classes. It also
provides a structure within which new classes are defined and existing
classes are modified. When you use a browser to examine existing class
descriptions, the source code for each method is retrieved from a special
file.

100
F u n d a m e n t a l s of t he Small ta lk-80 Language

Some hardware/software configurations of the Smalltalk-80 system might not have
sufficient local or remote secondary storage space for this file. In such cases, at-
tempts to retrieve the source code will fail. In order to view the method, you must
use the system decompiler. You decompile the resident compiled code by holding
down the "shift" key on the keyboard while selecting the message selector to be re-
trieved. Alternatively, set the value of SourceFiles to be nil (that is, evaluate the ex-
pression SourceFiles <- nil), indicating that no sources and no changes files are
available. Decompiling loses comments and the names of temporary variables.

A system browser looks like a rectangular area on the screen that is
divided into five parts. The parts either indicate a categorization for
classes or a categorization for the methods of a particular class. These
categorizations are orthogonal to the language itself; they provide a
way in which to organize and document the class description. Parts Two
and Three describe the system browsers in detail.

Classes are created by editing templates that are accessed via the
system browser. The template for defining a new class as a subclass of
an existing class, and for declaring the private and shared variables is

NameOfSuperclass subclass: #NameOfClass
instanceVariableNames: 'instVarNamel instVarName2'
classVariableNames: 'ClassVarNamel ClassVarName2'
poolDictionaries:"
category: ' Category-Name'

In order to create a new class, you edit this template. You specify the
names of classes (replacing NameOfClass and NameOfSuperclass), and
you replace or delete the place holders for variable names, e.g.,
instVarNamel or ClassVarNamel. The result is a Smalltalk-80 expres-
sion. For example

View subclass: #FinancialHistoryView
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: 'Financial-Histories'

When you evaluate the preceding expression, you create the new class
whose name is FinancialHistoryView as a subclass of View. It has no new
variables declared. The yellow button menu associated with the part of
the browser in which the template is displayed includes the command
accept. When accept is chosen, the expression is evaluated. If there are
no errors in syntax, then the new class is added to the system. If the
class already exists, then it is redefined (its superclass or its variables
may be changed); in this case, all existing methods of the class and its
subclasses are recompiled so that references to variables can be
rechecked.

5.4 Overview of the Programming Process

The template for defining new methods is
message selector and argument names

"comment stating purpose of message "
| temporary variable names |
statements

It is displayed in a part of the system browser as a result of your
selecting a class category, a class, and a class message category. The
yellow button menu associated with the part of the browser in which
the template is displayed includes the command accept. When accept is
chosen, the method is compiled. If there are no syntax errors, the com-
piled method is stored in the selected class's method dictionary.

You can develop your class description in parts. Each time you wish
to add a method, you use the system text editor (as described in Chap-
ter 3) and edit the method template. In order for the system to store the
text as an actual method, you have to compile it. You compile the text
by choosing the yellow button command accept. Compilation is done in-
crementally, method by method.

Compilation is from Smalltalk-80 expressions into a bytecode instruction set which
is interpreted by the Smalltalk-80 virtual machine.

As expressions are evaluated in a workspace, or as class descriptions
are developed using a browser, information pertaining to each action is
saved on a special disk file that we refer to as the "changes file." In this
way, there is a file that represents an audit trail of each of your ac-
tions; this file can be used to recover your work in case of a system fail-
ure. A description of the recovery process is provided in Chapter 23.
Your changes are also monitored in a kind of dictionary. We refer to
this dictionary as the system "Change Set." It is useful as a reference
for writing out a description of your final work (any class changes) onto
a disk file. Typically, users share information, such as method descrip-
tions, by sharing files of incremental changes or files of complete class
descriptions. The system Change Set is documented in Chapter 23.

The process of developing class descriptions is supported by the
browser. Using it you can ask questions about existing classes. You can
find out which methods in which classes send a particular message.
And you can find out which classes implement a particular message.
Support for finding out such information is described in Part Two; sup-
port for programming is described in Part Three.

An execution interrupt occurs when you encounter a runtime error,
you evaluate a breakpoint that you inserted in a method, or you type
Ctrl c (the "control" key and the "c" key concurrently). You can create a
debugging view onto the context of that interrupt. Notifiers for inter-

102
Fundamentals of the Smalltalk-80 Language

rupts and the debugger are described in Part Four. Note that you can
edit a method within the debugger, compile it by choosing the yellow
button command accept, and proceed with testing your work (without
explicitly reloading the system).

Changes you make are local to your copy of the system. When you
have completed your work, you can save it in one of two ways. You can
either save a textual description of your class descriptions by using the
"file out" command available in the system browsers (see Chapters 9
and 22), or save a new image of the entire system by creating a snap-
shot (see Chapters 1 and 23). It is useful to keep a snapshot of your
work, expecially if you have created several kinds of objects that have
information state that has evolved during your work session. Files cre-
ated using the first approach can be shared with other users (they can
file in the descriptions) so that your class descriptions can become part
of their personal systems.

5.5
Summary of
Terminology:
General
Concepts

argument name

class

class variable
global variable
instance

instance variable

interface
message
message pattern

method

Name of a pseudo-variable available to a method only for
the duration of that method's execution; the value of the
argument names are the arguments of the message that
invoked the method.

A description of a group of similar objects. An object that
describes the implementation of a set of similar objects.

A variable shared by all the instances of a single class.

A variable shared by all the instances of all classes.

One of the objects described by a class; it has memory and
responds to messages.

A part of an object's private memory. A variable available
to a single object for the entire lifetime of the object.

The messages to which an object can respond.

A request for an object to carry out one of its operations.

A message selector and a set of argument names, one for
each argument that a message with this selector must
have.

A description of one of an object's operations; it is made up
of a message pattern, temporary variable declaration, and
a sequence of expressions. A method is executed when a
message matching its message pattern is sent to an in-
stance of the class in which the method is found.

object

pool variable

primitive method

protocol

receiver

subclass

superclass

system classes

temporary
variable

103
5.6 S u m m a r y of Terminology: Syn tax

A component of the Smalltalk-80 system represented by
some private memory and a set of operations.

A variable shared by the instances of a subset of the clas-
ses.

An operation performed directly by the Smalltalk-80 virtu-
al machine.

Is a term used interchangeably with "interface," as in
message protocol or message interface.

The object to which a message is sent.

A class that inherits variables and methods from an
existing class.

The class from which variables and methods are inherited.

The set of classes that come with the Smalltalk-80 system.

A variable created for a specific activity and available only
for the duration of that activity.

5.6
Summary of
Terminology:
Syntax

array

assignment

binary message

block

block argument

cascading

expression

keyword

keyword message

literal

message argument

message selector

A data structure whose elements are associated with inte-
ger indices.

An expression describing a change of a variable's value.

A message with one argument whose selector is made up of
one or two special characters.

A description of a deferred sequence of actions.

A parameter that must be supplied when certain blocks
are evaluated.

A description of several messages to one object in a single
expression.

A sequence of characters that describes an object; the ob-
ject is called the value of the expression.

An identifier with a trailing colon.

A message with one or more arguments whose selector is
made up of one or more keywords.

An expression describing a constant, either a number, sym-
bol constant, string, or array constant.

An object that specifies additional information for an oper-
ation.

The name of the type of operation a message requests of its
receiver.

104
Fundamentals of the Smalltalk-80 Language

pseudo-variable
name

symbol

unary message
variable name
Τ

self

super

An expression similar to a variable name. However, unlike

a variable name, the value of a pseudo-variable name can-

not be changed by an assignment.

A string whose sequence of characters are guaranteed to be

different than those of any other symbol.

A message without arguments.

An expression describing the current value of a variable.

When used in a method, indicates that the value of the

next expression is to be the value of the method.

A pseudo-variable referring to the receiver of a message.

Responses to messages to self are found by starting the

method search in the class of the receiver, continuing up

the superclass chain, and terminating at class Object.

A pseudo-variable referring to the receiver of a message.

Responses to messages to super are found by starting the

method search in the superclass of the method in which

super appears, continuing up the superclass chain, and ter-

minating at class Object.

How To Evaluate
Expressions

1
I

6.1 The do it Command

6.2 The print it Command

6.3 The System Workspace

6.4 Examples

6.5 Summary of Terminology

106
How to Evaluate Expressions

6.1

Commands or items in menus correspond to messages for an object.
Choosing a command corresponds to sending a message to the object.
Messages are also sent, that is, commands can also be issued, by evalu-
ating Smalltalk-80 expressions. Any Smalltalk-80 message can be sent
simply by typing the appropriate expression in a view that can contain
text, selecting the expression, and choosing the yellow button command
do it or the yellow button command print it. You select text representing
a Smalltalk-80 expression to be evaluated in the same way you select
any text to be edited.

The do it
Command

Whenever evaluation of expressions is possible, the item do it will ap-
pear in the yellow button menu; choosing do it provides immediate exe-
cution of any Smalltalk-80 expression or sequence of expressions that is
selected.

It is common practice to keep around a workspace in which to type
expressions that can be selected and evaluated, or from which to select
previously typed expressions. Whenever you want to reevaluate an ex-
pression evaluated earlier, simply select the appropriate text in the
workspace and choose the yellow button command do it.

You may of course edit some of the existing text before you select
and evaluate it. In a sense, text left in workspaces form templates for
commands.

When you choose the do it command (Figure 6.1), the selected expres-
sion is compiled. If an expression is not syntactically correct, a message
to that effect will be inserted in the text (Figure 6.2). The point of loca-
tion will precede the erroneous place in the expression. The insertion
will be selected so that you can cut it out or replace it as soon as the er-
ror is understood.

Figure 6.1

107
6.1 The do it Command

Figure 6.2

As another example, the error might be that a term in the expres-
sion is not a variable that has been declared at a global level or as a
temporary variable of a sequence of statements. If you evaluate an ex-
pression with a variable that is not recognized (Figure 6.3), a menu ap-
pears (Figure 6.4). It gives you the option to declare the variable, to call
on a spelling corrector to help you determine the correct variable name,
or to cancel the evaluation. One of the items must be chosen (Figure
6.5). Spelling correction is explained in Chapter 16.

Evaluation is always carried out in the context of the view in which
the do it command is issued. This is especially useful in a view of an
interrupted process in which you are able to carry out debugging activi-
ties. In such a view, there is a menu from which you choose an
interrupted message sent to an object, usually referred to as a message-
send; evaluation within the view is carried out in the context of the se-
lected message-send. It is also useful in a view for inspecting the inter-
nal state of an object. In such a view, evaluation is carried out in the

Figure 6.3 Bio

BicPen spiral: k'OU anqlg; a g a ι η
υ π d ο
c ϋ ρ y
cut

ρ a 51 Q

prints it
a c c Θ ρ t
c a n c e I

108
How to Evaluate Expressions

Figure 6.4
000

angle: 8y

I dQdare BicPen as |

temp
c I a. s s ν a r

global w
undeclared
correct it

abort

Figure 6.5 100

Works p..

leicPenl

^ »

spiral: 200 angle: 8':

| decla re BicPen
temp

class \'3r
g I o b a 1

undeclared

correct it

a s |

context of the variables of the object under inspection. An example of a
view for inspecting an object is given in Chapter 8.

While the expression is being evaluated, the scroll bar will disappear.
It will reappear as soon as evaluation is completed. This is a useful sig-
nal to you that you have to wait for the system to complete the actions
associated with any message. Keep the cursor inside the view in which
the evaluation was requested so that the scroll bar can reappear. If the
cursor is outside the view, the scroll bar will reappear but quickly go
away again. In many cases, the cursor will change shape while an eval-
uation is being carried out; the shape may be that of an hourglass (wait
cursor) or of a slanted arrow with a star attached (execute cursor).

Q Practicing Suppose you wish to create a new variable name that is
globally accessible so that you can assign different values to the vari-

109
6.1 The do it Command

able. First you have to store the new variable name in the dictionary
Smalltalk. In the following example, the variable named is Frame.

Smalltalk at: # Frame put: nil

The above expression declares that Frame is a global variable name; its
value is the object nil. Type the expression in a workspace, select it, and
then choose the yellow button command do it (Figure 6.6). Now let's as-
sign a new Rectangle to be its value. Type, select, and evaluate the ex-
pression (Figure 6.7)

Frame <- Rectangle fromUser

or

Frame - Rectangle origin: 200 @ 300 extent: 150@200

Figure 6.6

Figure 6.7 Oio

aIItalk at: # Frame put: nil

print ι?
a c c e ρ t
c a n c e I

110
How to Evaluate Expressions

Both expressions are used to create new instances of class Rectangle.
The expressions are well-formed because you declared the name Frame
in advance.

The system includes a dictionary named Undeclared. If you try to evaluate an ex-
pression that contains an undeclared variable name, then the name is stored in
this dictionary. Before you can successfully declare it (that is, store it in the diction-
ary Smalltalk), you must remove it from Undeclared. You can remove it from
Undeclared by evaluating

Undeclared removeKey: #VariableName

where VariableName is the name that was used without prior declaration. Alterna-
tively, you can use one expression to remove the variable from Undeclared and
store it in Smalltalk by evaluating

Smalltalk declare: #VariableName from: Undeclared

6.2

The print it
Command

Evaluating an expression returns a result that is an object that can
print a description of itself. The result obtained by choosing the do it
command is not printed. The command print it is identical to do it with
the exception that the object resulting from evaluation prints its de-
scription after the text selection. The description then becomes the text
selection.

In a workspace, type the expression

3 + 4

Figure 6.8a

Type the escape key. This selects the expression. Now choose the yellow
button command print it (Figure 6.8a).

Smalltalk at: #Frarn9 put: nil

FrarriQ *• Ryctanqle

origin: 2 0 0' *j 3 0 0

Q χ 19 π t: 150 @ 2 0 0

a g a ι η
υ η d ο

c ο ρ y
cut

ρ a s 19

do it

mam
a c c ajj t
c a n c 91

ΠΙ
6.3 The System Workspace

The expression is compiled, evaluated, and then the result, 7, is in-
serted after the expression in the workspace (Figure 6.8b).

Figure 6.8b 000

-Ι Smalltall· at: # Frame put: nil

FrarriQ «- Rectangle
origin: 200 | ϊ ι 300
θ-tent: 150'Σ'200

6.3

The System
Workspace

A special workspace labeled the System Workspace is available in the
system. Its purpose is to provide documentation or templates for some
of the common expressions you might need to evaluate. Most of these
expressions pertain to activities common to an operating system, activi-
ties such as opening or editing a file, reading a file, resetting the size of
the display screen, or accessing the audit of changes you have made so
far. There are also expressions for inquiring about methods, messages,
and literals in the system. These expressions form templates for opera-
tions that you may wish to invoke. By editing the expressions in the
System Workspace, you specify, for example, a particular file or a par-
ticular size for the screen.

The System Workspace usually appears in the upper right screen
area of an initial Smalltalk-80 system display. An image of a typical
System Workspace is shown in Figure 6.9.

An index of the use of expressions found in the System Workspace is
provided in the back of the book. Notice that the System Workspace in-
cludes a template for declaring global variable names. You can find and
edit it rather than typing the entire expression yourself (as
suggested in Section 6.1).

112

How to Evaluate Expressions

Figure 6.9
0001

£malltalk-80 of April 1, 1983

Copyright (c) 1983 Xerox Corp, All rights reserved.

Create File System

SourceFiles +• Array new: 2.

SourceFiles at ; 1 put; (FileStream oldFileNamed;

Ί a s 11 a s t ρ a re η t. s ο u re e s'),

SourceFiles at; 2 put: (FileStream oldFileNamed:

' I a. s 11 a s t ρ a. rent, c h a n g e s'),

(SourceFiles at: 1) readonly.

SourceFiles «- Disk «-nil, |t

Files

(Fi leStream oldFileNamed: 'changes, s t ') f i leln.

(File S t re a m fi 1 e Ν a. m e d: ' c h a n g e s, s t ') fi le 0 u t C h a. n g e s,

(Fi leStream f i leNamed; ' f i leName.st ') edit,

Changes

(FileS t re a m file Ν a. m e d; ' c h a. n g e s. s t'') file 0 υ t C h a n g e s,

S rn a. 111 a I k η ο C h a n g e s,

6.4

Examples In order to give you some practice evaluating expressions, some exam-
ples of system variables and messages you can send to them are given
in this section.

Exercise 1: In a workspace, type the expression

Transcript show: ' hello'

Select the expression and then choose the yellow button command do it
(Figure 6.10a). The special System Transcript is referred to by the glo-
bal variable name Transcript. This expression is a message to Transcript
to insert the characters in the string ' hello' (Figure 6.10b). The Sys-
tem Transcript usually appears at the upper left part of the initial
Smalltalk-80 display screen. If one does not appear, you can create it by
choosing the System Menu command system transcript.

113
6.4 Examples

Sy51Qm Τra.ηscr ipt I

Figure 6.10a Oio

Figure 6.10b

1

114
How to Evaluate Expressions

Exercise 2: Type and select the expression

Rectangle fromUser

and choose the yellow button command do it. The expression is a mes-
sage to Rectangle to create an instance of itself by having you designate
a rectangular area of the screen. Evaluate the same expression with
print it this time (Figure 6.11a). Specify a rectangular area (Figure
6.11b). A description of the Rectangle prints in the workspace (Figure
6.11c).

Exercise 3: Display is a global variable name that refers to the dis-
play form that represents all the bits on the screen. It is an instance of
class DisplayScreen. You can change the size of the full screen by send-

Figure 6.11a 010

Τ r a. π s c r i ρ t s h ο w : ' h e l l o '
a. g a ι π
υ ΓΙ do
c ο ρ ν
cut

ρ a s t e
do it

Figure 6.11b 100

Transcript 5 how: 'hello' Η Η Η Η Η Η Η Η Η

iRQctanqle fromUsen^^H 1

•I

UJ5
6.4 Examples

Figure 6.11c 000

P.
J

Τ re η 5 c π ρ t .• h ο w : ' h e l l o '

ing a message to DisplayScreen, telling it the new coordinates. For ex-
ample,

DisplayScreen displayExtent: 512 @ 640

will modify the layout to be 512 dots wide by 640 dots high. An expres-
sion of this form is provided in the System Workspace. The width and
height you try should not exceed the actual limits of the hardware you
are using.

You can change the image of the current display by sending mes-
sages to Display. For example, the expression

Display gray

will clear the screen to a gray tone.

Suppose you type this expression in a workspace and then evaluate it using the
command do it. There may be a side effect if you keep the cursor in the active
workspace—in particular, the workspace's scroll bar will probably display itself af-
ter the expression is successfully evaluated.

Exercise 4: You can access the cursor display coordinates by sending
a message to Sensor (which is an instance of InputSensor), as shown in
the following sample messages.

Sensor cursorPoint

Sensor waitButton

Sensor
redButtonPressed

Will determine the screen coordinates of the cursor.

Will wait until any button is pressed and then determine

the current cursor point.

Will determine whether only the red button is pressed.

116
How to Evaluate Expressions

Try these expressions using the yellow button command print it. Trying
the third expression by evaluating it in a workspace is a bit tricky be-
cause you have to press the yellow button, release it to choose print it,
and select the red button in the same time frame. It is simpler to evalu-
ate the following two expressions

Sensor waitButton. Sensor redButtonPressed

The first expression will wait until you choose a button before evaluat-
ing the second expression. Thus you can use these expressions to exper-
iment with testing pressing one of the three buttons.

More information about controlling the objects Display and Sensor
can be found by examining the definitions of their respective classes,
DisplayScreen and InputSensor. See Chapter 9 to learn how to find these
definitions.

Exercise 5: You can create an infinite recursion by evaluating a
message that simply calls on itself. For example, suppose Pen responded
to the message go by evaluating

self go

If you sent a Pen the message go, you might notice right away that
nothing is happening the way it should. Or you might not notice until
your system starts running out of space and a notification, such as "low
storage indicator," is displayed on the screen. In the first case, you can
stop the recursion by typing Ctrl c, the system interrupt request. A view
that is a notification that a process was interrupted appears. Chapter
18 describes how to handle notification views.

6.5
Summary of
Terminology

compiling

Display

message-send

nil

Checking for correct syntax and then translating into exe-
cutable form.

A global variable name that refers to the display form that
represents all the bits on the display screen. It is an in-
stance of class DisplayScreen.

A message sent to an object. In a view of an interrupted
process, the term message-send usually refers to a message
from which a response has not yet been received.

The only instance of class UndefinedObject; it is typically
the value of variables that have not been assigned as yet.

z
6.5 Summary of Terminology

Sensor

Smalltalk

System Workspace

Transcript

A global variable name that refers to an instance of class
InputSensor. User interactions with the system input/
output devices are tested by sending messages to an
InputSensor.

A global variable name that refers to the dictionary of all
variable names known globally in the system, in particu-
lar, the names of all classes.

A special workspace containing expressions or templates
for expressions that are useful for such operating system
activities as opening and editing files, resetting display
screen size, and accessing the references to any system
changes.

A global variable name that refers to a text collector, the
System Transcript.

1

How to Make Pictures

7.1 Making Pictures with the Form Editor

7.2 Making Pictures with the Bit Editor

7.3 Making Pictures with Expression
Evaluation
Pens

7.4 Summary of Terminology

120
How to Make Pictures

Now that you know how to evaluate expressions, you can try creating
some graphical images. The Smalltalk-80 system provides support for
creating graphical images by freehand drawing using the display screen
as the canvas and the pointing device as the brush, and by writing
methods in which graphical objects are sent messages to construct an
image.

Simple images are represented by instances of Form. A Form has
height and width and an array of bits (a bitmap) that indicates the
white and black regions of the particular image being represented. A
complex image can be represented in either of two ways: by a very
large Form or by a structure that includes many Forms and rules for
combining and repeating them in order to produce the desired image.
An image that is drawn as a sketch (in a freehand manner) is an exam-
ple of the first; text is an example of the second.

Two sections of this chapter focus on how to make Forms by "paint-
ing" with a "brush" on the display screen using the pointing device to
specify brush positions. These sections present the two interactive edi-
tors that are available in the Smalltalk-80 system: a Form Editor,
which is a general set of tools for creating graphical forms; and a Bit
Editor, which focuses on creating and modifying forms by selectively
making each point (bit) of the form either black or white. A third sec-
tion of this chapter discusses messages you can send to instances of Pen
in order to create images on the screen. Chapters 18, 19, and 20 of the
companion book, Smalltalk-80: The Language and its Implementation,
provide further explanations and examples of methods for creating
graphical images.

7.1
Making
Pictures with
the Form
Editor

The basic idea of the Form Editor is to provide a canvas, an area of the
screen in which drawings can be created, and a set of tools for placing
paint on the canvas. All or part of the drawings can be saved on an ex-
ternal file and retrieved at later times. Figure 7.1 shows the canvas of
the Form Editor on which some drawing has been done, and the menu
of editing commands. The items in this menu are graphical images
rather than text; as such, the menu is called an iconic menu. When the
view for the Form Editor is not active, the iconic menu is hidden; when
you select the view to make it active, the menu appears along the bot-
tom edge of the view.

Five tool functions comprise the basic graphical form vocabulary.
These are: single-copy, repeat-copy, line, curve, and block. Each of these
tools can be modified in its use by four variables that modify its effect
on the screen: form source, color tone, grid spacing, and painting mode.

1

121
7.1 Making Pictures with the Form Editor

Figure 7.1

122
How to Make Pictures

The functions are represented in the iconic menu that appear when the
Form Editor is invoked.

To choose any tool or variable in the Form Editor, either move the
cursor over the icon representing the desired action and click the red
button, or type a corresponding key on the keyboard. You can press the
red button and move the cursor over the icons; the current selection is
highlighted by displaying a gray box within the icon. Releasing the red
button chooses the current selection.

The use of a gray box rather than complementing the icon was the aesthetic choice
of the graphics artist who was involved in designing the editor.

The Form Editor is in a standard system view so that the standard
blue button menu is available. However, the size of the viewing area
can not be changed. A full screen editor can be created as well.

Create a Form Editor by evaluating an expression of the form

(Form new extent: 300 @ 400) edit

or

FormEditor openFullScreenForm

The message edit can be sent to any instance of Form. The system
prompts you to choose the upper left corner of the viewing area. Note
that the numbers you choose for the size of the Form should not exceed
the width and height of your display screen. Moreover, in determining
the height of the entire viewing area, you should allow for at least 112
pixels for the height of the menu.

The second expression creates a new Form the size of the display
screen and then creates the editor for it.

The menu accessed by pressing the yellow button while you are in a
Form Editor has two commands: accept and cancel. As in text editing,
the picture being created does not modify the original Form unless the
accept command is chosen. If at some stage of drawing you wish to ex-
periment with different changes to a Form and you do not want to save
versions on an external file, you can choose the accept command to
store the current version, make some changes, and then choose the can-
cel command to restore the image to the earlier accepted version.

An iconic menu appears at the bottom of the Form Editor view
whenever the view is active. A labeled image of the menu is shown in
Figure 7.2. The corresponding keys on the keyboard are shown in Fig-
ure 7.3. Notice that the keyboard arrangement lines up with the icon
positions. A description of each icon follows. You can try each one. A
suggested exercise follows the description of the editor.

123
7.1 Making Pictures with the Form Editor

form
source tools

Φ r α

D D •••
Figure 7.2 magnify color tones

modes retrieve

ι
1 1

H

c
J

m
gridding

Figure 7.3

1 1 3 4 5 η 8 ') (I - \

Q w

•

Ε

··
R τ

r
Υ

α

υ I

1 I

0

Ν

Ρ

a
]

D Π

Form Source

Magnify

Single-copy Tool

Repeat-copy Tool

(Key a)
Used to select or specify a Form that is used as the "brush"

for painting. You are asked to designate a rectangular area

of the screen. The image within that area becomes the new

brush. You are then asked to designate a rectangular area

whose contents become the new brush shape. You can des-

ignate this area from anywhere on the display screen.

(Key z)
Used for detailed editing of an area of the display screen.

You are asked to designate the rectangular area within the

canvas that is to be edited in its magnified form. Then you

designate the upper left corner of the editing area in which

each screen dot is magnified eight times its normal size.

The upper left corner can be anywhere on the display

screen such that the editing area fits on the screen. See the

description of the Bit Editor later in this chapter.

(Key s)
When this tool is selected, the form source is copied onto

the display screen at the position of the cursor whenever

the red button is pressed.

(Key d)
When this tool is selected, the form source is copied onto

the display screen at the positions of the cursor, as long as

the red button is pressed.

124
How to Make Pictures f

Line Tool (Key f)
Used to specify lines between two points. The form source
is used as the "pen" to connect the end points. Move the
cursor to the position of one of the end points and press
red button. Keep the button pressed and move the cursor
to the other end point. The line image "drags" along. Re-
lease the button to specify the second end point. The line
appears. (Note that when this tool is used with gridding as-
sistance, graphs of horizontal and vertical lines can be eas-
ily created.)

Curve Tool (Key g)
Used to specify a curve defined by three points (1, 2, 3).
The curve begins and ends on points 1 and 2, and is tan-
gent to the directed line segments formed by 1,3 and 2,3.
As in the line tool, the form source is used as the "pen" to
draw the curve. The three points for defining the curve are
indicated by first moving the cursor to the desired position
of point 1 and pressing the red button. Keep the button
pressed and move the cursor to point 2. Release the button.
Now move the cursor, essentially "dragging" out the curve
to whatever shape is desired, and then click the button.
The location of point 3 is implied by the positioning of the
cursor. This technique implements a kind of "rubberband"
approach to specifying the curve, similar to that used in
specifying a line.

Block Tool (Key h)
Used to fill rectangular areas on the display screen with
color tone. Designate the rectangular area. It fills with the
current tone using the current painting mode.

Color tones are set by choosing one of the five colors; each is shown in
the menu as an icon that is a square of the tone.

White Tone (Key x)

Light Gray Tone (Key c)

Gray Tone (Key v)

Dark Gray Tone

Black Tone

125
7.1 Making Pictures with the Form Editor

(Key b)

(Key n)

The form source is copied to the display screen according to one of the
four modes that can be set. These are

Over Mode

Under Mode

Reverse Mode

Erase Mode

(Key j)
Copy both the black and white portions of the form source

onto the display. The result is to replace the currently

displayed image with the form source.

(Key k)
Copy only the black portions of the form source onto the

display.

(Key I)
Copy such that wherever the form source is black and the

display is black, the display turns to white.

(Key ;)
Copy such that the black portions of the form source ap-

pear as white on the display.

The painting area has a grid associated with it in both the χ and y di-
rections. You can set the size of the gridding. When gridding is not
used, the brush can place paint anywhere in the canvas. The horizontal
and vertical gridding can be used separately or together. When gridding
is used, the paint is aligned on the grid boundaries. That is, the χ (when
horizontal gridding is used) or y (when vertical gridding is used), or
both χ and y (if both horizontal and vertical gridding are used) position-
ing of the source upper left corner is forced to align with the grid
boundaries. Three icons represent the gridding controls. They are

Horizontal Grid

Vertical Grid

Set Gridding

(Key m)
A toggle for turning the horizontal grid on and off. When

the grid is on, the icon is highlighted.

(Key ,)
A toggle for turning the vertical grid on and off. When the

grid is on, the icon is highlighted.

(Key .)
Specify the horizontal and vertical grids. The integers rep-

resent the bits of the display screen. The initial value of

126
How to Make P ic tu res

both grids is 8 bits. A prompter appears, first for the hori-
zontal and then for the vertical grid. Type the number, not
to exceed the screen width or height, followed by a carriage
return key. Type only the carriage return to keep the val-
ue shown in the prompter.

The image in the entire painting area is not saved on an external file.
Rather, the current form source is saved. To save everything, select
everything as the form source. When a Form is retrieved from an
external file, it becomes the current form source.

Retrieve Form
Source

Save Form Source

(Key ')
Change the form source to be the Form found on an exter-
nal file. A prompter appears. Type the file name followed
by a carriage return key. If no file name is given or if the
name is not a well-formed file name, a confirmer appears
stating that the file name is illegal, or the file was not
found. You choose the menu item yes if you want to try
another file name; choose no if you want to cancel the re-
trieve request. If the retrieval is unsuccessful, the form
source does not change.

(Key /)
Write a description of the current form source on an exter-
nal file. A prompter appears. Type the file name followed
by a carriage return key. If no file name is given, does
nothing.

Note that it is possible to choose whether you want the paint
brush/cursor to flash or not while you are "painting." The initial sys-
tem arrangement is that the cursor flashes. To change it, evaluate the
following expression before opening the Form Editor.

FormEditor flashCursor: false

The argument is true if the cursor should flash, false otherwise.

• Default Setting When you first create the Form editing area, the
settings for the tools and variables are

• Form Source—a small, 8 x 8 black square

• Tool—Repeat-copy

• Mode—Over

• Horizontal and Vertical Grids—both off

• Grid setting—8 by 8

127
7.1 Making Pictures with the Form Editor

fj Practice Painting Create a standard system view in which you can
use the Form Editor by typing and evaluating the following expression
(Figure 7.4)

FormEditor openFullScreenForm

Figure 7.4 010

again
undo
copy
cut

ρ a. 5t9

print ι
accept1

cancel

This will create an editor for a Form that uses the entire display screen,
with the exception of the space needed for the iconic menu. The initial
painting brush is a small 8 x 8 square with black tone. The tone is
placed on the screen using the over mode. The painting tool is repeat-
copy. Try it by moving the cursor around the canvas area, holding down
the red button. You can draw a sketch. When the button is not pressed,
no tone is placed on the screen.

If you want to start over, choose the yellow button command cancel.
Try the different color tones. Move the cursor into the iconic menu

area. Notice that the shape becomes a normal cursor rather than the
painting brush shape. Place the cursor over one of the gray tones and
click the red button. Now move back to the canvas and sketch some
more. Do this for each tone. Notice that white tone is useful for erasing.

The speed with which you move the cursor makes a difference as to
the smoothness of the sketching line.

Try the different modes. Choose black tone. Choose the yellow button
command cancel so that the painting area is clean. Place a thick stroke
of black across the canvas. You have been using over mode. Now choose
dark gray tone. Paint over some of the black on the canvas. Choose un-
der mode and again paint over some of the black area already on the
canvas. Notice that the tone is placed under the black strokes, not over.
Try reverse and erase modes as well. A possible image resulting from
following these instructions is shown in Figure 7.5.

128
How to Make Pictures

Figure 7.5

You should try each tool as well, changing paint tones and modes to
test the various effects. For now, choose black tone and over mode. Now
select line tool. Draw lines. You have no assistance with respect to
gridding. Choose the yellow button command cancel so that the paint-
ing area is clean again. Choose horizontal grid and vertical grid. The
gridding is now 8 by 8. That is, the lines you draw can be lined up on
every 8 pixels, horizontally and vertically. It is, of course, possible to
use only one of the grids at a time. Draw some vertical or horizontal
lines to see how you can make use of the gridding (Figure 7.6).

Choose set gridding and set each grid to 32 (Figure 7.7).
Choose repeat-copy tool. Now try to paint (Figure 7.8).
Choose horizontal grid and vertical grid again. These items are toggles

so that the gridding will no longer be used when you are painting. Try
the curve and block tools with different tones and modes (Figure 7.9).

129
7.1 Making Pictures with the Form Editor

Figure 7.6

J —
Τ
I

Figure 7.7

Current horizontal grid ding is: 8.
Type new horizontal ^ridding.

:':2
" A

^ v , •··•·•••·• c

130
How to Make Pictures

Figure 7.8

Figure 7.9

Figure 7.10

131
7.1 Making Pictures with the Form Editor

So far you have only used one brush shape (the default small square).
Choose form source and designate an area from which to select a new
brush shape. Try painting with it. Be careful to select something, i.e., do
not select an all white area, else there will be no brush shape and you
will see nothing for a brush on the canvas. If you do, simply type the
key labeled a in order to select a brush again.

Try making a brush that is a horizontal or vertical line and paint us-
ing the repeat-copy, line, or curve tools. Set the grids and try these
brushes. You can make grid paper this way. Be sure that the mode is
over when you try these experiments.

Now choose the yellow button command cancel and start a fresh can-
vas. Choose a small square or circle for a brush. Choose black tone and
over mode. Draw a simple little sketch, of a flower with a bee on it, per-
haps. You probably had some trouble getting it just right-the pointing
device is not, after all, a fine pen for sketching. It would be better if the
bits on the screen were much larger.

Choose magnify, designating the area around the bee (not too much)
and then designating the origin so that a magnified view of all or part
of the bee can be displayed. The view area for the magnified version of
the bee should not overlap the original image on the screen. An exam-
ple is shown in Figure 7.10.

Note that you can not have a Form that contains more than 1024K bits. Since mag-
nification is 8-fold, you should not select an area to be magnified that is larger
than about 128 bits χ 128 bits.

132
How to Make Pictures

You are now using the Bit Editor (see the next section for details).
While doing so, notice that the original bee changes while you are
editing the enlarged bee. Click the red button outside the editor's area
in order to exit the Bit Editor. Now make the bee your brush (choose
form source) and turn the griddings on (choose horizontal gridding and
vertical gridding). Choose repeat-copy and black tone and under mode
and paint a swarm of bees, as shown in Figure 7.11.

Figure 7.11

You can save your work using save form source. Remember that the
image you want to save must be the current form source (brush). Close
the Form Editor by choosing the blue button command close.

In using the Form Editor, there are some simple tricks to remember:

1. The under modd is preferred to over, especially when you want to
place an image onto the canvas without erasing any portion of the
neighboring image.

2. Modes reverse and erase are useful for obtaining interesting af-
fects with mixing images. Using reverse, block tool, and black
tone, you can reverse the video of all or parts of an image.

3. It is often easier to make straight lines by making the border of a
view the paint brush and copying it to the canvas using under
mode and the single-copy tool.

1 3 3

7.2

Making
Pictures with
the Bit Editor

7.2 Making Pictim^rittTthe Bit Editor

Figure 7.12

taSK 5 ΐ i n V ° k e d f r ° m the F ° r m Editor as

in the previous section, or by evaluating an expression such as
Form fromUser bitEdit

w h T ^ T ' y o u . f fe 1 1 ^ t h e rectangular area on the screen from
which the Form is defined. Then you designate the top left corner of th"
area m which the magnified view of the Form is to be displayed This
area is a view containing both the magnified view and a view of the ac-
tual image. Editing takes place in the magnified view (Figure 7 12) The
view of the Form for editing obtained using the message bitEdit i con
tamed m a standard system view, so that the blue button menu an be
invoked for closing the view.

Bit Editor

-L i_ Λ

•

Note that there are only two things you can do in the Bit Editor, choose black tone
so that you can turn dots to black, or choose white tone so that you can turn dots

E d f AH," ; U t y °f S ° m e °f Λ θ Ρ θ ™ E d l t ° r t o o l s W - W be use ul in he Β
Editor. Adding these tools to the Bit Editor is an exercise you might try Also
showing grxd for the bits is useful visual information. '

Entering the magnified area, the cursor shape changes to the
crossHaxr cursor. The red button is used for setting dots in the magnT

134
How to Make Pictures

fied view to either black or white, A menu of colors appears below the
magnified form. Choose one with the red button or by typing a key on
the keyboard. The keyboard correspondences, which are aligned with
the keys in the Form Editor, are

color key

black
white

The yellow button is used for the commands accept and cancel in a way
analogous to the use of these commands in the Form Editor. The blue
button brings up the standard blue button menu.

You can also create the Bit Editor by specifying an existing Form and
sending it the message bitEdit. For example, Figure 7.13 shows the mag-
nified image of the read-a-file cursor (eyeglasses). The cursor is obtained
by sending the message read to class Cursor. Thus, the Bit Editor on it
is obtained by evaluating the expression

Cursor read bitEdit

Figure 7.13

135
7.2 Making Pictures with the Bit Editor

As another example, the result of evaluating

(Form new extent: 64 @ 64) bitEdit

is an editor on a newly created Form whose bits are all initially white.
It is possible to create a Bit Editor that does not appear in a stan-

dard system view. Rather, the editor grabs complete control until you
click any button outside the bit-editing area. This is the Bit Editor as it
is accessed from the Form Editor.

Q Opaque Forms The Smalltalk-80 system also includes a class
named OpaqueForm that stores one of three colors, black, white, or
transparent ("gray"). These Forms are especially useful in creating ani-
mations since any image that is underneath the transparent part of an
opaque form will be visible. The message bitEdit is understood by an
OpaqueForm to create a Bit Editor whose menu of colors includes a
gray tone representing "transparent paint" (Figure 7.14). The keyboard
correspondences are

color key

black
gray
white

Figure 7.14

136
How to Make Pictures

7.3
Making
Pictures with
Expression
Evaluation

Pens

Pictures can be made by direct drawing using the Form Editor or the
Bit Editor. Alternatively, pictures can be made by sending messages to
graphical objects. Generally, pictures made this second way are con-
structed in a highly structured manner by creating instances of class
View or one of its subclasses. The Smalltalk-80 system has many exam-
ples of such views: BrowserView, InspectorView, and NotifierView are the
primary components of the user interface. These views, in turn, contain
subviews that are CodeViews, ListViews, SwitchViews, FormViews,
DisplayTextViews, or StringHolderViews. Examples of StringHolderViews
are ProjectViews, TextCollectorViews, and FillinTheBlankViews. A
StringHolderView is a way of creating an image of any object that can
present itself using information stored as a string.

Primitive graphical objects are instances of Pen, Rectangle, and
Quadrangle. We have already referred to Rectangle; you create a rect-
angle whenever you designate a rectangular area of the screen in which
a view is displayed. The scroll bars are examples of the use of Quadran-
gle in the system. The next section explains how to use a Pen. In addi-
tion, the system includes the class DisplayObject; instances of subclasses
of DisplayObject can be used in creating structured pictures. Example
subclasses are Arc, Curve, Line, LinearFit, and Spline.

A Pen is used for line drawing. It consists of a position on the screen, a
direction in which to move, a Form that it uses for creating images, and
a mask and a rule for combining the Form with its destination area on
the display screen. A Pen is created by sending a message of the form

BicPen «- Pen new

Here we refer to the new instance of the Pen as BicPen. Recall that if
you wish to try this example, BicPen must be declared as a global vari-
able. Rather than use the above assignment, you can evaluate

Smalltalk at: #BicPen put: Pen new

We can constrain BicPen to draw only within a fixed boundary, which
we call its clipping rectangle, by sending it the message frame:
aRectangle. For example,

BicPen frame: (200® 200 extent: 300 @ 300)

According to the above expression, BicPen will only draw in a square
area 300 pixels by 300 pixels, starting at location 200, 200. Without

137
7.3 Making Pictures with Expression Evaluation

such a constraint, BicPen could have drawn anywhere on the screen.
The center of a Pen's drawing area is known as its home. We can place
BicPen at its center by sending it the message home.

BicPen home

Initially, the tip or nib of BicPen is a 1 by 1 black dot with which we
can draw thin lines. We can change the size of this nib by sending the
message defaultNib:. The argument is an Integer, and the resulting nib
is a square with length of side Integer.

BicPen defaultNib: 8

The nib of BicPen is now an 8 by 8 black square. Alternatively, we can
send BicPen the message sourceForm:. The argument is a Form.

BicPen sourceForm: Cursor normal

The nib of BicPen is now the shape of the normal cursor, i.e., a slanted
arrow.

A Pen can receive messages asking it to change the state of its mask.

black

white

Set the mask to black.

Set the mask to white.

And a Pen can receive a variety of messages asking it to change its po-
sition, the state of its ability to draw, and its direction. These consist of

home
down

up

turn: anlnteger

north

go: anlnteger

place: aPoint

goto: aPoint

Go to the center of the Pen's frame.

The ink form with which drawing is done should be posi-
tioned for drawing when the pen moves.

The ink form with which drawing is done should be posi-
tioned so that no drawing is done when the Pen moves.

Change the direction in which the Pen will move by the
amount, anlnteger, measured in degrees.

Orient the Pen towards the top of the display screen.

Move a distance equal to anlnteger pixels; draw using the
source form if the ink form is positioned down.

Place the Pen at location aPoint regardless of orientation;
do not change the current direction, and do not draw.

Move the Pen to location aPoint, ignoring the current di-
rection, but drawing if the ink form is positioned down.

138
How to Make Pictures

As described in subsequent chapters, you can see various ways to make
designs with Pens by browsing to the examples in the instance or class
methods. Two examples for you to try are given here.

Pen new mandala: 30 diameter: 300

and

Pen new spiral: 200 angle: 89

The result of the first is shown in Figure 7.15, and of the second in Fig-
ure 7.16. After trying each example, you will want to choose the System
Menu command restore display.

Pen is the Smalltalk-80 version of the "turtles" designed many years
ago at MIT's Logo laboratory and described in Seymour Papert's book
MindStorms: Children, Computers, and Powerful Ideas (Basic Books,
New York, 1980). Another excellent reference on the use of turtles is by
Hal Abelson and Andrea diSessa, Turtle Geometry: The Computer as a
Medium for Exploring Mathematics (Cambridge, MIT Press, 1981).

Figure 7.15

139
7.4 Summary of Terminology

Figure 7.16

7.4

Summary of
Terminology

DisplayObject

Form

iconic menu

opaque form

Pen

A system class whose subclasses represent the graphical
objects in the system, such as lines, circles, arcs, and
splines.

A system class that represents simple images. Instances of
Form have height and width and an array of bits that indi-
cate black and white regions of an image.

A menu whose items are presented as graphical images
rather than as text.

A Form that represents an array of bits each of which can
indicate a black, a white, or a transparent region of the
image.

A system class that represents a form source, a current
display screen position, and a current direction in which to
move. Instances of Pen are used to draw lines on the dis-
play screen.

How to Find Information
in the System

All information that you can seek about the Smalltalk-80 system in-
volves information about existing objects or about objects that can be
created. You can find out information about the internal state of an ob-
ject using a system view called an Inspector. You can find out about the
message interface to an object using a system view called a Browser. A
System Browser gives you access to all the class descriptions available in
the system, including comments about the classes, comments about the
methods, and examples of how to use many of the classes. Other ways
to find out about messages and methods involve creating system views
called Message-Set Browsers. These views are created in response to
queries to determine which methods send a particular message, which
classes implement a particular message, or which methods reference a
particular variable or literal.

This part includes an introduction on how to find out about a run-
ning process, in particular, how to interrupt an activity to find out
which objects are interacting to create that activity. The system views
used in this exploration are Notifiers and Debuggers. More details about
notifiers and debuggers are provided in Part Three.

Several forms of on-line documentation and assistance will be identi-
fied: comments, explanations, templates, examples, and menus. In addi-
tion, the spelling correction capabilities of the Smalltalk-80 system are
explained in Part Three.

Comments. Each class description includes a command about the pur-
pose of the class. A class comment is obtained (for reading or for
editing) by choosing the yellow button command comment in the class-
names subview of the browser. Other comments document the purpose
of a method. These are found by choosing a message selector; the com-
ment is the text within double quotes at the beginning of the method
definition. Programmers can also document the design of a method by
interspersing quoted text within the method itself.

%:;:;:;:;:;̂ ^
Explanations. Suppose you want to understand an existing method.

One form of explanation could be explanation about the tokens that ap-
pear in the method. You can select any token and then choose a com-
mand to obtain a short description of the role of the token.

Because of the class and message structure of the system, it is possi-
ble to provide explanations about which messages are sent in a particu-
lar method, and to obtain browsers to answer queries as to which
methods send a particular message, which classes implement a particu-
lar message, and which messages are sent in a particular method.
These are the kinds of queries that a programmer must be able to make
to determine the structure of the Smalltalk-80 system. The system
browser as the program editing interface provides the framework for
both the incremental development of class descriptions, as well as the
context for accessing information about classes. Each new class added to
the system by the programmer is accessible via a browser and can be
queried in the same way as all system-provided classes.

Templates. Whenever the system "knows" something about the form
in which information should be provided, a template or a default solu-
tion is provided. The user edits the template, replacing descriptive
words with the actual desired text. This means that the user does not
have to remember syntax and can be prompted on the kind of informa-
tion that is required. Templates are used to assist in defining classes
and methods, and in commenting the system.

Examples. In many of the descriptions of classes in the system, there
are messages that consist of examples of how to interact with instances
of the class. Examples show how to create a new instance or how to use
an instance. These examples are typically messages to the class itself,
where the method includes documentation comments and expressions to
be evaluated. Since you can add your own methods, a strategy for
learning how to use the system is to work out examples of your own
that you store with the associated class.

Menus. Menus are a form of assistance in the system. The items in a
menu denote and remind you of the kinds of activities you can do. You
choose an activity by pointing to the menu item, rather than having to
remember the correct key words and having to type the words correct-
ly. Items in a menu represent the behavior of an object; most likely,
there is a message in the class description of the object that carries out
the behavior represented by the menu item. You can learn about pro-
gramming in the system by searching for these menu item/message
correspondences.

• Please Note The tutorial presentations in this part of the book as-
sume that the system sources are available to you and accessible from
your system. Without them, you can still use the system and access sys-
tem class descriptions. However, you will not be able to access class and
method comments nor actual method argument names.

:·:·:£:·:·:·:·&:·:·:·:!3;:^

Finding Out About
Instances

8.1 The Structure of an Inspector

8.2 Changing the Values of Variables

8.3 Sending Messages to an Object

8.4 Special Kinds of Inspectors
Dictionary Inspector
Model-View-Controller Inspector

8.5 Finding Out About a Running Process

144
Finding Out About Instances

8.1

In developing definitions or learning about the system, you can exam-
ine the named or indexable instance variables of an object. The mes-
sage inspect can be sent to any object. The result is an inspector view of
the object.

The Structure
of an Inspector

An inspector is a view made up of two parts: one is a list menu of the
names of the instance variables; the other is a text view in which the
value of the selected variable is shown. As an example of using an in-
spector, try evaluating the expression

(Rectangle origin: 10 @ 10 corner: 60 @ 60) inspect

The result of evaluating the parenthesized expression is an instance of
class Rectangle with origin at screen location 10, 10 and corner at 60,
60. Recall that 0, 0 is at the upper left corner of the display, and that χ
increases to the right and y increases to the bottom of the screen. A
message expression of the form aNumberi @ aNumber2 denotes an in-
stance of class Point; the Point represents a location on the display
screen whose Cartesian coordinates are aNumberi, aNumber2.

This new Rectangle is then sent the message inspect. The result is
that you are asked to designate a rectangular area in which the inspec-
tor will appear. An example inspector on this Rectangle is shown in
Figure 8.1.

Figure 8.1

145
8.1 The Structure of an Inspector

The left subview of the inspector is the list menu. The menu contains
the pseudo-variable name self, which refers to the inspected object. It
also contains the instance variable names origin and corner. You choose
items in the list menu by placing the cursor over the item and clicking
the red button.

Choose one of the variable names; a description of the value of the
variable prints in the right subview (as shown in Figure 8.2a). Choose
self from the list menu. A description of the Rectangle prints in the
right subview (Figure 8.2b). Note the special print format for Rectan-
gles that is displayed in the right text subview.

Figure 8.2a

100
000

i

•!

J
i
< 5 Q l f

origin

60'.*! 60

Figure 8.2b 000

Fi 9 c t a ri q Ι Ρ

origin'
cornQr

10© 10 cornQr:
60'*'60

146
Finding Out About Instances

Choose the instance variable name corner. Press the yellow button.
The pop-up menu that appears contains the single command inspect
(Figure 8.3a). Choose inspect. You are asked to designate another rec-
tangular area in which to display an inspector for the object referred to
by corner. This object is an instance of class Point. Notice that the label
of the inspector contains the name of the class of the inspected object
(Figure 8.3b).

Close this second inspector by choosing the blue button command
close.

Figure 8.3a 010

Rectangle

5Ql f

origin

aauaa

6 U'1:6 U

Figure 8.3b

•00
000

Rectangle!

5Ql f

origin

6 0 <*i 6 U
60'a; 60

147
8.2 Changing the Values of Variables

8.2
Changing the
Values of
Variables

You can change the value of an inspected object's variables by typing
an expression for the new value in the right subview and then choosing
the yellow button command accept.

Choose origin from the list menu of the inspector for the Rectangle
you created earlier. Change the value 10 @ 10 to be 20 @ 15 simply by
editing the text and choosing the yellow button command accept in the
right subview of the inspector (Figure 8.4a). Now choose self in the list
menu to see that the current description of the Rectangle has changed
(Figure 8.4b).

The private memory of an object is supposed to be protected from such direct ma-
nipulation. However, for testing or for debugging purposes, the ability to directly
set the values of instance variables is very useful.

Figure 8.4a 010

20@15

again
undo

Figure 8.4b

100
000 ij

8"
Rectangle H ^ ^ I H H

corner

A2U'*J 15 corner:
60@60

148
Finding Out About Instances

Try another example. Create an array of arrays by typing and
selecting the following expression in a workspace, and choosing the yel-
low button command do it.

#(($a $b $c) $d ($e $f)) inspect

The first inspector presents an instance of class Array (Figure 8.5a). The
object has three indexed variables. If you choose the first item in the
list menu, self, a description of the instance is printed (Figure 8.5b).
Choose item 1 in the menu of the inspector (Figure 8.5c). A description
of the first element of the Array prints. Choose the yellow button com-
mand inspect (Figure 8.5d). Another inspector is created; it presents an-
other instance of class Array, this time one with the three characters as
its elements. Try inspecting the different variables. Item 2 in this sec-
ond inspector is a Character (Figure 8.5e).

Figure 8.5a

Figure 8.5b

((l a $b $c) $d ($Q $f

j

149
8.2 Changing the Values of Variables

Figure 8.5c

Figure 8.5d

Figure 8.5e

150
Finding Out About Instances

Choose the first element of the array in the second inspector (item 1
in the list menu) (Figure 8.5f). Now edit the text view so that it contains
the text #(1 2) instead of the Character $a. Choose the yellow button
command accept (Figure 8.5g). The value of the first element of the cur-
rent array is now the two-element array of numbers 1 and 2. Choose
self in the list menu to see the change (Figure 8.5h). Close both inspec-
tors.

Figure 8.5f

Figure 8.5g DID

($3 $b $c)

again
undo
copy
cut

paste
do it

print it

Γ

Figure 8.5h

151
8.2 Changing the Values of Variables

To see how the information about an object can be multiply-viewed
by the system views, create two inspectors on the same object. For ex-
ample, try to inspect another instance of Rectangle by evaluating the
expression

Rectangle fromUser inspect

You will first designate the area for the Rectangle and then the area
for the inspector. Choose the item self in the list menu (Figure 8.6a).
(Your rectangle will probably have different coordinates.)

Figure 8.6a

100
000

I

I corngr

2ΰ@2ΰ corner:
165@ 135

152
Finding Out About Instances

Choose the yellow button command inspect (Figure 8.6b) to create a
second inspector (Figure 8.6c). Choose origin in both inspectors (Figure
8.6d).

Figure 8.6b ΟΙΟ I

RectanqlQ ^ ^ ^ ^ ^ ^ H

origin
corner

^IJIOI^^I corner:

165'*; 135

Β

Figure 8.6c

100
000

Recta nqlej

origin
corner

23@22 corner:

165's: 135
απ gin

corner

23@2'^ corner:

165<2! 135

r
153

8.2 Changing the Values of Variables

100
Figure 8.6d 000

Rectangle I

self

corner

You cannot use a more direct approach to creating the two inspectors, such as
evaluating

| rect |

rect «- Rectangle fromUser.

rect inspect.

rect inspect

because as soon as the first message, inspect, is sent to the rectangle instance, rect,
the workspace loses control to the newly created and scheduled inspector. The last
expression is never evaluated.

Change the value of one of the variables in one inspector (Figure
8.6e).

Figure 8.6e Bio

Fi 9 C 1 8 . Π CJI y again
undo
copy
cut

paste
do it

print it

Rectangle

self

corner

154
Finding Out About Instances

See that the other inspector knows about the change (Figure 8.6f). If
the variable is already selected in the second inspector when its value
was changed in the first, you will have to reselect it to see the changed
value. Similarly, if self was selected, you must choose it again to see the
change. Close both inspectors.

The yellow button menu of the inspector's left subview contains only one item, in-
spect. Only the instance variables of the object are shown. As an alternative de-
sign, a command to inspect the class variables could be added. In some variations
of the Smalltalk-80 system used within Xerox, this command is called classVars; it
creates an inspector on a Dictionary whose keys are the class variable names and
whose values are the values of the named variables.

Figure 8.6f

100
000

Recta nqle

SQlf

corner-.

40 Φ 30

1
Rectangle ^ ^ ^ ^ ^ ^ H

SQlf
40Φ30 j

8.3

Sending
Messages to
an Object

Another use of the right subview of an inspector is to test sending mes-
sages to the inspected object, or to test evaluating message expressions.
For example, Rectangles understand messages for determining width,
height, and area. In the right subview of the inspector for the first
Rectangle that was created in an earlier example, type and select the
following expression

self area

Note that in this example we assume the origin is at 20, 15 and the cor-
ner at 60, 60. Choose the yellow button command print it (Figure 8.7a).
The result is printed (Figure 8.7b).

155
8.3 Sending Messages to an Object

010
Figure 8.7a

000

000

<--'-•>< I

:

! 5eIf arQaiOffl

4

/.,

:

ί

Figure 8.7b

000

!
ori
c ο ί

I
1ti

I (6 0 - 2 0) + (6 0 -

< 15)H^Q
ί
j

••

1

Figure 8.7c Figure 8.7d

Is the result correct? Type and evaluate either

self width * self height

or

(60-20) * (60- 15)

as shown in Figures 8.7c and 8.7d. Both expressions compute the area
and show that the result from evaluating the expression self area was
correct.

All evaluation in the inspector is done within the context of the
inspected object's variables. Thus the expression

corner - origin

can be selected and successfully evaluated in the Rectangle's inspector
because the variable names are known to the inspected object.

156
Finding Out About Instances

8.4
Special Kinds
of Inspectors

Dictionary
Inspector

The message inspect is implemented in class Object. Typically, the re-
sult of the method is to create the inspectors described in the preceding
sections. In addition, the system includes two special inspectors, one for
instances of class Dictionary and the other for instances of class View.

Objects such as Dictionaries are represented with indexable instance
variables. As demonstrated for an Array, the list menu of an inspector
for such objects contains indices referring to the indexed variables. In
the case of a Dictionary, the value of one of these variables is an associa-
tion between a Dictionary key and a value. Figure 8.8a shows an exam-
ple Dictionary. The special inspector for a Dictionary shows the Dictionary
keys in the list menu, rather than the indices; choosing a key causes
the associated value to display. Figure 8.8b shows this inspector for the
example Dictionary. Editing the value and choosing the yellow button
command accept stores a new value for the selected Dictionary key (Fig-
ure 8.8c).

Since the system supports the special form of inspector for a Diction-
ary, you have to do something special to obtain the default kind of in-
spector. To create the examples, first create the Dictionary Test by eval-
uating the following expressions.

Smalltalk at: #Test put: Dictionary new.
Test at: #first put: 1.
Test at: #second put: 2.
Test at: #third put: 3.
Test at: #fourth put: 4.

Test at: #fifth put: 5.

Now create an inspector for Test.

Test inspect
The inspector will be like the one shown in Figure 8.8b. In the text part
of this inspector, evaluate the expression

super inspect

The new inspector that you create will be like the one shown in Figure
8.8a.

157

8.4 Special Kinds of Inspectors

Besides the command inspect, the yellow button menu of the left
subview of a Dictionary inspector provides commands for adding and de-
leting elements from the Dictionary, add field and remove. Only add field
shows when no item is selected. Certain Dictionaries in the Smalltalk-80
system are used for storing references to pooled variables; the keys of
such Dictionaries are variable names that can be referenced in the
methods of one or more classes in the system. The yellow button menu
also provides a command, references, to search for and to create a mes-
sage-set browser for all methods that contain references to the selected
Dictionary key. Figure 8.8d shows the yellow button menu for the Dictio-
nary inspector. Message-set browsers are described in Chapter 10.

Figure 8.8a Figure 8.8b

Figure 8.8c

010
Figure 8.8d

.fifth Τ
first
fourth

third

ι η 5 ρ « c t
reference:

add field
re rn ο ν e

158

Finding Out About Instances

Model- View-
Controller
Inspector

Many objects in the Smalltalk-80 system are closely related to one an-
other. In particular, the user interface of the system is implemented us-
ing subclasses of two classes, class View and class Controller. A View
represents ways of presenting information on the screen; a Controller
represents ways in which the user interacts with a screen view. Any
View is related to a Controller and to another object, the object whose
information is accessed in the View. This other object is referred to as a
"model." Whenever you inspect a View, you typically want to inspect its
related model or Controller. There is a special inspector in the system
for inspecting the two main objects related to a View, as well as the
View, whenever a View is sent the message inspect. An illustration of
this inspector is shown in Figure 8.9. It is an inspector containing three
subviews, each of which is itself an inspector—one for the model, one
for the View, and one for the Controller. In the figure, the model is a
system browser.

In order to try to create a special inspector for a View, evaluate the expression
ChangeListView new inspect. Very few of this View's variables will be initialized as
yet, but you can at least explore the structure of the special inspector.

Figure 8.9 [000

Model: a Browser
self
organization

className
met a.
protocol
select ο r
te tfvlode

C ο 11 e c t ί ο η s - U η ο r d e r e d

View: a. Browser'v' iew

rn ο d e I
controller"
superView

transformat ion

Ο r d ere d C ο 11 e c t i ο η ί a S e I e c t i ο η Ι η Li s t V i

Select io η Ι η List View a. Boolean View a.

Β ο ο I e a n V i e w a. S e I e c t i ο η Ι η L ί s t V i e w a

S e I e c t i ο η Ι η Li s t V i e w a. C ο d e V ί e w)

: ο η t r oiler: a S t a n d a r d '& ν s t e rn U ο η t r ο 11 e r

r e d Β u 11 ο η Μ e s s a g e s
yel lowButtonMenu
y e 11 o w B u t t ο η Μ e s s a

a PopUpMenu

r

8.5

159
8.5 Finding Out About a Running Process

Finding Out
About a
Running
Process

A notifier provides a simple description of an activity or process at the
time that the activity was interrupted. Interruption can occur because
of a runtime execution error, or because you purposefully cause such an
interruption. This purposeful interruption is accomplished by typing Ctrl
c on the keyboard (that is, type "control" and the "c" keys at the same
time). The notifier displays the reason for the interruption in the label
of the view, and displays the sequence of messages that were invoked
but not yet completed.

Try to create a notifier by typing Ctrl c. The currently running pro-
cess is interrupted. The notifier appears centered on the display screen.
A possible interruption is shown in Figure 8.10a. Choose the yellow but-
ton command proceed in order to continue the process; when you
choose proceed, the notifier is automatically closed.

Figure 8.10a 010

I User Interrupt H | | | | H | | | H | | ^ B H ^ H ^ H I 11
S t a n d a rd S y 51 e rn 'J ο η t r ο 11 e n; 'J ο η t r ο 11 e r) • • i s 0 ο η t ro 1W a n t e d

[] i π C ο η t r ο ΙΜ a n a g 9 r > > 5 e a. r c h F ο r A c t iveCuntr 011 Θ r

[] ί η 0 r d e r 9 d C 011 e c t i 0 η f C 0119 c t i 0 η) > > lUUSHiEfiivl 0 η 9:

ΰ r d 9 re d C ο 119 c t i 0 η > > d ο: U . ^ J J U

ϋ rd 9 r 9 d C 0119 c t i 0 η (C ο 119 c t i 0 π) > > d 919 c t: i f Ν ο η 9:

Typing Ctrl c can be used to interrupt a successfully running process
that you wish to explore, perhaps to change the part of the system that
supports the running process. Suppose you wish to know where text se-
lection highlighting takes place in the system so that you can change
the style of highlighting. While you are making a text selection, type
Ctrl c (Figure 8.10b).

160
Finding Out About Instances

Figure 8.10b 000

Γ
Interrupt

Pa. r a g ra ρ h > > d y Fo rPo i π t:

Pa. ra g r a ρ h > > m ο υ s e S e I e c t : t ο:

S t ri π g Η ο I d 9 rC ο π t ro 11 θ r f Pa ra g r a ρ h Ε d i t ο r) > > ρ ro c e s s Fi e d Β u 11 ο π

S t ri η g Η ο I d e r C ο η trolls r(Pa ra g r a ρ h Ε d i t ο r) > > ρ ro c Q S S Μ Ο U S Q Β U 11 ο π s

S t ri η g Η ο I d e rC ο η t ro 11 e ri Pa ra g ra ρ h Ε d i t ο r ϊ > > c ο η t ro IA c t ί ν i t ν

The label of the notifier that appears indicates the reason for the in-
terruption.

User Interrupt

The view displays a sequence of class names and message selectors
whose method activations were interrupted. The notifier only displays
the most recent class/message selectors of the interrupted execution.

You can choose the yellow button command debug to obtain another
view of the interrupted process. This view is called a debugger. It lets
you explore the methods associated with the interrupted activity, to
make needed changes, and then to proceed. Further details about the
debugger are given in Part Three.

A reason to interrupt a running process is to stop what appears to be
a nonterminating process. When some activity seems to be taking too
long, you can type Ctrl c, and then determine whether to proceed or to
terminate the activity. To terminate, choose the blue button command
close.

The notifier view is non-preemptive. You can just leave it on the
screen and do something else, returning to deal with the interrupted
situation at a later time.

i

9
Finding Out About
System Classes

9.1 The Structure of a System Browser

9.2 Messages to a Class versus Messages to an
Instance

9.3 Browser Menu Commands
Class-Category Menu Commands
Class-Name Menu Commands
Message-Category Menu Commands
Message-Selector Menu Commands
Text Subview Menu Commands

9.4 Browsing a Subset of the System
Class Hierarchy Browser

;

162
Finding Out About System Classes

The main way to find out about classes in the system is to use a system
class browser. A browser presents a hierarchical index to information.
A Smalltalk-80 class browser presents a hierarchical index to classes in
the system. This index is independent of programming logic; it is
designed solely for user access to class descriptions via subject catego-
ries. The browser presents categories that organize the classes within
the system, and categories that organize messages within each class.
The information about a class that you can retrieve using a browser in-
cludes

• a comment about the role of the class in the system

• a description of the part of the system class hierarchy in which the
class is found

• a description of the variables of a class

• a description of the messages and methods of the class, including
comments about the use of the message and the design of the
method

• a classification of the class with respect to other classes

• a classification of the messages of the class

• access to all methods in the system that send a particular message

• access to all methods in the system that implement a particular
message

• a list of all messages sent in a particular method

The system browser also provides access to templates for defining
new classes and templates for defining new messages, as introduced in
Section 5.4.

There are a number of class browsers in the Smalltalk-80 system,
distinguished by the particular subset of classes that can be accessed.
You obtain the browser for all of the classes in the system on the dis-
play screen by choosing the System Menu command browser. The
browser that you see takes the form shown in Figure 9.1.

i

163
9.1 The Structure of a System Browser

Figure 9.1

System Browser jjji

CLASS

CATEGORIES

MENU

CLASS

NAMES

MENU

n s t a n c e l class

MESSAGE

CATEGORIES

MENU

MESS/»

SELECT

MEN

LGE

ORS

U

TEXT

9.1
The Structure
of a System
Browser

The browser is made up of five subviews and two menu items labeled
class and instance. When you first create a browser, the menu item
instance is selected. This means that the messages you are able to re-
trieve are the ones sent to instances of the class, rather than to the
class itself. When the menu item class is selected, the messages you are
able to retrieve are the ones sent to the class itself.

Four of the subviews are fixed list menus; the fifth is a view in which
methods can be defined and modified using the text editor. We will re-
fer to the various subviews of the browser by their labels in Figure 9.1.
There is a yellow button menu associated with each subview of the
browser, as shown in Figure 9.2. The commands in each menu are de-
scribed in this chapter.

Classes in the system are organized according to categories. In the
full system browser, these categories are seen in a list menu in the first
subview, which is labeled class categories menu in Figure 9.1.

Choosing an item in the class-category subview causes a list of class
names to appear in the adjacent subview. This adjacent subview is la-
beled class names menu in Figure 9.1. For example, if you choose the
item Graphics-Primitives in the class-categories subview of the class

164
Finding Out About System Classes

Figure 9.2

;*;!::;:l*h;;;:i:i;h;;!!:;!:i*i;;*;:*

System Browser

file out
print out

s ρ a w η
add category

rename
remove

update
edit all

file out
print out

S p 3. Vv' Γι

spawn hierarchy
hierarchy
definition

c ο ITI m e η t
protocols

inst var rets
class va.r refs

class refs
re η a. me
remove

file out
print out

s ρ a w η
add protocol

rename
remove

a q a i η
undo
c ο ρ y

cut
paste
do it

print it
accept
c a n c e I
format
s ρ a w η
explain

file out
print out

s ρ a w η

senders
imp lame η tors

m e s s a q e s

m ο ν e
remove

browser, a list menu of four class names appears in the adjacent subview
(Figure 9.3). One of the items that appears is the class name Pen.

In addition, when a class category is selected, a template for defining
a new class appears in the subview that is labeled text in Figure 9.1.
The template is shown in Figure 9.3. You can edit this template in or-
der to substitute proper names for the various parameters so that a
well-formed expression is created that defines a class. When you choose
the yellow button command accept, and if the edited information is
syntactically correct, a new class is created (or an old one modified).
The class is categorized under the class category selected in the first
subview.

The subviews of the browser are thus dependent on each other. A se-
lection in one subview specifies the information for another subview.
When a class is selected in the class-names subview, its list of catego-
ries of messages appears in the adjacent subview. This subview is la-
beled message categories menu in Figure 9.1. In addition, when a class
is selected, the class definition appears in the text subview. An example
in which the class name Pen is selected is shown in Figure 9.4. By
choosing yellow button commands in the class-names subview, com-
ments about the class and the class hierarchy of the selected class can
be explored, and, if appropriate, modified.

165
9.1 The Structure of a System Browser

Figure 9.3

100
000

Graphics-View::
Graphics-Editors

Figure 9.4 000

Ν a. m Q 0 f ο υ ρ e re I a s s 5 u b c I a s s: # Ν a rn e 0 f CI a s s

i η 51 a. n c e V a. ri a. b I Q Μ a. m e 5: 'in s t V a rN a m e l in s t V a. rN a rn e 2'

c I a s s V a. ri a. b 19 Ν a m e s: ' CI a. s s V a rN a. rn Θ 1 CI a 5 s V a rN a rn 9 2'

poolDict ionar ies: "

c a. t e g ο r y: ' G r a p h i c s - Pr i m i t i ν 9 s'

uol lect ions-
Collections-::

Graphic s-Dis
Graphic s-Pa.i
Graphics-Vie
Graphic s-Edi

Point
Quadrangle
Fi 9 c t a n g I e

initialize-release
a c c e s s i η g
coloring
m ο ν i η g
geometric design:

BitBIt subclass: #Pen

i η s t a η c e V a r i a b I e Ν a. rn e s: ' f r a rn e I o c a t i ο η d i r e c t i ο η ρ 9 η D ο w n

c I a s s V a r i a b I e Ν a. rn e s; "

poolDictionaries; "

c a. 19 g ο r y: ' G r a. p h i c s - Ρ r i rn i t i ν e s'

166
Finding Out About System Classes

Figure 9.5

Collect ions-Strea1

Collect ions-Suppo
1CII]IIBIMailllllH»=

G r a ρ h i c s - D i s ρ I a y
Graphics-Paths
Graphics-Views
Graphics-Editors

Point
Quadrangle
Rectangle

init ial ise-re lease
accessing
coloring

ΟβΒΒΕΠΙ
qeometrictoiesigns

d ο w η
fillln:
go:
goto:
home
η ο rt h

message selector and argument names

"comment stat ing purpose of message"

| temporary variable names |

s t a. t e m e η t s

When a message category is selected, a list of messages in that cate-
gory appears in its adjacent subview. The subview is labeled message
selectors menu in Figure 9.1. An example is shown in Figure 9.5. In ad-
dition, when a message category is selected, a template for defining a
new method appears in the text subview. You can edit this template,
specifying the message pattern, a comment, and the sequence of state-
ments. When you choose the yellow button command accept, and if the
method is syntactically correct, a new method is created. It is added to
the description of the selected class, categorized in the selected message
category.

Choose a message selector. Its method appears in the text view. An
example appears in Figure 9.6. You can edit the method using the text
editor. You then recompile it and reinstall it automatically in the sys-
tem by choosing the yellow button command accept in the text subview.
Information about the method is provided in comments that also appear
in the text view, usually at the beginning of the method. You can use
the browser to find a message and its associated method in order to
read the comments and to learn about the intended use of the message.

Figure 9.6

167
9.1 The Structure of a System Browser

ρ
Graphics-Paths
G ra. ρ h i c s - V i e vv s
Graphics-Editors

d o w η

fillln:
go:
goto;

home

"Place the receiver a t the center of its frame,

location *• frame center

The browser search approach implies that you need to know the category of a class
in order to find it in the browser. Besides exploring in the browser, you can find
out the category of a class by sending it the message category. For example, the an-
swer from the message category to the class object Pen

Pen category

is Graphics-Primitives. Type this expression in a workspace, select it, and then
choose the yellow button command print it. The category name is printed. Also, as
will be described at the end of this chapter, it is possible to create a browser for a
subset of the information in the system. To get a browser for a single class, you
create an instance of class Browser, specifying the class. For example, try evaluat-
ing the expression

Browser newOnClass: Pen

to get a browser just for class Pen.

Another approach might be to add a subview to the browser in which you can type
a keyword, like a class name, to get the browser to automatically select the correct
subview menu items, thus showing you the index hierarchy. Another possible fea-
ture is to be able to save the selected "query path" (the one, two, three, or four se-
lected indices) in an additional menu so that the path can be selected directly.

168
Finding Out About System Classes

9.2
Messages to a
Class versus
Messages to an
Instance

In the preceding examples, we have assumed that the browser menu
item labeled instance was selected. Now choose the item labeled class
(Figure 9.7). All messages browsed will now be ones that are sent to the
class itself. These are primarily instance creation messages. In many
cases, these messages consist of documentation comments or examples
of how to create instances of the class. A good way to learn about the
Smalltalk-80 system is to explore the classes and see what examples are
provided. The example methods typically include a comment that you
can select and evaluate in order to invoke the example.

Choose the class category Graphics-Paths, and then choose the class
name Spline (Figure 9.8). The browser menu item class should be select-
ed. In the previous sequence of instructions, you had been directed to
browse through the messages that can be sent to instances of a class.
Now we can browse through the messages that can be sent to a class it-
self, in this case, to Spline.

Message categories that are typical for classes include class initializa-
tion (messages to create class variables), instance creation (messages to
create new instances of the class), constants, queries, or examples. The
description of class Spline consists of the message category examples.
Choose it. In the message-selectors subview, choose the message selector

Figure 9.7

100
000

CollQCtions-StrQa
Collections-Suppo

Graphics-Display
Graphics-Paths
Graphics-Views
Graphics-Editors

Quadrangle
Rectangle

instance creation
examples

Pen class
instance VariableNames:

169
9.2 Messages to a Class versus Messages to an Instance

example. The selection of browser menu item class, category examples,
and message selector example is shown in Figure 9.9a.

100
Figure 9.8

000

Collect ions-t
Collections-::
Graphics-Prir
Graphics-Dis1

Spline class

i η 51 a. n c e V a ri a b I e (\J a m e s: "

100
Figure 9.9a 000

Collections-Streai Circle
Collections-Suppol Curve
Graphic s -Prirnit i ν a Line
Graphics-Display I LinearFit

G ra ρ h i c s - V ί e w s
G raphics-Edit ο r s

^example
"Designate points on the Path by clicking the red button.

Terminate by pressing any other button, A curve will be displayed,
through the selected points, using a square black form."

| spline Curve a Form f la. g|
a Form *- Form new extent:
a Form black.
spline Curve *• Spline new.
splineCurve form: a.Form.
flag «- true,
TflacH while True:

8@8.

170
Finding Out About System Classes

The text subview now contains the definition of an example use of
Splines. Read the comment to learn how to use the example. Now scroll
to the end of the code and find text for the expression

Spline example

Select the expression and then choose the yellow button command do it
so that you can try the example (Figure 9.9b).

Figure 9.9b 010

Graphics-Views
Graphics-Editors

C ο 11 e c t i o n s - S t r e a l C ι re I e
G ο 11 e c t i ο η s - S υ ρ ρ ol C u r ν Θ

G ί'δ. ρ h i c s - Pri m i t i ν a Line
Graphics-Display I LinearFit

pnn^it
a c c e ρ t
cancel
format
spawn
explain

ifFalse: [f lag«-false]].

s ρ I i η e C υ r ν e c ο m ρ u t e C u r ν e,

spline C u r ν e i s Ε rn ρ t y

ifFalse: [splineCurve displayOn: Display

S e η s ο r w a i t Μ ο Β u 11 ο η

t spline Curve

According to the documentation included in the method, you point to
several places on the screen by moving the cursor and clicking the red
button (Figure 9.9c); you terminate by clicking either the yellow or blue
button. The result is a curve computed using the algorithms of the
spline (Figure 9.9d).

This example had the side effect of leaving marks about the screen.
Choose the System Menu command restore display to clean things up.
Explore other graphical objects and try the examples.

171
9.2 Messages to a Class versus Messages to an Instance

Figure 9.9c

KB
000

Figure 9.9d

100
000

Gollections-StrQaj Circle
C ο 11 e c t i ο η s - S υ ρ ρ οι C u r ν e
Gr aρhics-Prirnitivel Line
Graphics-Display I LinearFit

Graphics-Views
G r a p h i c s-Edit ο r s

ifFalse: [f lag*-fa lse]] .

splineCurve computeCgp/e. •

s ρ I i η e C υ r ν e i s Ε rn ρ t y

ifFalse: [splineCurve display On: Display,

Sensor w^cNoButton], •

t splineCurve

Collections-Strea
C ο 11 e c t i ο η s - S u ρ ρ ο
Graphics-Pr imit ive
Graphic s-Display

Graphic s - V i e w s
Graphics-Editors

ifFalse: [flag«-false

spline C u r ν e c ο rn ρ υ t e

s ρ line C u r ν e i s Ε rn ρ t

ifFalse; [splineOBrye displayOn

Sensor

•t-splineCurve

172
Finding Out About System Classes

9.3
Browser Menu
Commands

A yellow button menu can be accessed in each subview of the browser.
The menus were illustrated in Figure 9.2. The use of each command is
summarized in this and in the following sections.

There are three commands common to the four subviews containing
list menus. These are commands for creating a file containing a version
of the selected descriptions readable by the Smalltalk-80 interpreter
(file out); for creating a file containing a human readable, well-formatted
version of the selected descriptions (print out); and for creating a brows-
er for a subpart of the system (spawn).

In the Xerox systems, the command print out also creates a hardcopy version of the
file.

file out

Class-Category
Menu Commands

print out

spawn

Creates a file whose name depends on the current menu
selection. The file contains a Smalltalk-80 readable version
of the descriptions of the selected item (classes in a catego-
ry, single class, methods in a class protocol, or single meth-
od).

Creates a file whose name depends on the current menu
selection. The file contains a human readable ("pretty-
printed") version of the descriptions of the selected item.
(In a non-Xerox version of the system, this command may
be identical to file out.)

Creates a browser in which only the classes included in the
selected category can be accessed.

There are five additional commands in the menu of the class-category
subview that pertain specifically to modifying the class categories.

file out

print out

spawn

Creates a file whose name is the selected class category,
followed by a period and the characters St. The file con-
tains a Smalltalk-80 readable version of the descriptions of
the classes in the selected category.

Creates a file whose name is the selected class category. (In
the Xerox system, the name is followed by a period and the
characters press.) The file contains a human readable
("pretty-printed") version of the descriptions of the classes
in the selected category.

Creates a browser in which only the classes included in the
selected category can be accessed.

173
9.3 Browser Menu Commands

Class-Name Menu
Commands

add Category Adds a new item to the class-category menu. When you

choose this command, a prompter appears in which you

type the category name. Choose the yellow button com-

mand accept, or type the "carriage return" key, to indicate

that you are finished typing. The new category name is in-

serted before the current selection, and then becomes the

current selection. If no item is selected when this command

is chosen, then the new category is added at the end of the

menu.

rename Changes the name of the currently selected category. A

prompter appears in which you edit the category name.

Choose the yellow button command accept, or type the

"carriage return" key, to indicate that you are finished

typing.

remove Removes the currently selected category of classes from the

system. If there are any classes classified under the select-

ed category, a confirmer appears to make certain that you

wish to remove all the classes from the system. Choose yes

if you do, no if you do not.

edit all Displays the category names and message selectors in each

category in the text view of the browser. The categories

into which the classes are sorted can be changed using the

text editor (see Section 12.6).

Update Makes certain that the classes viewed by the browser con-

tain the latest information about these classes. This com-

mand is needed if new class descriptions are created

outside this browser, for example, they are created by

reading an external file, or by evaluating an expression, or

by using a different browser. Such classes are categorized

in a category not currently displayed in the browser.

When no class category is selected, the yellow button menu only con-
tains the items add category, update, and edit all.

Commands in the yellow button menu for the class-name subview add
queries you can make about the class—its position in the class hierar-
chy, a comment about the class, its definition, and its message catego-
ries. If no class name is selected, then the browser subview flashes to
indicate that no yellow button menu items are appropriate.

file out Creates a file whose name is the selected class, followed by

a period and the characters St. The file contains a

Smalltalk-80 readable version of the description of the

class.

174
Finding Out About System Classes

print out

spawn

spawn hierarchy

hierarchy

definition

comment

protocols

inst var refs

Creates a file whose name is the selected class. (In the Xe-
rox system, the name is followed by a period and the char-
acters press.) The file contains a human readable version
of the description of the class.

Creates a browser in which only the description of the se-
lected class can be accessed.

Creates a browser for the superclasses of the selected class,
the selected class itself, and its subclasses, in hierarchical
order.

Displays the names of the superclasses and subclasses of
the selected class in the text view of the browser. The
names are indented. A subclass name appears indented
from the name of its superclass. Instance variable names
declared in a class appear in parentheses after the class
name.

Displays the definition of the selected class in the text view
of the browser. This definition can be edited. If you choose
the yellow button command accept, the modified definition
will be evaluated. In doing so, you can change the defini-
tion of the selected class; the system will recompile each
method in the class and report any errors if previously de-
clared variables are now undeclared. You can change the
category of the class by editing the category name in the
definition. The class-name menu will change appropriately.
If you edit and change the class name of the definition, you
can create a new class or modify one other than the select-
ed class.

Displays the current comment about the selected class in
the text view of the browser. There is a default comment,
namely This class has no comment, that appears when a
more appropriate comment has not been provided. Edit the
comment and choose the yellow button command accept to
restore it.

The message categories or protocols into which the mes-
sages of a class are sorted can be changed. When you first
create a class, no message categories are defined. You must
add a category before you can define a method. Modifying
message protocol is described in Chapter 11.

Displays a menu of the instance variables of instances of
the selected class. Since instance variables are inherited,
the menu shows the variables declared in each superclass,
in alphabetical order; a line separates variables declared in
each class. If you choose one of the items in the menu, a

175
9.3 Browser Menu Commands

message-set browser, as described in Chapter 10, is created

for all methods that refer to the selected instance variable.

ClaSS var refS Displays a menu of the class variables of instances of the

selected class. Since class variables are inherited, the menu

shows the variables declared in each superclass, in alpha-

betical order; a line separates variables declared in each

class. If you choose one of the items in the menu, a mes-

sage-set browser, as described in Chapter 10, is created for

all methods that refer to the selected class variable.

ClaSS refS Creates a message-set browser, as described in Chapter 10,

for all methods that refer to the selected class.

rename Changes the name of the selected class. A prompter ap-

pears in which you type the new class name. Choose the

yellow button command accept, or type the "carriage re-

turn" key, to indicate that you are done typing. Creates a

message-set browser on all methods that refer to the class.

remove Removes the selected class from the system. When you

choose this command, a confirmer will appear so that you

can verify that you really want to carry out this destruc-

tive command. There is no "undo" command for retrieving

removed classes.

Illustrations of some of the commands summarized above are given in
the next sequence of figures. Figure 9.10a shows that class Pen is select-

Figure 9.10a foio

ollections-i
Collections-i

Graphics-C'is
Graphic 5-Pa1

Graphic 5-Vie
Graphics-Edi

Point
Quad
F;pr:r=JspavvTi hierat

subclass: # P e n

instance VariableNar

c I a s s V a r i a b I e Ν a. m e s:

poolDictionaries: "

c a t e g ο r y: ' G r a p h i c s -

176
Finding Out About System Classes

ed and that its hierarchy is to be displayed; Figure 9.10b shows the hi-
erarchy. Figures 9.10c and 9.10d show a comment about class Pen.

Figure 9.10b 000

Figure 9.10c Oio

Graphics-views
Graphics-Editors

initiali:e-release
accessing
coloring
moving
geometric designs

Object ()
Bit Bit ('destForm' 'sourceForrn' 'halftoneForm' 'combination Rule'

'destX.' 'destY' 'width' 'height' 'sourceX' 'source'/' 'clipX' 'clip'/'
'clipWidth' 'clipHeight')

Pen ('frame' 'location' 'direction' 'penDown')

Collections-S
Collections-::

ISI9EISI3lfBEB39f

Graph ics-D is
Graphic s-Pa.'
Graphics-Vie
Graphics-Edi

Object ()

Bit Bit ('destForm' 'so

'destX' 'destY' ' w i d t h ' 'PIULJIIL

'cl ipWidth' 'cl ipHeight')

e F ο r m' ' c ο m b Ί η a t Ί ο η Fi u I e'

sourceY' 'clipX' 'clipY'

Pen ('frame' ' l o c a t i o n ' 'd i rect ion' 'penDown')

Figure 9.10d 000

177
9.3 Browser Menu Commands

Collections-::
Collections-::

Graphics-Dis
Graphics-Pa1

Graphics-Vie
Graph ics-Edi

Point
Quadrangle
Rectangle

initialise-release
accessing
coloring
moving
geometric designs

APens can scribble on the screen, drawing and printing at any angle.

Section 9.4 illustrates the spawn commands. Examples for commands
inst var refs, class var refs, and class refs are given in Chapter 10 in
which message-set browsers are explained. And the command rename is
examined in Section 12.2.

Message-Ca tegory
Menu Commands

The three common file and print commands appear in the yellow but-
ton menu of the message-category subview of the browser. In addition,
commands that modify the message categories or protocols are provid-
ed. They are further explained in Chapters 11 and 12.

file out

print out

Creates a file whose name is a concatenation of the select-
ed class and message category, followed by a period and
the characters st; spaces are replaced by hyphens. The file
contains a Smalltalk-80 readable version of the description
of the methods in the selected message category of the se-
lected class.

Creates a file whose name is a concatenation of the select-
ed class and message category. (In the Xerox system, the
name is followed by a period and the characters press;
spaces are replaced by hyphens.) The file contains a human
readable version of the descriptions of the methods in the
selected message category of the selected class.

178
Finding Out About System Classes

spawn

add protocol

Creates a browser in which only the description of the se-
lected category of messages for the selected class can be
accessed.

Adds another message category to the message-categories
menu. A prompter appears in which you type the new
name. The name is inserted before the currently selected
category and then becomes the current selection. If no item
is selected in the menu when this command is chosen, the
new category is added at the end of the menu. If you type
a name that already exists, it is moved to a new location
(either before the current selection or at the end of the
menu).

Changes the name of the currently selected message cate-
gory. A prompter appears in which you type the new
name. If you type the name of a category that is already in
the menu, no change happens.

Removes the selected message category from the menu. If
any messages are classified under this category, a
confirmer appears to verify that you want to remove the
messages from the system.

If no item is selected in the message-categories subview, then only the
command add protocol is in the yellow button menu.

rename

remove

Message-Selector
Menu Commands

Commands in the yellow button menu for the message-selector subview
add queries you can make about methods and messages.

file out

print out

spawn

senders

Creates a file whose name is a concatenation of the select-
ed class and message selector, followed by a period and the
characters st; spaces and colons are replaced by hyphens.
The file contains a Smalltalk-80 readable version of the de-
scription of the method for the selected message selector.

Creates a file whose name is a concatenation of the select-
ed class and message selector. (In the Xerox system, the
name is followed by a period and the characters press;
spaces and colons are replaced by hyphens.) The file con-
tains a human readable version of the description of the
method for the selected message selector.

Creates a browser in which only the description of the se-
lected message for the selected class can be accessed.

Creates a message-set browser for all methods in the sys-
tem in which the selected message is sent.

ΓΤΙΟνθ

179
9.3 Browser M e n u C o m m a n d s

Creates a message-set browser for all methods in the entire

system which implement the selected message.

Creates a menu of the message selectors for each message

sent in the currently selected method. If you then choose

one of these selectors, you create a message-set browser on

all of its implementors.

Moves the selected message to another message category.

A prompter appears in which you type the name of the

designation message category. If it already exists, the mes-

sage is reclassified. If the designation message category is

new, it is added to the message-categories menu, at the

end. The current message category remains the current se-

lection. You can also type the name of a class and a proto-

col in order to copy the selected message to a different

class. The syntax is className > protocolName. (If you type

the class name of the currently selected class, the result is

the same as though you did not mention the class name.)

Removes the selected message from the selected class. A

confirmer appears so that you can verify that you really

want to carry out this destructive command. There is no

"undo" command for retrieving removed messages.

The commands senders, implementors, and messages are explained in
more detail in Chapter 10. Examples of modifying the protocols of a
class are given in Chapter 11.

remove

Text Subview
Menu Commands

The yellow button menu for the text subview of the browser contains
the text editing commands presented in Chapter 3 (again, undo, copy,
cut, paste) and the expression evaluation commands of Chapter 6 (do it,
print it). There are five additional commands.

format

accept

The system has some notion of how to format a method so

that the indenting and line breaks increase the human

readability of the code. Choosing this command when the

text view contains a method (that you have retrieved but

have not modified as yet), creates a "pretty-printed" ver-

sion of the code. You can then modify it to suit your own

style.

In the context of a method, this means "compile" the code.

If there are any syntax errors, display them; if not, the

compiled method is stored into the system. In the context

of a class definition or comment, the text is an expression

that is evaluated. In the context of categories, the syntax is

checked and the new categories stored.

180
Finding O u t About System Classes

Cancel Text that appears in the subview has presumably been

modified but you do not want to retain the modification.

The text is replaced by the version prior to any modifica-

tion. The commands accept and cancel work as pairs —

cancel returns the text to the version last stored using ac-

cept.

Spawn Creates a browser for the currently selected message and

the current version of the method (which possibly has been

modified but not stored). The text in the original browser

will be restored as though you had chosen the cancel com-

mand. The text in the new browser is not yet accepted as

the compiled method.

explain The text in a method consists of a sequence of tokens, for

example, syntactic entities such as Τ and], and variable

names. Select one. The result of choosing the command ex-

plain is to determine a comment that explains the use of

the selected token. The comment is inserted into the text,

after the token. It becomes the selected text.

Π Spawning a Message Browser As noted in the summary of com-
mands, a way to create a browser on a single message is to choose the
command spawn from the yellow button menu of the text subview of a
browser. Suppose you have been editing a method, you have not yet
saved the method by choosing the command accept, and then you de-
cide that you want to put aside your work for awhile in order to explore
the previous version of the method or to search in the browser for other
information. Choose the spawn command. You are asked to designate a
rectangular area for a browser for the currently selected message, with
the edited text as the method. The text in the original browser will be
restored as though you had chosen the cancel command. The text in the
new browser is not yet accepted as the compiled method.

You might also use spawn to copy a view of a method onto the screen
while you use the full browser to find other information. Any browser
view of a method in which the editor is available can be used to change
the method and then to recompile and re-store it. Changes made to a
method in any view are shared by the whole system (although you
might have to specifically request an update to see shared changes).

In the next figure, the text in the Pen method hilbertside: has been
edited from the original (Figure 9.11a). Spawning causes the original
method to show in the system browser and the edited version shows in
a newly created message browser (Figure 9.11b). Note that the differ-
ence is in the formatting of the visible conditional statement.

181
9.3 Browser Menu Commands

Figure 9.11a
Dio

Collections-Strea
Collections-Suppo

«iranniwaiifnuiaa

G ra ρ h i c s - D i s ρ I a y
Graphic;-Pat h i
Graphics-view.1:
Graphic 5-Editor":·

Point
Quadrangle
RectanqlQ

™"™"»

init ial ize-release
a c c e s s i η g
c ο Ι ο ri η g
moving

A Hubert curve is a space-fi l l ing curve,"

η = υ ifTrue: [τself turn: 180] ,

η > 0 ifTrue: [a *- 90, m <- η - 1]

ifFalse: [a *• - 9 0 . m *• η + 1],

self turn: a.

self hilbert: 0 - m side: s,

self turn: a.

self hilbert: 0 - m side: s.

self turn: a; go: s,

self hi lbert: m side: s.

dragon:
fi lbertsiside:

hilberts:
mandala:dia meter
spirahangle:

a g a ι η
undo

c ο ρ y
cut

ρ a s t e
do it

print it

accept
cancel

Figure 9.11b 000

S y s t e m Β ro w s e r I

collect icms-Strea
Collect ion s-Suppo

Graphics-Display
Graphics-Paths
Graphics-Views
Graphic s-Editors

Uuiiii
Point
Quadrangle
Fi e c t a n g I e

hi|bert: η side: s

"Draws an nth lever Hilber

A Hilbert curve is a space-fi l l i i

η = υ ifTrue: [t s e l f turn: 1

η > 0

ifTrue:

[a - 90,

m *- η - 1]

ifFalse:

f a «- - 9 0 ,

hilbert: η side: s

"Draws an nth lever Hilbert curve

direct ly into the display bitmap, A

Hilbert curve is a space-fi l l ing curve."

η = U ifTrue: [t s e l f turn: ISO],

η > Ο ifTrue: [a «- 90, m <• η - 1]

ifFalse: [a *• - 9 0 . m *- η + 1],

self turn: a.

self hilbert: Ο - m side: s,

self turn: a,

self hilbert: 0 - m side: s.

self turn: a; go: ••,.

self hilbert: m side: s,

self turn: 0 - a; go: s; turn: 0 - a.

self hilbert: m side: s,

182
Finding Out About System Classes

Q Explanations There are several views in the system in which
methods are retrieved and displayed, including the system browsers and
the debugger. The yellow button menu in the text part of these views
includes the command explain. You can choose this command to receive
an explanation about a syntactic or semantic part of the method.

The command explain works by examining the current text selection
and determining what role the text plays in the method. The text selec-
tion must be a single token (such as a period, message keyword, or vari-
able name) or a syntactic construct (that is, a single-quoted, or double-
quoted sequence of characters, or characters delimited by square brack-
ets). In Figures 9.12a and 9.12b, an explanation is requested and re-
ceived for the left-arrow («-). The explanation is inserted after the
current text selection and then becomes the text selection.

The most significant explanation is for a single token that is a vari-
able name or a message selector. The explanation will identify where
the variable is declared, i.e., global, instance, class, or pool, and in
which classes the message is defined, respectively. In Figures 9.13a and
9.13b, an explanation for the global variable Sensor is requested and re-
ceived; it is an instance of class InputSensor.

In Figures 9.14a and 9.14b, an explanation for the class name Form
is obtained. Typically the explanation is a comment, but, in some useful
cases, it is an expression that can be evaluated in order to obtain fur-
ther information. For example, if the token selected is a class name,
then the explanation is a comment and an expression that can be eval-
uated in order to create a browser for just that class. The result of
choosing do it when the explanation is selected (Figure 9.14c) is to cre-
ate a browser for class Form (Figure 9.14d).

The best way to learn about explain is to try it. Once you learn how
to use a browser and can retrieve a method, simply make selections of
parts of the method and select the yellow button command explain. If
no explanation is possible, it will say so.

183
9.3 Browser Menu Commands

Figure 9.12a Oio

Figure 9.12b Doo

Collect ions-Streaj
Collect ion s-Suppol|

Point
G ra ρ h i c s - D i s ρ I a y I Q.u a. d r a n g I e
G ra ρ h i c s - Pa t h s I R e c t a n q I e
G re. ρ h i c s - V i e w s |
Graphics-Editors

init ial ize-re lease I direction

^B^^SBSHHHI frame
coloring_

locationmoving
geomet

frame: aRectangle
"Set the rectangle in which the receive
frame Q aRectangle.
self clipRect: aRectangle

again
undo
copy
cut

paste
do it

print it
a c c e ρ t
cancel

gns sourceForm:
width:

a w,"

G ra p h ι c s - D ι s ρ I a y I Q.u a d ra η g I e
G ra ρ h i c s - Pa t h s I R e c t a n g I e
Graphic s-View s
Graphics-Editors

initialize-relea.se

coloring
rn ο ν i η g
geometric designs

direction
f ra m e

location
sourceForm:
width:

frame: aRectangle

"Set the rectangle in which the receiver can draw,"
frame 4

aRectangle.

self clipRect: aRectangle

184
Finding Out About System Classes

Figure 9.13a
010

ol lect ions-Strea
C oils c t i ο η s - 3 u ρ ρ ο
G r a p h i c s - Pri m i t i ν e
G r a. p h i c 5 - D i s ρ I a y

Graphics-Views
Graphics-Editors

splineCurve *· Spline new.

splineCurve form: a Form,

flag *• true,

[f l a g] while Τ rue:

S e η s ο r re d Butt ο η Pre s s e d

if True:

[splineCurve add: Sensor \

S e η s ο r w a i t Ν ο Β u 11 ο η.

a Form display On: Display

ifFalse: [f l a g ^ f a l s e]] ,

spline C u r ν e c ο m ρ u t e C u r ν e .

do it
print it

cept
cancel

••aitButton.

at: splineCurve l a s t]

Figure 9.13b
000

Collections-Strea
Collections-Suppo
Graphics-Primitive
Graphics-Display

Graphics-Views
G r a p h i c s -Edit ο r s

splineCurve *- Spline new.

splineCurve form: a Form,

flag «• true,

[f l a g] whileTrue:

[S e η s ο r

w a i t Β u 11 ο η.

Sensor redButtonPressed Λ

if Τ rue:

[sρ I i η eC υ rν e a d d: S ens ο r w a i t Β u 11 ο η,

S e η s ο r w a i t Ν ο Β υ 11 ο η.

a. Form display Ο1 η: Display a t : splineCurve l a s t]

ifFalse:

185
9.3 Browser Menu Commands

Figure 9.14a

Col lect ions-Streai Circle
C ο 11 e c t i ο η s - S υ ρ ρ oj C υ r ν e
G r a ρ h i c s - Pr i m i t ί ν a Li η e
Graphics-Display I LinearFit

Graphics-Views
Graphics-Editor

splineCurve a Form flat

a Form *• QQQ new extent: 8@8.

a Form black.

splineCurve «- Spline new,

splineCurve form: a F ο r rn.

flag *• true,

[f lag] while Τ rue:

[Sensor "is a global variable, Sensor is an InputSensor"

wait But ton.

S e η s οr re d Buttο η Pres s e d

if True:

Figure 9.14b

Col lect ions-Strea l Circle
C ο 11 e c t i ο η s - S υ ρ ρ ο I C u r ν e
G ra ρ h i c s - Pr i m i t i ν a Line
Graphics-Display I LinearFit

Graphics-Views
Graphics-Editors

splineCurve a Form fla

a Form *· Form

new e x t e n t : 8@8.

a Form black.

splineCurve *• Spline new,

splineCurve form: a Form,

flag *· true,

[f lag] while Τ rue:

rSensor "is a alobal variable. Sensor is an InoutSensot

186
Finding Out About System Classes

Figure 9.14c
010

Collections-Streai
Collect ions-Suppo
Graphics-Primitive
Grap hί c s - D is pi a y

Graphics-Views
Graphic s-Editors

U ire Ι θ
Curve
Line
LinearFit

| splineCurve a Form fla

a Form *· Form;

new extent: 8@8.

a Form black.

splineCurve «- Spline ne

s ρ I i η e C υ r ν e f ο r m: a F ο r rn

flag *• true,

[f l a g] while Τ rue;

print 11
a. c c e ρ t
cancel
f o r m a t
s p a w n
explain

"is a global var iable. Sensor is an IrmutSensor"

Figure 9.14d
BOD

init ial ize — re I e a. s e
a c c e s s ί η g
c ο ρ y i η g
d i s ρ I a y i η g

D i s ρ I a y Μ e d ί u m s u b c I a s s: # F ο r m

instanceVariableNarnes: 'bits w i d t h height o f f s e t ?

d a s s V a r i a b I e Ν a m e s: ' Ο η e Β i t F ο r m '

poolDict ionaries: "

c a t e g ο r y: ' G r a ρ h i c s - D i s ρ I a. y Ο b j e c t s' W

1

187
9.4 Browsing a Subset of the System

9.4

Browsing a
Subset of the
System

As noted in the previous sections, in each of the browser subviews con-
taining list menus, the yellow button menu includes the command
spawn. Choosing this command creates a browser for accessing a subset
of the information available from the system browser. In particular, you
can create a System Category Browser by choosing the command spawn
in the yellow button menu of the class-categories subview (Figures
9.15a and 9.15b). This browser gives you access to all the classes within
the currently selected class category only.

Figure 9.15a
ioio

u b c I a 5 s: # f\l a m e Ο f CI a s s

b Ν a m e 5: ' i η 51V a r"N a m e 1 inst V a rN a m e 2'

c I a 5 5 V a ri a b I e Ν a rn e s: ' CI a s s V a rΝ a m e 1 CI a s s V a rN a m 9 2'

poolDictionaries: "

c a teg ο ry: ' G ra ρ h i c s - Pri m i t i ν e s'

188
Finding Out About System Classes

Figure 9.15b 000

Pen
Point
Quadrangle
Fi e c t a. n q I e

NameC
instance

Ν a rn e 0 f S u ρ e re I a. s s s υ b c I a. s s: # Ν a rn e 0 f CI a s s

i η s t a. n c e V a ri a. b I e Ν a rn e s: 'in s t V a rN a. rn e l i η s t V a rN a m e 2'

e I a. s s V a ri a. b I e Ν a m e s: ' CI a s s V a rN a. m e 1 CI a. s s V a. rN a rn e 2'

poolDictionaries: "

category: ' G r a ρ h i c s - Ρ r i rn i t i ν e s'

You can create a Class Browser by choosing the command spawn in
the yellow button menu of the class-names subview (Figures 9.16a and
9.16b). This browser gives you access only to the description of the cur-
rently selected class.

Figure 9.16a ΟΪ0

Graphics-Di;
Graphic 3-Pa1

Graphic s- Vie
Graphic s-Edi

A BitBlt subclass: #Pen

i η s t a n c e V an a b I e Ν a

class Variable Ν a me s

ρ ο ο ID i c ΐ i ο η a ri e s: "

category: 'Graphics

initialize-re lease
ssing

ring

9trie designs

inst var refs
class var refs

class refs

rename
remove

on direction ρ en Down '

Figure 9.16b 000

189
9.4 Browsing a Subset of the System

A BitBlt subclass: #Pen

i η s t a nee V a r i a b I e Ν a m e s: 'f r a m e I o c a t i ο η d i r e c t i ο η ρ e η D ο w η '

c I a s s V a ri a b I e Ν a rn e s: "

poolDictionaries: " It

c a teg ο ry: ' G ra ρ h i c s - Pri rn i t i ν e s'

You can create a Message Category Browser (or "protocol browser")
by selecting the command spawn in the yellow button menu of the mes-
sage-categories subview (Figures 9.17a and 9.17b). This browser gives

Figure 9.17a ioio

Collections-Streaj 1
C ο 11 e c t i ο η s - S u ρ ρ ο||

Point

Graphics - P a t h s
G r a p h i c s - V i e w s
Graphics-Edi tors

o w n
lillln:

message se lector and argument names

" c ο rn rn e η ΐ s t a t i η g ρ u r ρ ο s e of rn e s s a g e"

| t e m p o r a r y var iable names |

s t a t e rn e η t s

190
Finding Out About System Classes

Figure 9.17b
000

G r a p h i c ;
G r a p h i c ;
G r a p h i c :
G r a p h i c :

rn e s s a g e

"con

d o w n
fill ln:
go:
goto:
h ο rn e

message selector and argument η a me?

"comment s t a t i n g purpose of message"

| t e m p o r a r y var iable names |

s t a t e rn e η t s

you access only to the methods of the currently selected category of
messages.

And you can create a Message Browser by selecting the command
spawn in the yellow button menu of the message-selectors subview (Fig-
ures 9.18a and 9.18b). This browser gives you access only to the method
of the currently selected message.

The purpose in providing so many optional views of the system clas-
ses is to support your ability to constrain the information with which
you are working. You might, for example, be developing an application
class and prefer to have a browser that only accesses this one class. You
might be copying code from classes in one category into your new class,
and thus you might find it convenient to focus your attention by having
a class-category browser for this category. More signficantly, you might
create an applications/programming environment in which you want
your user to have access to a subset only of the system, to protect the
user from dealing with too much extraneous information, or to protect
the system from the user.

191
9.4 Browsing a Subset of the System

Figure 9.18a
ioio

Collections-Streal
Collections-5uppo[

Point
Quadrangle

goto:
home
north
place;
h ' tile out

initialize-rel
a c c e s 5 i η g
coloring

ura ρ hies -View s
Graphics-Editor;

turn: degrees

"Change the direction t h a t the receiver f a c e ; by an a mo

to the argument, degrees."

direction *· (direction + degrees) \\ 360

send^fs
implementors

messages

m ο ν e
re m ο ν e

Figure 9.18b ooo

Collect ion s-S
Collect ions-S

Graphic s-Disp
Graphics
Graphics
Graphics

turn: dec

" C h a

to the a

direc

j : degrees
"Change the direction t h a t the receiver faces by an

amount egual to the argument, degrees,"

direction *• (direction + degrees) V\ 360

192
Finding Out About System Classes

Class Hierarchy
Browser

Another interesting browser that you can spawn is a Class Hierarchy
Browser. This browser gives you access to a class, its superclasses, and
its subclasses.

You create a class hierarchy browser by choosing the yellow button
command spawn hierarchy in the class-names subview of a system
browser (Figure 9.19a). The class-names menu of the new browser will
consist of the names of the superclasses of the selected class, the select-
ed class itself, and its subclasses, in hierarchical order.

An example of a class hierarchy browser for Boolean, which is a sub-
class of Object and has two subclasses, True and False, is shown in Fig-
ure 9.19b. An example of a class hierarchy browser for Collection is
shown in Figure 9.19c.

Figure 9.19a
OiO

Kernel-Class
Kernel-Meth
Kernel-Proce
Kernel-Supp
Interface-Fr.

logical operations
trolling
ying
ting

£>bject subclass: #Bool

i η s t a n c e V a r i a b I e Ν a

c I a s s V a r i a b I e Ν a rn e:

poolDictionaries: "

c a t e q ο r y: ' Κ e r η e I - <.

s.rchy
definit ion
comment
protocols

inst var refs
class var refs

class refs

rename
re m ο ν e

193
9.4 Browsing a Subset of the System

Figure 9.19b

System Browser I

logical cDeration;

logical operations
controlling
c ο ρ y i η g
ρ ri η t i η g

^Object subclass: #Boolean

i η s t a n c e V a ri a b I e Ν a. m e s: "

c I a s 5 V a ri a. b I e Ν a m e s: "

ρ ο ο ID i c t ί ο η a ri e s: "

c a t e g ο r y: ' Κ e r η e I ~ Ο b j e c t s'

Figure 9.19c

convert ing
private

a c c e s s ι η g
t e s 11 η g
adding
removing

Object subclass: # u o l l e c t i o n

i η s t a. n c e V a. ri a. b i e Ν a. m e s: "

c I a. s s V aria, b I e Ν a. m e s:

poolDict ionaries: "

c a. teg ο r y: ' C ο 11 e c t i ο η s - A b s t r a c t '

Finding Out About
Messages and Methods

10.1 Which Methods Send a Particular
Message?

10.2 Which Classes Implement a Particular
Message?
Renaming a Message Selector

10.3 Which Messages are Sent in a Particular
Method?

10.4 Which Methods Reference a Particular
Variable or Literal?

196
Finding Out About Messages and Methods Τ

Message-set Browsers provide a way of collecting and exploring a group
of related messages. The name reflects the idea that the response to the
query is a set of methods. Since a method is specified by a class and a
message selector, these sets are viewed as a set of class/message pairs.
This kind of browser makes it possible for you to inspect and modify the
methods associated with each pair.

A message-set browser consists of two subviews. The top subview is a
fixed list menu that indicates the names of the class/message pairs.
When you choose one of the pairs, the associated method is displayed in
the bottom subview. This bottom subview is a text subview in which
you can edit the method and then choose the command accept to com-
pile and store the changes.

Message-set browsers are created in order to answer one of three
kinds of queries about messages:

• Which methods send a particular message?

• Which classes implement a particular message?

• Which messages are sent in a particular method?

These queries can be made in a system browser by choosing the yellow
button commands senders, implementors, or messages, respectively, in
the message-selector subview. These are useful browsers to employ
when you are tracking down erroneous behavior in your programs, or
when you are interested in trying to find out how a message is used or
implemented in the system. For example, the combination of examining
the hierarchy of a class and of browsing all implementors of a message
defined in that class, helps identify where the method for that message
is actually found by the interpreter during execution (in the class or in
one of its subclasses or superclasses).

10.1
Which Methods
Send a
Particular
Message?

Choosing the command senders creates a message-set browser for all
methods in the entire system in which the selected message is sent. If
no such methods exist, then the word Nobody appears in the System
Transcript (if the transcript is a scheduled view and is not collapsed).

Suppose that you wish to understand how a particular message is
used in the system. You can select the message in a class browser and
read the comment. This will tell you the intended use of the message.
You can then see examples of how to use the message by creating a
message-set browser on all senders of the message. The next sequence
of figures illustrates the steps: selecting a message in a class browser
(Figure 10.1a), then choosing the command senders (Figure 10.1b).

197
10.1 Which Methods Send a Particular Message?

Figure 10.1a

100
000

Numenc-Magn
Numeric-Number llectionj accessing

testing
eable

removing
enumerating
printing

add All:

add: newObject

"Include η e w Ο b i e c t a s ο η e of the r e c e i ν e r' s e I e m e η t s, Α η s w e r

η e w Ο b i e c t, Τ hi s m e s s a g e s h ο υ I d η ο t be sent to i η s t a. n c e s ο f

s υ b c I a s s e s of A r r a y e d C ο 11 e c t i ο η."

self s u b c I a s s Fi e s ρ ο η s i b i I i t y

Figure 10.1b Dio

removing
enumerating
printing

Collect ions-Seque
Collect ions-Text
Collect ions-Array

" Μ " ι τ "
add: newObject

"Include newObiect as one of the receiver's elements
] remove

newObject, This message should not be sent to iristarrwsT-eiT""—

As u b c I a s s e s ο f A rra y e d C ο 11 e c t i ο η,"

self s υ b c I a s s Fi e s ρ ο η s i b i I i t y

198
Finding Out About Messages and Methods

Figure 10.1c
000

N u m e r i c - M a g n i t u
Numeric-Numbers

C ο 11 e c t i ο ri s - U η ο r d
C ο II e c t i ο η s - Sequt
C o l l e c t i o n s -
C o l l e c t i o n s -

add: newOb

"Include

new Ob Ρ

subclass

self sub

Bag sortedcouri ts
Β a. g s ο r t e d ΕI e m e η t s
Β e h* a ν i ο r a c c u rn u I a t e I n s t V a. rN a m e s: t ra ν e rs e d CI a s ses:
Β e h a ν ί ο r a. d d S u b c I a s s:
Β e h a. ν ί ο r a. 11A c c e s s e s Τ ο:

Figure 10. Id

100
000

b y stem Brov

N u m e r i c - M a
Numeric-Nur

C o l l e c t i o n s -
C ο 11 e c t i ο η s -

Collections-Text

Collect ion s-*rra>

add: newObject

"Include new 1

new Object. 1

subclasses oi

self subclassl

CI a. s s D e s c rip t i ο η s u b c 1 a. s s Of: ο 1 d C1 a s s; i η s t a n c e V a ri a b 11

Collect ion asBaq fc
Collect ion a.sSet
Col lect ion class w i t h :
C ο 11 e c t i ο ri c 1 a. s s w i t h: w i t h:

addAII: dCollectiOn

"Include all the elements of aCollPcticm as the

receiver's elements. Answer

a Collection,"

a.Collection do: [:each | self ^ Q each],

ta Collection

r 199
10.2 Which Classes Implement a Particular Message

This gets the message-set browser (Figure 10.1c). Then choose one of
the class/message pairs to see a method in which the message is used
(Figure 10. Id).

10.2

Which Classes
Implement a
Particular
Message?

Choosing the command implementors creates a message-set browser for
all methods in the entire system which implement the selected mes-
sage. If no such methods exist, then the word Nobody appears in the
System Transcript (if it is scheduled and displayed on the screen). An
example of finding all the implementors for the message selector add: is
shown in Figures 10.2a and 10.2b.

Figure 10.2a
Oio

Numeric-Mag nit υ
Ν u m e ri c - Ν u m b e rs I A rra y e d C oils c t i ο η

Collection5-Abstn Collection
a. c c s 5; ι η g

•Jollection
Collect ion
'LOllect ion

-Unordi
- S s q u e
- Τ e χ t

S e q u e η c e a, b I e C ο I

re m ο ν ι η g
enum era. t i n g
p r i n t i n g

add: newObject
"Include n e w O b j e c t as one of the receiver':, element.-,

new Object , Τ hi·; me." sage should not be sent to instan

3 u b c I a s s e s of A r r a. y e d C ο 11 e c t i ο η."

izlf subclassResponsibi l i ty

200
Finding Out About Messages and Methods

Figure 10.2b

100
000

by stem Brov·,

Ν υ me He-Mac
Numeric-Nun"

_: ο 11 e c t i ο ri s - L
Jol iect ions-: :
Collections-Text
Jollectioni-Arra·,

add: nev/Object

"Include newC

new Object. Τ

s υ b c Ι a. s s e s ο f

self subcla.ssF

Collection add:
Dict ionary add;
File Directory add:
I d e η t i t y D i c t i ο η a r y a d d
Interval add:

add: newObject
•t self add: nevv'Obiec t ithOc c urrenees:

Renaming a
Message Selector

When you want to rename a message selector, you will find the com-
mands senders and implementors very useful. Before renaming the mes-
sage, you first find out if any subclasses exist that override the
implementation of the message. You do this by choosing the yellow but-
ton command implementors in the message-selectors subview. This will
give you a message-set browser that indicates which classes implement
the message. Then you choose the yellow button command hierarchy in
a class-names subview of a class browser. This will display the portion
of the class hierarchy in which the selected class (the one that contains
the message selector whose name you want to change) resides. If any of
the subclasses of the selected class implement the message, you will
have to rename them as well.

In order to do the rename, first edit the original method in order to
replace the message selector. Then choose the yellow button command
accept. Now both the old and the new messages exist. Do the same for
each subclass—you can do the editing in the message-set browser of the
implementors. Second, select the message selector to be removed and
then choose the yellow button command senders in the class browser
message-selectors subview. This will give you a message-set browser on
all methods that send messages with the old selector, unless none exist.
Edit each method in which you wish to use the new message selector
name. Close the message-set browser. Now choose the implementors
command again, just to make certain that you found all the references

r
201

10.3 Which Messages are Sent in a Particular Method?

that have to be changed. If all are correctly changed, you can remove
the old message in the class and in each subclass using the command
remove from the yellow button menu of the message-selectors subview.

10.3

Which
Messages are
Sent in a
Particular
Method?

Choosing the command messages creates a menu of the selectors for
each message sent in the currently selected method (Figures 10.3a and
10.3b). You can then select one of these in order to create a message-set
browser on all of its implementors (Figures 10.3c and 10.3d). Notice that
this menu is a list menu; it remains on the screen until you click a but-
ton. If you press the red button inside the menu area, you can select
one of the menu items; when you release the button, the item is chosen.
Like a pop-up menu, releasing the button outside the menu chooses no
item. After clicking a button, the menu is removed from the screen.

Figure 10.3a Oio

C ο 11 e c t i ο η s - 'ό e q u 9
Collections-Text
C ο 11 e c t i ο η 5 - A rra. y

p o l l e d : aBlock

"Evaluate aBlock wi th each of the receiver's elementJ

argument, (Jollect the

resulting values into a collection that is like the receiver, Answer
the new

c ο 11 e c t i ο η. "

| new Collection |

new Collection *· self species new.

self do: [:each | new Collect ίο η add: (aBlock value: each)],

tnewCollection

202

Finding Out About Messages and Methods

Figure 10.3b 000

System Browsgr

['• J υ m e ri c - Μ a g η i t u d]
Γ'-.J u m e r i c - Ν u m b e r s I A r r a. y e d C ο 11 e c t i ο η

Collect ions-Abstr; Collection
lections-Unordi
I e c t i ο ri 5 - S e q υ e
l e c t i o n s - T e ^ t
lect ions-Array

S e q υ e η c e a. b I e C ο I

™«™a

a c c e s s ι η q
t e s ΐ i η q
a d d i n g
r e r n o v i n q

p r i n t i n g

pollect: aBlock ado:

"Evaluate aBlock w i t h each of the receiver 's elements as t blockCop·

argument, Col lect the

result ing values into a col lect ion t h a t is like t h e receiver,

t h e n e w

c o l l e c t i o n , "

| n e w C o i l e c t i o r i |

n e w C o l l e c t i o r i - self s p e c i e s n e w ,

self do: [: e a c h | n e w C o l l e c t i o n a d d : (a B l o c k v a l u e : e a c h)] ,

t η e w C ο 11 e c t i ο η

a. I u e:

Figure 10.3c 100

N u m e r i c - M a g n i t u
Ν υ m e r i c - Ν υ m b e r s I A r r a y θ d C ο 11 e c t i ο η

Co Gctions-Abstr; Co ection
(Jol lect ions-Unord
C ο 11 e c t i ο ri s - S e q υ e
C ο 11 e c t i ο η s - Τ e ••• t
C o l l e c t i o n s - A r r a y

ο e q u e η c e a. b I e <

um-iitvi

a c c e s s ι η g
t e s t i η q
adding
removing

printing

collect: aBlock

"Evaluate a.Block w i t h each of the receiver 's elements as tjblockCo'ESyil

argument, Col lect the

result ing values into a col lect ion t h a t is like the receiver,

the new

col lect ion, "

| n e w C o l l e c t i o n |

newCollection *• self species new,

self do: [:each | newCollection add: (aBlock value: each)]

t newCollection

detect:
detect:ifNone
do:
inject :into:
reiect:

203
10.3 Which Messages are Sent in a Particular Method?

Figure 10.3d
000

System Browser!
Implementors of add:

Numeric-Me.gnituc
Numeric-Numbers

Collections-Unord
C ο 11 e c t i ο η s - S e q υ e
Collect ion ί -
Ο ο 11 e c t i ο η s - /

collect: aBloi
"Evaluat

argument, C
resulting

the new
collect ίο

| new (Jo
newGolli
self do: [
t ri e w C ο

A r r 3 y e d (J o 11 e c t i o n add:
Ba.g add:
Collection add:
Dict ionary add:
FileDirectory add:

The messages command is useful in trying to understand how a
method actually works. It supports your ability to track down com-
ments about the methods for each of the messages sent.

Note that in the examples, the message blockCopy: appears as one of the messages
in the selected method. This message is inserted by the compiler whenever a block
is used in a method.

Q Practice Investigating Messages Using the system browser, choose
class category Collections-Abstract (class-categories subview), choose
class Collection (class-names Subview), and, in the class-names subview,
choose the yellow button command hierarchy. The selections and hierar-
chy are shown in Figure 10.4. Collection is the top of a large hierarchy
of data structures for the system. It is an abstract class, meaning no in-
stances of it should be created. It serves the purpose of defining a com-
mon protocol for several similar classes, such as Set and
OrderedCollection.

Choose message category adding and then message selector add:. The
method is defined as self subclassResponsibility. This means that
subclasses of Collection for which instances can be created must
reimplement the method in order to complete the description of the
class.

204
Finding Out About Messages and Methods

Figure 10.4

100
000

Collect i
Collect!
Collecti

C ο 11 e c t i

'• j ο 11 e c t i

'•.iraphii.

Ob j e e r

": η 1

3 Γ

nr
ΙιΓ

3 Γ

Jl

[)

Ε

f\

'c

-,-

s-
s-

s-

Fr

Ί Γ

ag (
lappe

eqjer

i __,

ArrayedC
maitJA<Mi
:-i ο q υ e η c e

)

- Li 1ι ΐ Ρ Γ ι ΐ ? ')

dCollection (

ceableCollec

Arra v1 ()

EyteArray

n l l e r t i n

able Coli

c 1 a s s

6 ο m a i ri

t i o n ()

Compiledfvletho

Fun Array (

AltoFile

r u n s ' '••,

A d d r e s :

a. c c e s s i η q

testing
adding

enumerating

printing
con verting

' m a. ρ')

1 ()
a I u e s')

Arra.ν i ' d i r e c t o r v ' Ί

Suppose you implemented the collection data structures and you
want to find out whether all the subclasses of Collection are complete
with respect to the message add:. One way to make this determination
is to find all the classes that implement the message add: and see if all
the subclasses of Collection are in the list. Some will not be, for exam-
ple, class SequenceableCollection. This subclass is itself abstract. You
can find where add: is implemented by choosing in the message-selec-
tors subview the yellow button command implementors. The browser
thus created is a message-set browser giving you a list of the classes in
which the message add: is implemented. If you choose an item from this
list, you can see the actual implementation. By selecting Collection in
the browser and choosing the command hierarchy, you can determine all
the subclasses of Collection to be compared to those referred to in the
message-set browser.

Find the message addAIIFirst: in class OrderedCollection. The class is
categorized under Collections-Sequenceable; the message is categorized
under adding. In the message-selectors subview, choose the yellow but-
ton command senders (Figure 10.5a). Watch the System Transcript; the
word Nobody will appear (Figure 10.5b). This indicates that no objects
in the system send the message; it was included for protocol complete-
ness. (Recall that if no System Transcript appears on your screen, so
that you can not try this example, you can create one by choosing the
System Menu command system transcript.)

205
10.3 Which Messages are Sent in a Particular Method?

Figure 10.5a

b y s t e m Τ r a n s c r i ρ t

Oio

j 11 e c: 11 ο η s - b υ ρ j

Γι ra phics-F'ri mi t i '
™*"™ ι

addAIIFirst: anOrderedCollection

"Add each element of anOrderedCollection at the

of the receiver. Answer .anOrderedCollection."

ΓΙΊ ο ν e
remove

ariOrdereduol lect ion reverseDo: [:each | self addFirst: e a c h] ,

tanC'rderedCollection

Figure 10.5b

by stern Transcript

Nobody

ODO

iollections-Te
iollections-Arra
Jollections-Stre
') ο 11 e c t i ο η s - S υ ρ |
iraphics-Prirniti

Linked List
MappedC

s orted

nllectic
• 1 Ι ΐ 3 3 ι Γ ι

1 e c t i ο r

addAIIFirst: anOrderedCollection
".Add e a c h e l e m e n t of a n O r d e r e d C o l l e c t i o n a t t h e b e g i n n i n g

of t h e r e c e i v e r . A n s w e r a. η Ο r d e r e d C ο 11 e c t i ο η,"

a n O r d e r e d C o l l e c t i o r i r e v e r s e D o : [: e a c h | self a d d F i r s t : e a c h] ,

τ a. η Ο rd e re d C ο 11 e c t i ο η

206
Finding Out About Messages and Methods

10.4

Which Methods
Reference a
Particular
Variable or
Literal?

A message-set browser can also be obtained by sending one of several
available messages to the object Smalltalk, an instance of
SystemDictionary. All of the expressions listed in this section are pres-
ent as templates in the System Workspace, so you can find them, edit
the arguments, and evaluate the expressions.

Smalltalk browseAIICallsOn: #keywordSymbol

(where the keywordSymbol is a single keyword such as at:, put:, -f, or up)
will create a message-set browser for all messages whose methods send
a message with keyword keywordSymbol. The result of evaluating

Smalltalk browseAIICallsOn: #add:

is shown in Figure 10.6.

Figure 10.6

|00
000

C1a s 3 D e s c r i ρ t ί ο η s u h c I a. s s Ο f: ο I d CI a s s: inst a n c e V a ή a b I e Ν a. m e 5

Collection a3Bag
Collection as Set
Collection class w i t h :

dddAII: aCollection
"Include all the elements of aCollection as the

receiver'.1: elements. Answer aCollection,"

t a C ο 11 e c t i ο η

207
10.4 Which Methods Reference a Particular Variable or Literal?

The expression

Smalltalk

browseAIICallsOn: #firstKeywordSymbol

and: #secondKeywordSymbol

creates a message-set browser for all messages in the system whose
methods send a message with both keywords firstKeywordSymbol and
secondKeywordSymbol. For example, the result of evaluating

Smalltalk browseAIICallsOn: #at: and: #at:put:

is shown in Figure 10.7. The messages browseAIICallsOn: and
browseAIICallsOn:and: can be sent to individual classes to obtain a mes-
sage-set browser for methods in the class and its subclasses.

Figure 10.7

100
000

::;:;·:;:::::;;::::::::::::;>:::::::::
\\':\':\:]'·}::'\]']'•'·}''·':'• ':[:'••[• [:'::

;:;:::;:::;:;:::::;:;:;:;:;::;:::;:;::::

Ι η ρ u t S e η 3 ο r c I a. 3
Integer print On.1'

Μ eta. class name
Met a. class name

at: anlndex put:
t do ma in at:

3 initialize
a. s e:

inEnvironment:3ub
in Ε η vironment:3ub

anObject
(m a. ρ a t: a n I n d e χ

fc a s 3 0 f; a n d: i η s ΐ a n c e V a ri a
: la. s 3 0 f: ί η 31 a n c e V a ri a b 1 e f\

put: anObject

I:;:;:::;:;:·:·:::::·:

' : - [' \ ' \ : [- \ : [- [- · . - ' : ' - :

:;::.::.::.;;::.:;::.::,::.::

In order to obtain a message-set browser that provides access to all
methods in the system that reference a particular literal, aSymbol, (see
Chapter 5 for the definitions of syntactic parts), evaluate an expression
of the form

Smalltalk browseAIICallsOn:
(aSystemDictionary associationAt: #aSymbol)

208
Finding Out About Messages and Methods

For example, the result of evaluating

Smalltalk browseAIICallsOn: (Smalltalk associationAt: #Transcript)

is shown in Figure 10.8, and the result of evaluating

Smalltalk browseAIICallsOn: (TextConstants associationAt: #Centered)

is shown in Figure 10.9.
An additional way to obtain all the implementors of a message is to

evaluate an expression of the form

Smalltalk browseAlllmplementorsOf: #messageSelector

For example, the result of evaluating

Smalltalk browseAlllmplementorsOf: #at:put:

is shown in Figure 10.10.
An expression of the form

Smalltalk browseAIISelect: aBlockWithOneArgument

creates a message-set browser on all methods such that when the block
is evaluated with the method as its argument, the result is true. As an
example, you can try

Smalltalk browseAIISelect: [:meth | meth numLiterals > 40]

creates a message-set browser showing methods that have more than 40
literals (Figure 10.11).

Please note that the Smalltalk-80 system restricts methods to have
no more than 64 literals.

209
10.4 Which Methods Reference a Particular Variable or Literal?

Figure 10.8

100
000

D e I a y c I a 5 s t e S t A b s ο lute D e I a y Ο f: f ο r: I a b e I:
D e I a y c I a 5 5 t e s t R e l a t i ν e D e I a y Ο f: f ο r: label:
Ε η c ο d e r d e c I a re U η d e c I a re d:

Fi ebtream
Fi I e S t re a m f i I e Ο υ t C h a n g e

fileln
"Guarantee fileStrearn is readonly before fileln for

efficiency and to eliminate remote sharing conflicts"

refresh; or; cr; show: Tiling in from:';
crtab; show: self name; cr,

self readonly,
tsuper fileln

Figure 10.9

|00
000

Pa r a g r a ρ h le f t Μ a r g^n F ο rD Ί s ρ I a y F ο rLi η e:

centered
"Set the alignment for the style with which the

receiver displays its text so that text is centered in the
c ο m ρ ο s i t i ο η rectangle,"

textStyle alignment:

210
Finding Out About Messages and Methods

Figure 10.10

100
000

i
Implementors of at:put:

Bag at:put;
Dictionary at:put:
FilePaqe atiput:
IdQntityDictionarv at:put :

ft
at: key put: value

"Set the value at

| index |

index - self findKe

(self basic At: inde:

if True:

[ta l ly <- ta

"elf basic A

value Array at: ind
self fullCheck,

rvalue

<ey to be value."

v'OrNil: key.

Λ == nil

II y + 1,

t: index put: key].

ex. put: value,

Figure 10.11

Β11Ε d 11 ο r c I a s s b υ 11 d (J ο Ι ο r fvi e η υ: c ο Ι ο r υ ο υ η t
Ε χ ρ I a i η e r e χ ρ Ι a ί η C h a t
Form cla.ss screenOut
FormEditor· class setH.ey board M a p

211
10.4 Which Methods Reference a Particular Variable or Literal?

The yellow button menu items in the class-names subview of a sys-
tem browser also support making inquiries about variable references. If
you choose either inst var refs or class var refs (Figure 10.12a), a menu
of the instance or class variables of the class is displayed (Figure
10.12b). If you choose one of the variables, a message-set browser is cre-
ated for each method in the class or its subclasses that references the
variable (Figure 10.12c).

If you choose the class-names subview yellow button command class
refs (Figure 10.13a), a message-set browser for all methods in the sys-
tem that reference the class is created (Figure 10.13b).

Figure 10.12a 010

Col lect ions-
Collections-/!
Collections-S
Collections-::
Graphic s-Prir
Graphic s-Dis

S e q u e η c e a b I e C ο 11 e c t i ο η

i n s t a n c e V a r i a b l e N a

c I a 5 s V a r i a b I e Ν a. m e 3

poolDict ionaries: "

c a. teg 0 r y: ' C 011 e c t i ο η s - S e q 1 J e η c e a. b I e'

O r d e r e d C o l l e c t i o n

tlndex ?

11

212

Finding Out About Messages and Methods

Figure 10.12b
000

C ο 11 e c ΐ i ο η s - Τ e χ t
Col lections-Array
Collect ion s-Strea
C ο 11 e c t i ο η ; - S u ρ ρ ο Sorted C ο 11 e c t i ο η
Graphic s-Primiti1·,
Graphic s-Display

Interval
Linked List
MappedCollectiori

S e q υ e Γι c e a b I e c ο 11 e c ΐ ί ο η

a c c e s 51 η g
copying
adding
removing
en urn era. t ing
private

ι r ι d. υ ι y ο uwc ι a s s: # Ο r d e r e d U ο 11 e c ΐ i ο η

i Γι 51 a ri c e V a r i a b I e Ν a. m e s: ' f i r s 11 η d e χ I a. s 11 n d e χ

cla ssVa riableNames: "

poolDict iona ries: "

c a t e g ο r y: ' C ο II e c ΐ i ο η s - S e q υ e η c e a b I e'

Figure 10.12c

100
000

b e q u e η c e c

in 5 t a n

d a 55 V

poolD'n

cateqi

Ο r d θ re d C ο 11 e c t i ο η m a keRocVnA t La s t
Ο r d e re d C ο 11 Θ C t ί ο η fi η d:
Ο rd e re d C ο 11 e c t i ο η re m ο ν e A11S υ c h Τ h a t :

before: oldObject

"Answer the element before oldObject,

receiver doe? not contain oldObject

or if the receiver contain:" no elements

oldObject, create an error message,"

| index |

index - self f ind: o ldObject,

index = Q^^QQ^

ifTrue: [t 'self errorFirstObject]

ifFalse: [t s e l f basic At: index - 1]

If the

before

913
10.4 Which Methods Reference a Particular Variable or Literal?

Figure 10.13a

Figure 10.13b

'•-· ο 11 e c 11 ο η s - '

Collections-.'
Collections-?.
C ο 11 e c t i ο η s - S
Graphic i-Prir
Graphics-Dis1

Ao e q u e η c e a b I e C ο 11 e c t i ο η

ί η 51 a nee V a r i a b l e Ν a

c l a s s V a r i a b l e N a m e

poolDictionaries; "

re η a m e
re rn ο ν e

category: 'Collections-Sequenceable'

jy stern Browser

Collectio **~
C ο 11 e c t i ο
Collect io
Collect ioi
Graphic.ί-
Ο ra ρ h i c s -

Β e h a ν i ο r a 11D y η a m i c S u ρ e re I a s s e
Behavior alll η s t a n c e s

Β e h a ν ι ο r a 11S u b c I a s •-. Ρ S

alllnstVarNarnes
a n s w e r an A r r a y of the na

r e c e ι ν e r s i n s t a n c e ν a. r i a b I e s

poolDict ic

cateqory:
self a c c u m u l a t e l n s t V a r N a m e s

t r a v e r s e d CI a s s e s: Set η e w.
•t- η a m e s

' s

PART THREE
How to Modify Existing Classes
and Create New Classes

In Part Two, you were introduced to four standard system views: in-
spectors, browsers, notifiers, and debuggers. These views are used to
find out about the objects that exist in the Smalltalk-80 programming
environment. You can program by creating instances of existing classes
and sending messages to these instances. If the capabilities of the
existing classes are insufficient for accomplishing your programming
tasks, you will have to modify one or more of the existing classes, or
you will have to create new classes.

The purpose of Part Three is to show you how to use the system
browser for modifying existing classes and for creating new classes. The
examples given demonstrate how inspectors can support you in testing
the new classes that you add to the system. The organization of classes
(class categories) and messages (message protocols) act as a form of doc-
umentation. Thus it is important to understand the system class organi-
zations and how to create organizations for your applications classes.

As in Part Two, we assume that the system sources are accessible to
you. Without them, you will be able to access the methods. But you will
not be able to access the class or method comments, nor the actual
method argument names.

•ΗΗΗΗΒΗΜ

Ί

11
Modifying Existing Class
Descriptions

11.1 Modifying Existing Methods

11.2 Modifying Protocols

11.3 Adding New Methods

11.4 Modifying Class Comments

218
Modifying Existing Class Descriptions

Start by making certain that you have a system browser open on the
display screen. If one does not already exist, choose the System Menu
command browser. If one does exist, make it the active view. A newly
created browser is shown in Figure 11.1.

Figure 11.1
000

Ν υ m e ri c - fvl a q η i t u d
Ν urn er ic-Numbers
C o l l e c t i o n s - A b s t r c
Col lect ion s-Unordi
C ο 119 c t i ο η s - S e q υ e
Col lect i o n s - T e x t
Col lect ion?-Array*

In order to learn how to make a change to the system, you will be
asked to follow several examples in which you change existing methods
and add new methods to existing classes. The three examples provided
here

• use and modify the example of creating a geometric design with
class Pen,

• add the ability to class Array to create a bar chart, a graphical dis-
play of an array of elements, and

• add the ability to class SequenceableCollection to compute all pos-
sible combinations of the elements of a collection.

11.1

Modifying
Existing
Methods

Exercise 1: Use class Pen to create geometric designs.
For the first example, you have to find the existing method that you

will modify. Choose class category Graphics-Primitives, class Pen, brows-
er menu item class, message category examples, and message selector
example. The method associated with the message example is shown in

219
11.1 Modifying Existing Methods

the text subview of the browser. The result of these selections is shown
in Figure 11.2a.

Notice that at the end of the method is a comment (text enclosed in
double quotes). To try this example use of class Pen, select the comment

Figure 11.2a 000

Figure 11.2b Dio

"Draws a spiral in gray with a pen that is 4 pixels wide

Col lect ion s-8trea.r
C ο 11 e c t i ο η s - S υ ρ ρ ο

Graphics-Display
Graphic;-Paths
Graphics-Views
Graphics-Editors
Graphic s-Clocks

Point
Quadrangle
Fi e c t a n q I e

instance creation

bic *- Pen new,

bic mask: Form gray.

bic defaultNib: 4,

bic com bin a tionFiule: Form under,

1 to: 50 do: [:i | bic go: i*4. bic turn: 8 9]

"Pen example"

Collect ions-Strear
Jollections-Suppc

graphics-Display
G ra ρ h i c s - Pa t h s
Graphics-Views
Graphics-Editors
Graphics-Clocks

example

Point
Quadrangle
Fi e c t a n q I e

"Draws a. spiral in gray with a pen t h a t is 4 ρ

Pen new,

ask: Form gray.

efaultNib: 4,

omb in a tionFiule: Form under,

50 do: [:i | bic go: i:+:4, bic turn: 8 9]

220
Modifying Existing Class Descriptions

text (do not select the double quotes), and then choose the yellow button
command do it (Figure 11.2b). A geometric design appears on the screen
(Figure 11.2c).

Figure 11.2c
000

System Brer·

C ο 119 c 11 ο η s - ο t r e a r
Col lect ions-Suppoi

G r a p h i c s - V i e w s
G r a. phi c s - Ε 611 ο r s

Draws a spiral in qra.y with 4 ^

bic ma.sk: Form qrzy. %; \/\\'\\\\'Ι1.| ί^Ξ^ :Ι 11.!.'!. "%. % %
bic defaultMib: 4. "''"' "'"" '"' :fe s-*• * *• * * ' •-'-ifX" • • * . < * • * • * * - *

To create this design, you sent the class Pen the message example.
The method associated with example was found in the class protocol for
Pen. The first statement of the method creates an instance of Pen, and
assigns it to the temporary variable bic. Instances of class Pen respond
to messages to change their line drawing characteristics. In particular,

mask: Form gray

defaultNib: 4

combinationRule:
Form under

The halftone mask that determines "color" of the drawing

ink. Other masks include Form darkGray, Form lightGray,

and Form black.

The shape of the source form or "brush" is a 4 χ 4 square.

Squares of different sizes can be used by specifying differ-

ent integers as the message argument.

The mode for mixing the bits of the source and destination

Forms can be varied, either Form under, Form over, Form

reverse, or Form erase, can be used as the message argu-

ment.

The second, third, and fourth statements of the example method send
these messages in order to set the characteristics of bic. The fifth mes-
sage is an iteration in which the Pen travels some distance (go: i * 4)
and changes orientation (turn: 89); as the Pen travels, it paints a line us-
ing its current brush, mask, and combination rule.

221
11.1 Modifying Existing Methods

You can now experiment with variations of the example design.
First, erase the geometric design that was the side effect of the previous
example by choosing the System Menu command restore display.

In the Pen method example, change the mask. Select the message
gray sent to the Form (the second statement in the method) as shown in
Figure 11.3a; then type the new message darkGray. The typing change
is shown in Figure 11.3b. Change the size of the square brush. Select
the message argument, 4, as shown in Figure 11.3c. Type the new argu-
ment, 2; the result is shown in Figure 11.3d.

Now choose the yellow button command accept (Figure 11.3d). The
message accept in this context means "compile the code." Compilation
means translate the Smalltalk-80 statements into machine executable
form (i.e., create an instance of CompiledMethod). The changed method
is automatically loaded into the running system, ready for you to try.

Select the expression Pen example (as you did earlier), and then
choose the yellow button command do it. The modified geometric design
shows on the screen (Figure 11.4).

You can keep experimenting in this way. Instead of using the message
defaultNib: to specify the brush shape, try the message sourceForm:. The
message argument is an instance of class Form. (You can try using one of
the cursors that exist, such as Cursor normal or Cursor crossHair). Also,
try changing the mode of mixing bits to Form reverse when you use dif-
ferent source Forms, otherwise the results will be mostly black.

Figure 11.3a 100

ollections-btrear
Collect ions -Suppoi

inBiuiiiiKMa uma

G r a. ρ h i c s - D i s ρ I a y
G r a p h i c s - P a t h ;
G r a p h i c s - V i e w s
Graphics-Edi tors
Graphics-Clocks

bic *· Pen new.

bic d e f a u l t Nib: 4, Λ

bic combinat ion Rule: Form under,

1 t o : 5 0 do: [:i | bic go: i:+:4. bic t u r n : 8 9]

"Pen example"

222
Modifying Existing Class Descriptions

Figure 11.3b 000

Collections-Strear
Collect ions-Suppo

Graphic 5-Views
Graphics-Editors

"Draw? a. spiral in gray with a pen that is 4 pixels wide

bic *• Pen new,
bic mask: Form darkGray^
bic default Nib: 4. \
bic combine.tionRule: Form under.
1 to: 50 do: [:i | bic go: i*4. bic turn: 89]
"Pen example"

Figure 11.3c loo

Collect ions-Strea
Collect ions-Suppo

Point
Quadrangle
Rectangle

Graphics-Display
Graphics-Paths
Graphics-Views
Graphics-Editors
Graphics-Clocks

example
" D r a w s a spiral in g r a y w i t h a. pen t h a t is 4 pixels wide.

I bic |
bic *- Pen new,
bic mask: Form dark Gray.
bic default Nib: Ά
bic combinationRXile: Form under,
1 to: 50 do: [:ί | bic go: i*4, bic turn: 89]
"Pen example"

223
11.1 Modifying Existing Methods

Figure 11.3d ΟΪ0

Collections-Strear
Collections-Suppo

mBaannMiaiimmHa

Graphic 5-Display
Graphic 5-Path s
Graphic;-Views
Graphics-Editors
Graphics-Clocks

Point
Quadrangle
Fi e c t a n g I e

instance creation

example

" D r a w s a spiral in g r a y w i t h a pen t h a t is 4 pixel

bic *• Pen new,

bic mask: Form dark.Gray,

bic default Nib: 2\

bic cornbinationFiule: Form under,

1 to: 50 do: [:i | bic go: i:+:4, bic turn: 8 9]

"Pen example"

a g a ι η
undo
copy

c υ t
ρ a s t e
do it

print it

format
s ρ a w η
e χ plain

Figure 11.4
OUO

Collect ions-Strea
Collect ions-Suppo

MlfcliflJWfcHdUIMUBfe
Graphic s-Display
Graphics-Paths
Graphics-Views
Graphics-Editors
Graphics-Clocks

Point
Quadrangle
Rectangle

example

"Draws a spiral in o,ra>

bic - Pen new,

bic mask: Form darkGr

bic defaultNib: 2.

bic combinationFiule: F

1 t o : 5 0 d o : [:i | b i c g>

/

224
Modifying Existing Class Descriptions

Τ
11.2
Modifying
Protocols

Exercise 2: Modify class Array to display bar charts.
The next example demonstrates a way in which you can get another

graphical effect on the screen. It was chosen primarily to introduce the
mechanisms for adding a new method to an existing class, not to be a
typical example of how to handle graphical presentation. There are a
number of interesting ways to handle graphical presentation of infor-
mation, such as views and menus. The approach taken in creating the
Smalltalk-80 system user interface is introduced in Chapter 15.

In this example, you will add one method to class Array. The result of
the method is to create a bar-chart representation of the elements of an
Array whose elements are numeric. As an argument to the message to
Array, you specify the labels that will appear along the horizontal axis
of the bar chart, one label for each element.

To add a method to an existing class, you can use a system browser.
Choose the class category Collections-Arrayed. Choose the class name Ar-
ray. Make certain the menu item instance is selected. Your browser
should resemble the one shown in Figure 11.5.

Now you need to choose a message category. Let's assume the appro-
priate message category does not exist. You must create a new category.

Figure 11.5

(J ο 11 e c t i ο η s - S e q u e|
Col lect ions-Text ,

_ ' B y t e An-a.
C ο 11 e c t i ο η s - S t re a ή R υ η A rra y
C ο 11 e c t i ο η s - 5 υ ρ ρ ο ι
G ra ρ h i c s - Pri m i t i ν e |
Graphics-Display
Graphics-Paths

comparing
convert ing
print i rig

A r r a v 6 d C ο 11 Θ c t i ο Γι ν a r i a. b I« S u b c I a s s: # A r r a y

i η s t a η c e V a. r i a b I e Ν a rn e s: ''

c I a. s s' v' a r i a b I e Ν a m 9 s:

poolDictionaries: "

c a t e q ο r ν: ' C ο 11 e c t ί ο η s - A r r a. y e d'

225
11.2 Modifying Protocols

There are two ways to modify the message protocol of a class:

1. Use the commands in the yellow button menu of the message-
category subview.

2. Choose the yellow button command protocols in the class-names
subview.

The first approach is the preferred one; the second, which involves di-
rect editing of a textual presentation of all the categories, is available
in case you have to do a large reorganization. An explanation of each
follows.

With the cursor in the message-category subview, but no category se-
lected, press the yellow button. The menu has one item, add protocol (Fig-
ure 11.6a). Choose it. A prompter appears (Figure 11.6b) in which you
type the new protocol name. After typing the name (graphical views is
used in Figure 11.6c, although misspelled), choose the yellow button com-
mand accept or type the "carriage return" key on the keyboard. The new
name is added to the message-category subview menu (Figure 11.6d).

When you choose add protocol, the new protocol name is appended to
the end of the message-category subview menu, and is selected. If a cat-
egory was already selected when you invoked the add protocol com-
mand, then the new category is inserted before this selected one.

Figure 11.6a ΟΪ0

Collections-Sequ
Col lect ion;-Text comparing

converting
printingollect i o n s - S i r e *

Collect ions-Sup ρ ο
Graphics-Primitive

rap hies -Display
Graphics-Paths

A r r a y e d C ο 11 e c t Ί ο η ν a r Ί a b I e S u b c I a s s: # A r r a y

i η s t a n c e V a r i a b I e Ν a m e s: "

c I a s s V a r i a b I e Ν a m e s: "

poolDictionaries: "

c a t e g ο ry: ' C ο 11 e c t i ο η s - A rrd. y e d'

226
Modifying Existing Class Descriptions

Figure 11.6b

Collect ions-Sequel
Collections-Text

C ο II e c t i ο η 5 - S ΐ re a r
C ο 11 e c ΐ i ο η s - S u ρ ρ ο
Graphic?-Primit ive
Graphics-Disp lay
G r a p h i c s - P a t h s

Byte Array
Run Array

comparing
converting
printing

A r r aye d Collect! ο η ν a r i a b I e b u b c I a s s: # A r r

instance V a r i a b I e Ν a m e s: "

class V a r i a b I e Ν β. m e s: ?'

poolDictionaries: "

c a ΐ e g ο r y: ' C ο 11 e c ΐ ί ο η s - A r r a y e d'

Enter new protocol name

then accept or CR

protocol name

Figure 11.6c

Collections-Seque
Collections-Text

HMlBWIWMHaiBW

C ο I! e c t ί ο η s - ο t re a r
Collect ion s-Suppo
Graphics-Primitive
Graphics-Display
Graphics-Paths

Byte Array
Run A rray

comparing
converting
printing

A r r a y e d υ ο 11 e c ΐ i ο η ν 3. r Ί a b I e Ό υ b c I a s s:

Ί η s 13. η c e V a. ri a b I e ['•·] a rn e s: "

c I a s s V 3. r i 3. b I e U a rn e s:

poolDict ionar ies: "

c 31 e g 0 r y: ' C 011 e c t i ο η s - A. r r a y e d Ί

Enter new pro tot

then a c c e p t or C

grapica

r Ί
227

11.2 Modifying Protocols

Figure 11.6d 000

C ο 11 e c t i ο η s - S e q u e
ollections-Text

Collections-Strear
C ο! I e c t i ο η s - S υ ρ ρ ο
Graphic s -Primitive
Graphics-Display
Graphic ;.-Paths

Byte Array
Run Array

comparing
converting
printing

^nessage selector and argument names
"comment stating purpose of message"

| temporary variable names |
statements

When a category is selected, the yellow button menu includes com-
mands rename and remove, as well as add protocol. If you choose the
command rename, a prompter appears that contains the selected name.
Edit it, then choose the prompter yellow button command accept or
type the "carriage return" key. For example, notice that we mistyped
the name graphical views in Figure 11.6c. With the misspelled name se-
lected, choose the command rename (Figure 11.7a). The prompter ap-
pears, showing the current name (Figure 11.7b). Edit the text and
choose the yellow button command accept (Figure 11.7c). The name in
the message-category menu changes (Figure 11.7d).

If you choose the command rename, and the name you provide is the
same as an already existing protocol name, then nothing changes.

228
Modifying Existing Class Descriptions

Figure 11.7a 010

Jollections-beque
3 c t i ο η s - Τ e χ t

>' J o II e c 11 ο η s - Ό t r e a t
e c 11 ο η s - b u ρ ρ ο

Graphics-Primitive
Graphics-Display
Graphics-Paths

message select or and argument names

"comment stat ing purpose of message"

| temporary variable names |

s t a t e rn e η 1s

Figure 11.7b

System Browser

υ 011 e c 11 ο η s - ο e q υ e ι
C o l l e c t i o n s - T e x t

UBIIiaininwaiCTi

Uollections-btrear
(J ο 11 e c 11 ο Γι s - b υ ρ ρ ο
Graphic: .-Pr imi t i ve
G r a ρ h i c s - D i s ρ I a y
Graphic 3-Pa t h s

Byte Array
Flu η Array

l t i H a i M

comparing
co η vert ing
printing

sage selector and argument η a. me;

"co m m e ri t s tat ing purpose 0 f rn e 3 3 a g e"

Enter new protocol η am

then accept or CFi

I temporary

5 t a r e me η t s

i a b I e η a rn e s

1

229
11.2 Modifying Protocols

Figure 11.7c ΟΪ0

iystern Browser

I e c 11 ο η s - b e q u c
I e c t iοn."-Ty:.< t

•Jollec t iur is- 'otrear]
0 ο 11 e c t i ο ηs - S u ρ ρ ο
Graphic s - Ρ r i m i t i ν e
Graphic.s-Disp Id y
Gra ρ hie s-Paths

Byte Array
FiunArra ν

com ρ a. n rig
convert ing
ρ π η t Ί η g

rn e 5 5 a g e selector a. η d a r g υ m e η t η a m e s

"c οΓΙΊmeη t sta tiηq purpose of message"

| temporarv'

s t a t e m e ηts

i a b I e Γι a m e s

Enter new pro

then a c c e p t oil

graphica l vie1·,

a. g a ι η
undo

copy

do it
print it

Figure 11.7d 000

Collections-Seque
Collect ions-Text

Collections-Strea.H
Collect ions-Suppo

G re. ρ h ί c s - Pr-i m ί t i ν e
G r a p h i c s - D i s ρ I a y

ra phi c 5-Path 5

FiunArra

comparing
co η vert ing
print ing

message selector and argument names

"comment s t a t i n g purpose of message"

| temporary variable names |

s t a. t e rn e η t s

230

Modifying Existing Class Descriptions

If you choose the command remove, and there are no message selec-
tors in the selected category, the category is immediately deleted. If
there are messages in the selected category, a confirmer appears be-
cause the deletion means that all messages in the category are deleted
(Figure 11.8).

The second way of modifying the protocol for a class is to choose the
yellow button command protocols in the class-names subview of the
browser (Figure 11.9a). A list of message categories and message selec-
tors within each category appears in the text subview of the browser
(Figure 11.9b). The syntax for each category/selectors combination is of
the form

('category name' selectoM selector2 selector3)

To add a protocol, insert a new name, delimited by single quotes and
embedded in parentheses.

('new name')

An example is shown in Figure 11.9c in which the new category name
graphical views is appended at the end. Choose the yellow button corn-

Figure 11.8
loo

System Browser

I e c 11 ο η _-. - s e q υ e
l e c t i o n s - T e x t

uol lect ions-Strea.r
Codec t ions-Suppo
Gra phic .'-Primitive
Graphic s-Display
Gra phic 5-Pa t h j

B y t e A r r a y
FiunArra ν

messaqe selector and arqυmeηt

com ρ a ring
c o n v e r t i n q

is Lit era I
pr int On:
store On:

A, r e ν1 ο υ c e r t a. i η t h a. t y ο υ ν ν a n t ΐ ο

remο νe all me t h ο d s in this p r o t o c o l "

'' c ο m m e η t ; t a t i η q ρ υ r ρ ο s e of mess a q e"

| t e m ρ ο t'^v ν ν a r i a b I e η a m e s j

s t a t e m e n t s

r
231

11.2 Modifying Protocols

Gollections-
Collections-7

Figure 11.9a Oio

ollections-S|
Collect ions-3
Graphic s-Prin
Graphic s-Disj
Graphics-PatTr?

Run.4

A r r a. y e d C ο 11 e c t i ο η ν a r / c

instanceVar iableNa

classVariableWarnei

pool Dict ionaries: "

hierarchy
definit ion
comment

inst v3\r refs
class var refs

class refs
rename
remove

c a t e q ο r y: ' < J ο 11 e c t i ο η s - A r r a v e d'

ι vert ing
Ί t ing

Col lect ions-::
Collections-! compering

con verting
printing

ByteArra>
FiunArra νCollect ions-Ξ

Collect ions-Ε
Graphic s-Prin
Graphic s-Dis|
Graphics-Pat

Figure 11.9b ooo

c ο m pan' η g' h a s h h a s h fvl a ρ ρ e d Β y:)

' c ο η ν e r t i Γι g' a s A r r a y)

'pr int ing ' isLiteral printOn: storeOn;)

232
Modifying Existing Class Descriptions

Figure 11.9c 010

Collect ions-Strea
Collections-Suppo
G r a p h i c s - Primi t i ν Q
G r a ρ h i c s - D ί 5 ρ I a y
Graphics-Paths

Collect ions -Seque
Collect ions-Text comparing

converting
printing

(' c ο rn ρ a r i η g' h a s h h a s h Μ a ρ ρ e d Β y:)

(' c ο η ν e r t Ί η g' a s A r r a y)

('printing' isLiteral printOn: storeOn:')

('graphical views' \

C ο 11 e c t i ο η s - S e q υ e
C ο II e c t ί ο η s - Τ e χ t J B

~ Byte Array
C ο 11 e c t i ο η s - S t re a rj Fi u η A rra y
Collect ions-Suppoj
G ra ρ h i c s - Pri rn i t i ν e
G r a p h i c s - D Ί s ρ I a y
Graphics-Paths

comparing
convert ing
print ing
graphical vie

Figure 11.9d BOO

A rra y e d C ο 11 e c t ί ο η ν a ri a b I e S u b c I a s s: # A rrs. y

i η s t a n c e V a r i a b I e Ν a rn e s: "

c I a s J V a r i a b I e Ν a m e s: ''

poolDictionaries: "

c a t e g ο ry: ' C ο II e c t i ο η s - A rra. y e d'

r

11.3

233
11.3 Adding New Methods

mand accept in the text subview to have the system check the syntax of
the category specifications, and to add the category to the menu in the
browser. The result is shown in Figure 11.9d.

Adding New
Methods

Choose the new category graphical views. A template for defining a new
method appears in the text subview of the browser, as shown in Figure
11.10a. You edit this template with the desired message pattern, com-
ment, and statements. In Figure 11.10b, the message selector and argu-
ment names part of the template is selected; typing the actual pattern
replaces the selected text (Figure 11.10c). The example message pattern
is displayBarChartWithLabels: anArray.

The name of the message argument has no semantic meaning in the Smalltalk-80
programming language. However, as a matter of style and documentation, the mes-
sage argument name is made up from the name of the class or superclass of the in-
stance that can be an argument to the message. In this example, the argument
name indicates that the argument should be an instance of Array or of a subclass of
Array.

Now select the comment part of the template (Figure ll.lOd) and
type an appropriate comment. The comment shown in Figure ll.lOe in-
cludes an expression that is an example use of the method. Users of
this method can browse to read the comment, and then see an example
use of it by executing the expression.

Figure 11.10a

Collections-Seqi
Collections-Te

Collect ions-S
C ο 11 e c t ί ο η s - S u ρ ρ ο
Graphics-Primitive
Graphics-Displa
Graphics-Paths

comparing
converting
ρ ri η t i η g

me;sage selector and argument names

"comment stating purpose of message"

| temporary variable names |

s t a t e m e η t s

234

Modifying Existing Class Descriptions

Figure 11.10b
100

Figure 11.10c

C ο 11 e c t i ο η 5 - S e q u e
C ο 11 e c t i ο η s - Τ s χ t

WSIIEPHfflffBBIHSPI

C ο 11 e c t i ο η 5 - S ΐ r Θ a r
Col lect ions-b υ ppo
G ra ρ h i c s - F'ri rn i t i ν e
G ra. ρ h i c s - D i 5 ρ I a y
G r a p h i c ; - P a t h

comparing
converting
printing

"comment stating purpose of message"

| temporary variable names

statements

C ο! I e c t i ο η s - S e q u e
C ο II e c t i ο η s - Τ e χ t

U ο II e c 11 ο η s - S ΐ r e a r
Col lect ions-Suppo
G ra. ρ h i c s - Pri rn i t i ν e
G r a p h i c s - D i s p l a y
Graphic s-Paths

comparing
converting
pri η tin

d ι s ρ I a. y Β a r U h a r t W11 h L a b e I s: a. n A r r a y

"comment s t a t i n g purpose of rnessJ^e"

| t e m p o r a r y var iable names |

s t a. t e m e η t s

235
11.3 Adding New Methods

Figure ll.lOd

Figure ll.lOe
ran

Dollections-Se
Dollections-Te comparing

converting
printingCollections-

Co He ct ions-Supp ο
Gra ρ hies -Primitive
Graphics-Display
Graphics-Paths

d i s ρ I a y Β a rC h a f t W ί t h La b e I s: a n A rra y

| temporary variable name

s t a. t e rn e η t s

Collect ions-Seque
Collect ions-Text c ο m ρ a π η g

convert ing
printingC ο 11 e c t i ο η s - S t re a r

υ olle c 11 ο η s - b u ρ ρ ο
Graphics-Primitive
G r a p hies- D i s ρ I a y
Graphics-Paths

d i s ρ I a y Β a rC h a r t W i t h La. b e I s: a n A rra y

"Create a bar c h a r t representat ion of the numeric c o n t e n t s

instance. The message argument is a col lect ion of labels to use

ident i fy ing each column of the bar c h a r t , If the argument is nil,

indices for labels. Try

(1 5 6 7 8) displayBarChartWithLabels: ^ (' s a l e s ' ' p r o f i t ' 'loss'

| temporary variable names |

s t a t e m e n t s

of the

in

use

236
Modifying Existing Class Descriptions 1

Now select the temporary variable names part of the template and re-
place it with rect spacing maxHeight factor labeling top dispRect. Then
select the statements part and replace it (Figure ll.lOf).

Figure ll.lOf 000

CollQCtions-Arr

Collections-St η
C oily c t i ο η s - S u ρ
Graphics-Primit
Graphics-Displa
Graphics-Paths
Graphics-View
Graphic s-Edi to

Byte Array
Run A rr a. v

comparing
converting
printing

d i s ρ I a y Β a rυ h a rt W i t h La b e I s: a n A rra y

"Create a bar chart representation of the numeric

contents of the instance, The message argument is a

collection of labels to use in identifying each column of the

bar chart, If the argument is nil, use indices for labels, Try

(15 6 7 S) d i s ρ I a y Β a rC h a r t W i t h La b els: # ('sales' ' ρ ro f i t '

'loss' ' to ta l ') "

| rect spacing maxHeight factor labeling top dispRect |

rect *• Rectangle from User,

spacing *• rect width + self size // self size,

maxHeight *• 0,

1 to: self size do: [:i |

maxHeight *• maxHeight max: (self at: 1)], 1̂

factor *• (rect height - 30) / maxHeight,

labeling *• (anArray == nil or: [anArray size < self size]) not,

Display fill: rect mask: Form white,

1 to: self size do: [:i |

(labeling if Τ rue: [a n Array at: i] if False: [i print String])

d i s ρ I a y A t: r e c t b ο 11 ο rn L e f t - (0 © 3 0) + (((' s ρ a c i η g + (i - 1)) + 1) (*! 0),

((self at: i) isKindOf: Number)

ifFalse: [self error: 'element is not numeric'],

top *• rect top + rect height-30-((self at: i) + factor) aslnteger,

dispRect *•

(rect I e f t + 1 + (s ρ a c Ί η g:+; (i - 1))) @ t ο ρι

c ο r net": (r e c t I e f t + (s ρ a. c i η g * i) - 1) © (r e c t b ο 11 ο rn - 3 0),

Display fill: dispRect mask: Form black,

Display fill: (dispRect inset By: 2@2) mask: Form g r a y !

i

237
11.3 Adding N e w M e t h o d s

Note that since the template is simply unstructured text, you can select all of it
and replace it with the desired method. The example did the selection and replace-
ment in parts to emphasize the parts of a method that can be specified. The system
will not force you to provide comments, nor will it enforce naming conventions.

There are eight statements in the method that are commented here.

rect — Rectangle fromUser. Create a new Rectangle. The user of the meth-
od will have to designate the origin and cor-
ner of the Rectangle. Be careful to provide
sufficient space for the Rectangle.

spacing - rect width + self size // self size.

Compute the amount of space that can be
used for the width of each column. The pseu-
do-variable self refers to the Array.

maxHeight — 0. Determine the largest element of the Array.

1 to: self size do: [:i |

maxHeight - maxHeight max: (self at: i)).

factor «- (rect height - 30) / maxHeight.

Compute the scaling factor to get the bar
chart columns to fill the available space. The
height of each column is the Array element
times this scaling factor. 30 is the space left
for the labels.

labeling - (anArray = = nil or: [anArray size < self size]) not.

Compute a Boolean (true or false) that indi-
cates whether the bar chart will be specially
labeled. There are no special labels if the mes-
sage argument anArray is nil, or if the message
argument does not contain a label for each el-
ement. When there is no special label, the ele-
ment index will be displayed.

Display fill: rect mask: Form white.
Display is an instance of DisplayScreen. The
message filkmask: is used to paint a rectangu-
lar area of the screen with some "color." Here
the rectangle is the space to display the bar
chart; the color, all white, is the background
for the bar chart.

The eighth statement is an iteration in which each column is printed.
For each element of the Array, that is, for the index i starting at 1 and
ending at the size of the Array, determine the label (it is either anArray
at: i, or it is the index converted to a string, i printString) and display the
label within and at the bottom of the rectangle (displayAt:). Make cer-
tain that the Array element is numeric; if not, report an error. Other-
wise, compute the top (top) of the next column, then compute the
column's rectangle (dispRect). Now modify the display screen to show
the column; the column has a 2 χ 2 black border, so first display the
column all in black (Display fill: dispRect mask: Form black) and then

238
Modifying Existing Class Descriptions

display the gray area inset f rom the edge (Display fill: (dispRect insetBy:
2@2) mask: Form gray).

1 to: self size do:

[••«I
(labeling ifTrue: [anArray at: i] ifFalse: [i printString])

displayAt: rect bottomLeft - (0@30) +(((spacing * (i - 1)) + 1)@0).
((self at: i) isKindOf: Number) ifFalse: [self error: 'element is not numeric'],
top - rect top + rect height - 30 - ((self at: i) * factor) aslnteger.
dispRect «- (rect left+1 + (spacing * (i - 1))) @ top

corner: (rect left+(spacing * i) - 1) @ (rect bottom-30).
Display fill: dispRect mask: Form black.
Display fill: (dispRect insetBy: 2@2) mask: Form gray]

After you have typed these eight statements, choose the yellow but-
ton command accept. The method is compiled and loaded into the sys-
tem; the message selector appears selected in the message-selector
subview of the browser.

Check that you typed correctly. If not, edit the method and choose
the command accept again. If you choose accept but have mistyped
something, a syntax error message may be inserted into your code just
before the point of the error. If this happens, cut out the error message
and correct the (probably misspelled) token. Then choose the command
accept again. Alternatively, a menu may appear that indicates an
undeclared variable or message selector. One of the commands in the
menu is abort. Choose it, then edit the method to correct the error, and
choose the command accept again.

Try the new method by selecting the expression in the comment and
choosing the yellow button command do it (Figure 11.11a). First you are
asked to designate the rectangle in which the bar chart will appear in
the same way you designate a standard system view. A possible result
is shown in Figure 11.11b. (Note that the image is not in a system view
and cannot be selected for reframing, moving, closing, and so on. To
erase the bar chart, choose the System Menu command restore display.)

If you did not copy the method correctly, but what you typed was
successfully compiled, two things could have happened.

1. You successfully obtained a result, but it does not look right.
Recheck your method to find the difference between code present-
ed here and what you typed. Edit the method, choose the com-
mand accept again, and then try the example again.

2. You did not get a bar chart, but instead a view called a notifier
appears to tell you something is wrong. This notifier indicates a
runtime error. It is like the one described at the end of Section
8.5. In the notifier, choose blue button command close, and then

239
11.3 Adding New Methods

Figure 11.11a

Figure 11.11b

Collect ion s-Seq
Collections-Te;

com ρ β. ring
nvertinq

printing
Collect ions-Sire
Collections-Suppo
Graphic 5-Primitive
Graphic;-Display
Graphics-Paths "

displayBarChartWithLabels: anArray
"Create a bar chart representation of the numeric r

instance. The message argument is a collertinn nf label
identifying each column of the bar chart, If the flrqume
indices for labels. Tr

rect spacing maxHeight factor labeling top dispFied
rect *• Rectangle fromUser.
spacing <- rect width + self size // self size
maxHeight

to· .-elf .-izp ,jo [i | n,3 Height - no Heiur.r n,=

240
Modifying Existing Class Descriptions

proceed as suggested for case 1. The most common runtime error
is that an object does not understand a message sent to it. Often
this is because a period or parentheses was forgotten, or you
misspelled the message keywords.

There are a number of ways in which you can modify the method to
produce different effects. Try to change the background to light gray,
rather than white (Display fill: rect mask: Form lightGray), and the col-
umn tone to dark gray instead of gray (Display fill: (dispRect insetBy:
2@2) mask: Form darkGray). A new bar chart created with these chang-
es is shown in Figure 11.11c.

Figure 11.11c

Exercise 3: Modify SequenceableCollections to do combinations of
the elements of the collection.

This exercise is similar to Exercise 2 in that it demonstrates how to
modify an existing class description in order to add new functionality to
a class. It differs in that several methods, rather than just one, must be
added. The new functionality is to obtain an OrderedCollection of all
possible combinations (subsets or subcollections) of the elements of a
SequenceableCollection. For example, the result of sending the Array
#(a b c) the message combinations should be

OrderedCollection ((a b c) (b c) (a c) (c) (a b) (b) (a) ())

241
11.3 Adding New Methods

The design of the algorithm is to recursively call on a method that com-
putes subsets of all the combinations of elements, eliminating one ele-
ment at a time, and collecting the result of each call into an
OrderedCollection. The index of the element to be eliminated is called
the order of the elimination; it is an index into the
SequenceableCollection. The top-level call to this method (combinations:)
uses the message argument 0; the top-level call is specified in the meth-
od associated with the message combinations. The two messages, combi-
nations and combinations:, will be categorized in message category
enumerating of class SequenceableCollection. An instance of any sub-
class of SequenceableCollection, such as Array or String, will be able to
compute all of its combinations. The two methods are as follows.

combinations
"Answer a collection containing all the combinations of the
receiver's elements, e.g., #(a b c) combinations. "

Tself combinations: 0
combinations: order

" Answer a collection containing a subset of all the combinations of the
receiver's elements."

| combinations |
combinations <- OrderedCollection with: self.
1 to: self size - order do:

combinations
addAII: ((self copyWithoutlndex: i) combinations: self size - i)J.

Tcombinations

The method for combinations: includes the expression

self copyWithoutlndex: i

The message copyWithoutlndex: must be defined for Sequenceable-
Collections. In the example, it is categorized in message category copy-
ing as shown on the next page.

242
Modifying Existing Class Descriptions

Τ
copyWithoutlndex: omitlndex

"Answer a copy of the receiver, omitting the element at omitlndex, e.g.,

(a b c) copyWithoutlndex: 2 = # (a c)."

I copy |
copy «- self species new: self size - 1.
copy replaceFrom: 1 to: omitlndex - 1 with: self startingAt: 1.

copy
replaceFrom: omitlndex to: copy size
with: self startingAt: omitlndex+1.

Τ copy

Now that we know what we want to do, let's see how to use the
Smalltalk-80 programming interface to add the methods. In a system
browser, choose class category Collections-Abstract, class name
SequenceableCollections, message category copying, and the browser
menu item instance, as shown in Figure 11.12a. In the text subview,
edit the text of the method template. Replace the message pattern, com-
ment, and statements to specify the method for copyWithoutlndex:
omitlndex. Choose the yellow button command accept (Figure 11.12b).
The new method is added to the message-selector menu of the browser
(Figure 11.12c).

Figure 11.12a

Nurneric-Maqnitu
Ν υ m e π c - Ν u m b e rs A rra ν e d C ο 11 e c t i ο r

_• υ 11«'.-1.1 ο η s - U η ο rd
Col lect ions-Seque
C ο 11 e c t i ο η s - Τ e χ ΐ
C o l l e c t i o n s - A r r a >
C ο 11 e c t i ο η s - S t r e a

Q η υ me re. ting
convert inq

message selector and argument names

"comment stating purpose of message"

| temporary variable names |

s t a. t e m e η t s

copy From: to:
copyFieplaceAlli'vvi
copy ReplaceFrom: t
c ο ρ y W i t h:
copy With out:
shallow Copy

J

243
11.3 Adding New Methods

Figure 11.12b
OiD

Numeric-Mag nit υ d|
Ν υ ΠΙ e ri c - Ν υ rn b e rs I A rra. y e d C ο 11 e c t ί ο η

Collection
iiciincCollections-LI nordi

Collections-Sequel
Col lect ions-Text
Col lect ions-Array.
Collection s-St rear

wmic

comparing
a c c e s s i η g
a d d i η g
removing
EySBHBBJ
enumerating
co η verting

copy From: to:
cop y Rep lace All: wi
copyReplaceFrom:t
c ο ρ y W i t h:

copy Without;
s h a 11 o vv C ο ρ y

c ο ρ y W i t h ο υ 11 η d e χ: ο m i 11 n d e χ

" A n s w e r a c o p y o f t h e r e c e i v e r , o m i t t i n g t h e e l e m e n t a t o m i t l n d e

E.g. # (a b c) c o p y W i t h o u t I n d e x : 2 = # (a . c') "

I c o p y |

c ο ρ y <- s e l f s ρ e c i e s η e w : s e l f size - 1.

c o p y r e p l a c e From: 1 t o : o m i t I n d e x - 1 w i t h : s e l f s t a r t i n g A t : 1.

c o p y r e p l a c e F r o m : o m i t I n d e x t o : c o p y size w i t h : s e l f s t a r t i n g A t :

ο m i 11 n d e χ + 1,

tcopv

a g a ι η
υ η d o
c o p y
cut

ρ a. s 19
do it

print it

format
s ρ a w η
e χ ρ I a i η

Figure 11.12c Boo

Nurneric-Magnitudj
Numeric-Numbers

i.rrayed(Jollection

Uol lect ions-oequel
Col lect ions-Text
C ο 11 e c t i ο η s - A rra y ι
Col lections-Strear

c ο m ρ a π η g
a c c e s s i ri g
adding
removing

e n u m e r a t i n g
convert ing

copyFrom:to:
c ο ρ y Fi e ρ I a c e AII: •·
copyReplaceFrorn:t
copy With:
c ο ρ y W Ί t h ο u t:

s h a 11 o w (J ο ρ y

c ο ρ y W i t h ο υ 11 η d e χ: ο m i 11 n d e χ

" A n s w e r a. c o p y o f t h e r e c e i v e r , o m i t t i n g t h e e l e m e n t a t o m i t I n d e x

E.g. #(s. b c) c o p y W i t h o u t I n d e x : 2 = #(s. c) "

I c o p y |

c o p y *• s e l f s p e c i e s n e w : s e l f size - 1,

c o p y r e p l a c e F r o m : 1 t o : ο mi t I n d e x - 1 w i t h : s e l f s t a r t i n g A t : 1.

c o p y r e p l a c e F r o m : o m i t I n d e x t o : c o p y size w i t h : s e l f s t a r t i n g A t :

o m i t I n d e x + 1.

t c o p y A

244
Modifying Existing Class Descriptions

Q Formatting When we typed the method, we were not careful to for-
mat the statements (use indentation and line change so that the mes-
sage selectors are clearly presented). Choose the yellow button command
format to create a formatted version (Figure 11.13a). Edit the formatted
statements to change anything you do not like. Choose the yellow but-
ton command accept to store the formatted version (Figure 11.13b).

Q Testing Open a workspace in which you can try out the new meth-
od (choose the System Menu command workspace). Type the expression

#(a b c) copyWithoutlndex: 2

Select the expression and then choose the yellow button command print
it (Figure 11.14a). Make sure that you get the result (a c).

Try other SequenceableCollections, such as a String.

'string' copyWithoutlndex: 3

The result should be a new String, 'sting'.

These tests are shown in Figure 11.14b. If your results are different,
check to make certain that you copied the method correctly. Edit the
method if necessary, and then choose the yellow button command
accept.

Now choose the message category enumerating, as shown in Figure
11.15a. In the text subview, edit the text of the method template. Re-
place the message pattern, comment, and statements to specify the
method for combinations:. Choose the yellow button command accept
(Figure 11.15b). The new method is added to the message-selector menu
of the browser.

By choosing combinations: in the message-selector menu, it is
deselected, and the method template appears again. Edit the template
to specify the method for combinations. Choose the yellow button com-
mand accept (Figure 11.15c). The new message selector is added to the
menu.

In the workspace, try the new method. Type, select, and evaluate ex-
pressions such as those shown in the workspace in Figure 11.15d.

J

245
11.3 Adding New Methods

Figure 11.13a ioio

Numeric - M a qni tudl
Ν u m e ri c - Ν u m b e r s | A rra y e d C ο 11 e c t i ο η

C ο 11 e c t i ο η
Col lect ions-Unordi
Collection:'-Seque)
Col lect ions-Text
Col lect ions-Array*
Collections-Strear

corn ρ a. ring
accessing
adding
removin

enumerating
converting

copy From: to:
copy Replace All: vvi
cppyRepla.ceFrom:t
c ο ρ y W i t h:
copy Without:

nmnwiMHimiMimRii

shallovvCopy

c ο ρ y W i t h ο u 11 η d e χ: omit in d e χ

"Answer a. copy of the receiver, omitting the element a t ο ι

E.g. # (a b c) copy Without Index: 2 = # f a c)

copy |
copy «- self species new: self size - 1.

copy replaceFrom: 1 to: om it Index - 1

copy replaceFrom: omit Index to: copy size wi th: self start ing At:

omit Index + I,

rcopy A

with: self start ing At:

again
undo
copy

cut
paste
do it

print it
accept
cancel

s ρ a^·1 η
lex plain

Figure 11.13b Oio

Ν υ m eric- Μ a gnit υ d
Ν υ m e ri c - Ν υ m b e rsA rra yed Collection

Collection

ΙΗΓΊΓΓΗΠΠ™""™"'"

comparing
accessing
adding
removing

Collections-Unordi
Collections-Sequei
Collections-Text
Collect ions-Array
C ο 11 e c t i ο η s - 3 t re a

^opyWithoutlndex: ornitlndex

"Answer a copy of the receiver, omitting the element at
E.g, #(a b c) copy Wit h out index: 2 = #(a c) "

I copy |
copy *- self species new: self size - 1.

copy

replaceFrom: 1

to: omit Index - 1

with: self

s tar t ing At: 1,

copy

replaceFrom: ο m i 11 n d e χ

copy From: to:
copy Replace A11: wi
copyReplaceFrom:1
copy With:
copy Without;

246
Modifying Existing Class Descriptions

Figure 11.14a

Figure 11.14b 000

S ν stem Browser
Numeric-Magni
Numeric-Numl

Collections-!.)!
Col lect ίο η s-Si
Collections-Τι
Collect ions-Αι
Collect ion s-Si

copyWithoutl
" A n s w e r .

E.g.

copy *- self specie:" new: self size - 1.
copy

replaceFrom: 1
to: omit Index - 1
with: self
starting At: 1.

c ο ρ y
replaceFrom: omitlndex

Numeric-Mag
Nurneric-Nurnt

Collections-Ui
Collection;-5
Collections-Τ
Collection:"- -
Collection:-;^

copyWithoutl
"Answer
E.g. # i 3

I copy |

#('a b c) copy Without Index: 2 ia c)

'string' c ο ρ y W i t h ο u 11 η d e χ: 3|

Fro rn: 1

copy *- self species new: self size - 1.

copy

replaceFrom; 1

to: omitlndex - I

with: self

start ingAt: 1.

c ο ρ y

replace From: ο rn i 11 n d e :•.

247
11.3 Adding New Methods

Figure 11.15a

|00
000

Ν u m e r i c - fvl 3. g η i t υ d
Ν u m e ri c - Ν u rn b e rs

ο 11 e c 11 ο η s - U η ο
ollections-Sequei
ο 11 e c t i ο η s - Τ e χ t
ollect ions-Array

3ol lections-Strea

Arra yedG'olle
Collection

comparing
accessing
a. d ding
removing

opying

message selector and argument names

"comment stat ing purpose of message"

| temporary variable names |

statements

col lect:
do:
findFirst:
find Last:

re verse Do:
select;

Figure 11.15b Oio

Ν u m e ri c - Μ a. q η i t u d
Numeric-Numbers

MiMiKMimre^iiia«c

Col lect ions-IJ η ordi
C ο 11 e c t i ο η s ~ S e q υ e
Collections-Text
Collect ions-Array
Collections-'otrea

ArrayedCollection
Collection

c ο rn ρ a π η q
accessing
adding
removing
copying

con vert inq

c o l l e c t :
do:
findFirst:
find Last:
reverse
re verse Do
sel

co rn b i η a t i ο η s: ο r d e r

"Answer a. collection containing a subset of all the corn!

the receiver's elements."

I combinations I

co rn b i η a t i ο η s *• Ο r d e r e d C ο 11 e c t i ο η w i t h : self,

1 t o : self s i z e - o r d e r do:

a. q a ι η
u n d o
c o p y
cut

paste
do it

print it

ancif
format
s ρ a w η
explain

; of

c ο rn b i η a. t i ο η s

a d d Al l ; ({self c o p y W i t h o u t Index: i) c o m b i n a t i o n s : sel f s i z e - h] ,

- c ο m b i η a t i ο η s

248
Modifying Existing Class Descriptions

Figure 11.15c 010

^L
Ν υ rn e r i c - Μ a g η i t ud|
Ν υ m e ri c - Ν υ m b e rs | A rra y e d C ο 11 e c t i ο η

Collection
Collections-U no rd
Collect ion s-Seque
Collections-Text
Collect ions-Array
C ο 11 e c t i ο η s - S t r e a

comparing
a c c e s s i η q
a d d i η g
removing
copying

c . | 3 j S convert ing

c ο m b i η a t i ο η s

"Answer a col lect ion conta in ing col lect ions of a I

the receiver's elements, e.g., # (a b c) combinations,'

t s e l f combinations: Ο

combinations:
do:
findFirst:
f indLast:
re ν e rs e
reverseDo:
select:
w i t h : do:

again
u η d ο
copy

cut
ρ a s t e
do it

print it

c a ms e I

f o r m a t
spawn
e χ plain

τ ι b i ri a. t i ο η s ο f

Figure 11.15d roo

b y stem Browser

Numeric -fvla goi
Numeric-Ν urn t

Collec t ions-Ui
Collections -S
Collections-T
Collection.·-A
Collect ion s-S

combinations

" A n s w e r

the receiver ' :

tse l f com

i a b c ϊ copy Without Index: 2 (a c)

' s t r i n g ' copyWithout lndex: 3 ' s t i n g '

(a b c) combinations OrdersdCol lect ion ((a b

Ί ib c Ί fa. c Ί ic Ί fa b Ί fb Ί fa Ί f'i)

5 O f

J

r

11.4

249
11.4 Modifying Class Comments

Modifying
Class
Comments

In the previous section, you saw how existing methods can be edited
and recompiled, how protocol names are specified, and how new meth-
ods are added to a class description. A method can include a comment
about its intended use; comments can be interspersed among the state-
ments in order to explain the algorithm.

Comments can be provided for the class as a whole, to document its
potential use in the system. In a system browser, choose class category
Graphics-Primitives, and choose class name Rectangle. In the class-
names subview, choose the yellow button command comment (Figure
11.16a). A comment about the selected class appears in the text subview
(Figure 11.16b). You can edit this text. For example, you can insert
more commentary. The changed comment is stored when you choose
the yellow button command accept in the text subview (Figure 11.16c).

Figure 11.16a

Graphics-Dis
Graphics-Pal
Graphics-Vie
Graphic s-Edi
Graphics-CIo
Graphics-Suf

Pen
Point
Ouadrar

file out
print out

s ρ a w η
spawn hierarchy

hierarchy
definition

UBSUS
Object subclass: # R e c t a n c

i η s t a n c e V a r i a b I e Ν a rn e:

c I a s s V a r i a b I e Ν a m e s:

poolDict ionar ies: "

c a t e g ο ry ; ' G r-a ρ h i c s - Pri rn i t i ν e s'

inst va.r refs
class var refs

class refs

sing
ring
iqle function
I
tion and rcn

or nning

rename
remove

250
Modifying Existing Class Descriptions

Figure 11.16b 000

•ΤΙΜΒΙΜΙΙΜΜΗΜΠ

Graphic s-Ois
Graphic.--Pat
Graphics
Graphic s-Edi'
Graph ics-CIo
Graphics-Sup

a c c e s s ι η g
comparing
rectangle function
testing
truncation and rot
transforming
copying

I usually represent a. rectangular area, on the sere en, Arithmetic

functions take points as arguments and carry out scaling and translating

operation? to create new Rectangles, Rectangle functions create new

Rectangles by determining intersections of rectangles wi th rectangles,

Figure 11.16c
010

Collect ions-Suppo
Pen
PointGraphics-Display

G ra ρ h i c s - Pa t h s Q.u a d ra η g I e
Graphics-Views
Graphics-Editors
Graphics-Clocks

G ra ρ h i c s - S υ ρ ρ ο rt ||,1U1.TJJ ,-:, a 5 5

I usually represent a. rectangular area on the screen, I have knowledge of

points on the corners and sides, and I can determine my dimensions^

arry out scaling and

accessing
comparing
rectangle function
testing
truncation and roi.
transforming
c ο ρ y i ri g

Arithmetic functions take points as argument

translating operations to create new Rectar

create new Rectangles by determining inters

rectangles,

a g a. ι η
undo
copy

c υ t
paste
do it

print it

f ο rrn a t
s ρ a w η
e χ ρ I a i η

e c t a n g l e f u n c t i o n s

of rectangles with

J

Γ

Modifying Existing Class
Definitions

12.1 Name of Superclass

12.2 Name of Class

12.3 Instance Variable Declarations

12.4 Class Variable Declarations

12.5 Pooled Dictionary Declarations

12.6 Class Category

252
Modifying Existing Class Definitions

12.1

The class definition of an existing class is obtained by choosing the class
name in a system browser, or by choosing the yellow button command
definition in the class-names subview of a browser. The definition con-
sists of six parts:

• name of superclass

• name of class

• instance variable declarations

• class variable declarations

• pooled dictionary declarations

• class category name

Each of these parts can be changed by editing the text of the definition
that appears in the text subview of the browser, and then choosing the
yellow button command accept. The consequences of these actions will
be described in the following sections.

Name of Changing the name of the superclass means that you are changing the
Superclass (inherited) methods to which instances of the class can respond, and you

are changing the (inherited) variables that describe each instance. In
the browser shown in Figure 12.1a, class category Graphics-Paths and
class name Arc are selected. The superclass name has been selected in
the definition of Arc. Change the superclass name by replacing the text.
In Figure 12.1b, the superclass for Arc has been changed from Path to
Object. Choose the yellow button command accept to indicate that you
are done editing and that the change should be made.

If the new name already exists or if the first letter is not capitalized,
a notifier will appear on the screen. After you understand the problem,
close the notifier and correct the definition. If the new name is accept-
able, the system recompiles all the methods and will report if the
change causes some methods to refer to undeclared variables. The re-
port is displayed in the System Transcript view, as shown in Figure
12.1c. Both Arc and its subclass Circle have been recompiled. One of the
methods of Circle refers to the variable form, which was declared in
Path and is therefore no longer within the scope of the methods of class
Circle.

r
253

12.1 Name of Superclass

Figure 12.1a BOO

S ν stem T r a n s c r i p t lii

G r a. ρ h ι c s - S υ ρ ρ ο rj L ι η e a. r F11
Kerne I - O b j e c t ;
Kernel-Classes

subclass: # A r c

^stanceVariablef'James: ' q u a d r a n t radius c e n t e r

c lassvar iab leNames: "

pool Die t iona ries: "

c a t e q ο r y: ' G r a ρ h i c s - Ρ a. t h s'

Figure 12.1b Bio

System Transcript

A ra ρ h ι c s - ν ι e w s υ ι re I e
A ratrh i c s - Ε d i t ο rsl C υ rv e

Kern el-Objects I bphne
Kernel-Classes

ect^ subclass: #A,rc

i ri s t a nee V a. r i a b I e Ν a m e s: ' q υ a d r a n t r a d i υ s c enter

c I a s s '•/• a r i a b I e U a m e s; ''

ρ col Diet ion a ries:

category: ' G r a p h i c s - Ρ a t h s'

again
υ η d ο

paste
do it

print it

format
spawn
e χ ρ I a i η

254
Modifying Existing Class Definitions

Figure 12.1c 000

recompil ing A r c . done

recompil ing Circle,,, (form

is Undeclared'1: done

kernel-classes
arFit

a c c e s s ι η g
d i s ρ I a y i ri g

Object subclass: # A r c

i π s t a. n c e V a. r i a. b I e Ν a m e s: ' q u a. d r a η ΐ r a d i υ s c e n t e r

c I a s s V a. r i a. b I e Ν a. rn e s: ''

poolDict ionar ies:

c a t e g o r y : ' G r a. p h i c s - Ρ a t h s'

12.2

As will be illustrated in the section on changing instance variable
declarations (Section 12.3), adding or deleting instance variables means
that any existing instances will automatically be updated. When appro-
priate, you must check to make certain that all existing instances prop-
erly initialize any new variables.

Name of Class Editing the class name is a way to create a new class description with
the same definition as the old. The new class will be categorized in the
selected class category, unless the class category is changed in the defi-
nition text.

Editing the class name is not the way to rename a class. You rename
a class by choosing the yellow button command rename in the class-
names subview (Figure 12.2a). A prompter appears in which you type
the new class name. Type Pare. When you are done typing the name,
terminate by choosing the yellow button command accept or by press-
ing the "carriage return" key (Figure 12.2b). This prompter is
unscheduled, so you must respond. If you change your mind, simply
leave no characters in the prompter and terminate.

255
12.2 Name of Class

Figure 12.2a

«•'item Τ ran script

recompiling A r c . done

re c ο

is Urn: tile out
print out

spawnLira ρ η ι cs- ν
Graphics-Ει
Graphics-C
Graphics-S
Kernel-Obji
Kernel-Clas

spawn hierarchy
hierarchy
definit ior
c ο rn m e η ΐ
p r o t o c o l ;

ist VZA' r e t :
Jbiect. subclass: # A r d , , , , , , f

instance ν anable

class Variable Ν am

poolDictionaries: '

category: ' G r a ρ h ι c s - Ρ a. t h s'

Figure 12.2b Oio

re c ο rn piling A re... d ο η e

re c ο r

is lJn

l ira ph ics-V iews a c c e s s ι η q
J i s ρ I a. y i ri gliraphics-Editors

(_•» r a ρ h ι c s - UI o c k s Ι υ u r ν e
Gr a. ρ hi i c s - S u ρ ρ ο r| Line
Kernel-Objects
Kerne I-Classes

Object^subclass: # A r c

instance V a r i a b I e Ν a m e s: 'quadrant radius a

class Variable Names: "

poolDictiona ries: "

c a t e g o r y : 'G r a ρ h i c s- Ρ at hs'

ant ra α ι us cs

Enter η

then a.(

Pa n-:
A

a q a i η
υ η d ο
copy

cut
ρ a s t e
do it

print it

cams el

; s Ν a rn e

• C F i

256
Modifying Existing Class Definitions

When you rename a class, the name in the browser menu is updated
and is selected. All subclasses refer to the class by its new name. Com-
piled methods that refer to the class are also correct. However, since
the system source code is just text stored on a local disk or stored on a
remote file server, all the source code text does not have updated refer-
ences to Pare. (This is potentially confusing. The system compiled-code
references to Arc have effectively all been updated to Pare, but the
source code text is handled independently.)

To remind you to find each method in which the class is referenced,
the system searches for all references to the class (as indicated in the
System Transcript). If any exist, a special browser is created (Figure
12.2c). This is a message-set browser, as defined in Chapter 10. You are
asked to designate the rectangular area for the browser. The browser
menu will contain references to class/messages whose associated meth-
ods contain references to Pare. However, the text will still show the
word Arc (Figure 12.2d). Replace the word with Pare and choose the yel-
low button command accept (Figure 12.2e). If you do this for all the
methods, when you later browse the system, you will have the correct
source code text.

Figure 12.2c
BOD

b y 51 em Τ ra η 5 c riρ t

recompil ing Arc... done

recompil ing Circle... (form

is Undeclared) done

Searching for references

t o this class...
arFit

e

a c c e s s ι η g
displaying

Ke rn e I •

Obiect
Pare class example
Pa. re d i s ρ I a y Ο η: t ra η s f ο rm a. t i ο η: c I i ρ ρ i η g Β ο χ: ru I e: m a s k:

257
12.2 iName of Class

Figure 12.2d

Figure 12.2e

System Transcript

recompiling A r c . done

recompiling Circle.., (forn

is Undeclared1! done

a. c c e s 51 η q
displayingbea.rehing tor references

to this class.,,

Pare class example

ODD

aTransforrnation clippingBox: clipRect rule: anlnteger
mask: aForrn

| new A re tempCenter |

new A re *• Q Q new,

tempCenter *• a. Transformation apply To: self

center,

new Arc center: tempCenter χ truncated @

tempCenter y truncated,

new Arc quadrant: self quadrant.

new Are radius: iself radius * a Trans format ion

bystern Transcript lii

recompiling A r c , done

recompiling Circle... (form

is Undeclared) done

Searching for references

to this class...
arFit

Ion

a c c e s s ι η g
displaying

Kernel .
Pare class example

b I e c JiaBiiMtiiaMBMiwnMiginiimiinimimmMiBBiiwtii

do it
print it

c a ri» e I

Integer

elf

aTransforrnation clippingBox: clipRect
mask: aForrn

| new A re tempCenter |

new Arc - Pare new.

tempCenter ·- a Trans formation a p

center,

new Arc center: tempCenter χ trur

tempCenter y t r u n c a t e d ,

ri e w Arc q υ a d r a n t: self q υ a d rant .

new,A re radius: iself radius * a Trans format ion

a g a ι η
υ η d o
copy

cut
ρ a. s t e

format
s ρ a. w η
explain

258

Modifying Existing Class Definitions

Alternatively, you can evaluate an expression to rename a class. The
message rename: is understood by all class objects; the message argu-
ment is a String representing the new name for the class. For example,
let's do the previous example again (the illustrations assume that you
did not do it before) and change the name of class Arc to be Pare. As
shown in Figure 12.3a, type and select the expression

Arc rename: ' Pare'

and choose the yellow button command do it.

Figure 12.3a 010

Object subclass: # A r c

ί η s t β. η c e V ar i a b I e Ν a m e s: ' q u a d r a n t radius c e n t e r

classVar iableNames: "

poolDict ionar ies: "

c a. teg ο r y: ' G r a. ρ h ί c ί - P a t h s'

The task is complete, although the view in the browser has not been
updated (Figure 12.3b). Deselect the class category Graphics-Paths by
pointing to it with the cursor and clicking the red button (i.e., choosing
it again). Then choose the category again (Figure 12.3c). In this way,
you request that the menu of class names be updated. Notice the item
Pare is now at the end of the menu.

259
12.2 Name of Class

Figure 12.3b BOO

Figure 12.3c

|00
000

re compiling υ ι re 19... (ronr

is Ur

j e c t subclass: # A r c

i η s t a ri c e V a r i a b I e Ν a rn e s: 'quadrant r a d i υ s center '

c I a s s V a r i a b I e f'•·] a. rn e 3: "

poolDictionaries: "

c a teg ο r y: ' G r a. p hie s -Pa. t h s'

System Transcr ipt III

recompiling Circle,,, (form

is Urn:

Graphics^v'iews circle
G ra ρ h i c s - Ε d i t ο rsi C υ rv e
Graphics-Clocks I Line
G ra ρ h i c s - S υ ρ ρ ο rj Line a rFi t
Kernel-Ob iects
Kernel-Classes

Ν a rn e Ο to u ρ e re I a. s s s υ b c I a. s s: # Ν a rn e Ο f UI a s s

i η s t a n c e V a ri a b I e Ν a rn e s: 'in s t V a. rN a m e l i η s t V a rf\l a rn e 2'

c I a s s V a ri a b I e Ν a m e s: ' CI a s s V a rN a rn e 1 CI a s s V a rN a rn e 2'

poolDictionaries: "

category: ' G r a. p h i c s - Ρ a t h s'

260

Modifying Existing Class Definitions

If you now select the definition of a subclass of Pare, Circle, in Figure
12.3d, its superclass properly refers to the new name. All of the com-
piled code works correctly. However, the source code has not been
changed; it still shows the word Arc in the text. To update the source
code, you will have to edit the text yourself. In the System Workspace,
edit the template for browsing all calls on a particular object. Find an
expression like the following and change the argument symbol to be
#Parc.

Smalltalk browseAIICallsOn: (Smalltalk associationAt: #Parc)

Figure 12.3d

100
000

S ν s t e rn Τ r a. n s cript

r e c ο m piling Circle.,, (for rn

is Urn:

Sea. re

to thi

Arc π

d i s ρ I a. y i η g
display box a.cce

Pare subclass: # C i r c I e

i η s t a. n c e V a. r i a. b I e f'••] a m e s: '?

c I a. s s V a. r i a. b I e Ν a. m e s: "

poolDict ionar ies: "

c a. t e g ο r y: ' G r a. ρ h i c s - F1 a. ΐ h s'

12.3

Select the expression and choose the yellow button command do it. In
this way you obtain the message-set browser that gives you access to all
methods whose text references Arc rather than Pare, as previously
shown in Figures 12.2c and 12.2d.

Instance
Variable
Declarations

To illustrate the effect of changing the instance variable declarations,
an example of modifying Pare is given in this section (Pare was former-
ly Arc if you followed the previous example). Start by undoing the ex-

261
12.3 Instance Variable Declarations

ample of Figure 12.1b, so that Pare, once again, is a subclass of Path.
Open a workspace and type the expressions shown in Figure 12.4a.
Evaluating these expressions declares two temporary variables, aForm
and anArc; creates a new instance of Form referred to by aForm; creates
a new instance of Pare referred to by anArc; initializes the new Pare
with radius 50.0, quadrant 4, and center wherever you point with the
cursor and click any button (Sensor waitButton). (The cursor changes to
an arrow with an asterisk—the execute cursor—until you click the
button.) The Pare is then drawn on the display screen (Display). And, fi-
nally, an inspector for the Pare is created. The image of the Pare and
the inspector for the instance are shown in Figure 12.4b.

Figure 12.4a 010

System Browser

(J iii 11 Q c 11 ο η s - Ό υ ρ

Graphics-Primit
Graphics-Displa

Graphics-Vie wi
Graphics-Editor

Path subclass

i η s t a. ri c e V a

classVariat

poolDiction

category: !

Notice that the instance of Pare has five instance variables; their names
appear in the menu of the inspector. Two of the variables are declared
in the superclass Path, and three are declared in Pare. Now return to
the browser and change the superclass of Pare to be DisplayObject (Fig-
ure 12.4c). The inspector is no longer correct. Close it by choosing the
blue button command close (Figure 12.4d).

Return to the workspace and once again evaluate the expressions
that create a Form. A notifier appears (Figure 12.4e). The message form:
was implemented in class Path. By changing the superclass of class Pare,
the message form: is no longer part of the protocol of Pare. The instance
variable form and the message form: must be specified in class Pare.

f
262
Modifying Existing Class Definitions

Figure 12.4b 000

Workspace

| a Form a. η A re |

a F ο r m - For m η e w e χ tent: 1 © 3 Ο,

a.Form black.

a. n A re *• Pare new,

a n A re form: a. Form,

anA,re radius: 50.0.

Ά η Arc: Γ: ο η t o r := e Γι 3 Ο r W a i t Β U110 Γι,

: 4,

•ι: Display.

Figure 12.4c 010

W o r k s p a c e

|a.Form anA,re

(J ο 11 e c 11 ο η s - S υ ρ
G r a p h i c s-Prim i t
G r a p h i c s - D i s p l a

wnamiwaaaim
Graphics-Views
Graphics-Edit ο

LinearFit

Spline

a c c e s s ι η g
displaying

Displa. y Object s υ b c I a s s: # Ρ a r c

i η s t a. nee V a. r i a. b I e Ν a m e s: ' q υ a. d r a n t r a d i

classVariableNames: "

ρoo(Dictionaries: "

c a. t e g ο r y: 'Graphic s - Ρ a t h s'

a q a ι η
υ η d o
c ο ρ ν

cut
ρ a 51 e
do it

print it

ISU

c ante I
format
s ρ a w η
explain

i

263

12.3 Instance Variable Declarations

Figure 12.4d 001

b vstern Browser!

lec tion j - b
Gra μ hie 5-Prim it
Graphic 5-CM;pic

'..Vorkspace i;

I a Form a. n A re

Li η e
Lmea.rFit
Bare

a c c e 5 51 ri g
d i 5 ρ I a. y i η g

: radius c e n t e r

Figure 12.4e 000

5.ster

Graph
Graph
Graph
Graph
Graph

Displa

in

el

ι Rrrr,,'^rl. | |3Fc

Message not under

Pa re(O b j e c t)

U nde f ined Ob j

Compiler.' -eve

S t r i n g HolderC

b t r i rig Holder'.

o l C ' i c t i o n a r i e s :

• d o e .

s e t • ••[

I u a t e

oritrc

ontro

I":

space

rrn an Are |

stood: form: ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ r a

N o t U n d e r s t a n d

"'clt

: in: t o : η n t if y ing: if Fa il:

l e r ' . ' d i l t k.

11 e r(Γ'.'Ι ο j s e Μ e η υ 'J on t ro 11 e r)

re i n s p e c t

j .

V M l l o w B u t t jn.Ac t i v i r ν

264
Modifying Existing Class Definitions

f

Figure 12.4f

First add the instance variable form to Pare. Edit the class definition
and choose the yellow button command accept (Figure 12.4f). Now copy
form: from Path to Pare. Choose the class category Graphics-Primitives,
class Path, protocol accessing, and message selector form:. Choose the
yellow button command move (Figure 12.4g).

Figure 12.4g

D i . - p l a y j b . i e e t ; u b e l a ; ; #

ι η ; t a r m «••••• a n a b i t t r a d i u . " c Q ri t t i r r n r r

- r ι ΓΙ Γι a f i ^ -

lat.qnr-y 'Gra pr,n::.-Pa t t l l ^

J o 11 e c 11 ο η." - b υ c

t e ί 11 η q

d ί ί ρ I a y 1 ri q

d i s p l a y be

rr? n.-forr

.it".? phn: .--Pa t h : .

l i f a ρ hie _•-V i 9 ·•,··.•:

l i f a p h i e .--Editor

* t h y a f q u r n y n t , aFofrn, t

265

12.3 Instance Variable Declarations

In the prompter that appears, type Pare > accessing and then choose
the yellow button command accept (Figure 12.4h). This then copies the
method to class Pare. Do the same copying sequence for the message
form so that both methods are in Pare (Figure 12.4i).

Figure 12.4h
010

Figure 12.4i

System Browser

'Jollec t ions -Sup
Ci rap hie s-Prim i

Lira phic s-Pa ths
i'ir^ phic s - V i e w ;
lira phic .-.-Editor

Wor1 s

la Form a n A re

In f in i te Form
OpaqueForm
Pa i'^ qra ph

TiHfcW» I.

t e s t i n g
d i s ρ I a y i Γι g
display bo· a
t r a η s f o r m i n g

: aForrn

"fvlal·^ the argument, a Form, trn

form - a Form

first Point:
form

last
offset

Type destmat

(Ulass • pro toco

then a c c e p t or

Pan:

again
undo

cop

do it
pr int jr

center:ra dius:
center:ra dius:gi
form
torm: ^
qua.dra.nt
q u a d r a n t :

message selector and argument names
1' c ο m m e η t s t a. t i η g ρ u r ρ ο s e ο f me s s a g ί

| t e m p o r a r y var iable names |

s t a t e m e n t s

266
Modifying Existing Class Definitions

Return to the workspace and once again evaluate the expressions
that create a Form, a Pare, and an inspector for the Pare. This time the
inspector shows four instance variable names in the menu (Figure
12.4J).

Figure 12.4j 000

b v."tern Browser

Collec t ion."-Sup
Gf.? ρ hie :• -Prim it

*p

Line
Li η s i

Parti
Splin

Won .-t

α υ a d r a n t

f jlTil

|a Form a n A.re j

a Form - Form new e - t e n t : Ι ' ϊ 'οΰ.

a Form blacl· .

anA,re - Pare new,

a n A.re form: a Form

anA,re r a d i u ; : 50.0,

r w a. i t Β υ 11 ο η

12.4

The method for form: simply assigns a value to the instance variable
form. If existing instances of Pare must have this variable initialized,
evaluate an expression such as the following one.

Pare alllnstancesDo: [:each | each form: (Form new extent: 1 @30)]

Class Variable
Declarations

Adding or deleting class variables is similar to adding or deleting in-
stance variables in that the methods of the class and its subclasses are
recompiled. If any method references a variable no longer in the scope
of the method, the name of the variable is printed in the System Tran-
script. Typically, initialization of class variables is done in methods
specified in the class protocol rather than in the instance protocol, al-
though both are feasible. By convention, class protocol has a category
class initialization and a message selector initialize whose method does the

267

12.5 Pooled Dictionary Declarations

class variable initialization. An example from class Cursor is shown in
Figure 12.5.

Figure 12.5
000

"a.p hie."-Paths
•a.phk s- V iews
•aphie .-.-Editors
-a ρ hies-Clocks
••? phies-Suppor
i r n e l - ' j b i e c t s

initialization initialize
Ο i s ρ I a y fvl e d i υ m
Display Object
Displa ySc re en
DisplayTe.:·: t

i n s t a n c e erea.tion
c u r r e n t cursor
c ο Γι s t a. n t s

jnitidlize
"Create all the standard cursors

Jur.-.u
I.'urso

-• υ r -•'-'

Jurso

J υ r :• υ

Z:urso

Jurso

Jur.-.i.i

Jurso

" onqin
-I It

·

r«.? α

- write

• '•/•/ a i t

• L> 1 aril ·

• « . e c u

_-. q υ.? r

• η o r m a

12.5

Pooled
Dictionary
Declarations

Adding a name of a pooled dictionary in the class definition means that
any variable name declared as a key in that dictionary is now within
the scope of the methods of the class and its subclasses. Deleting a
pooled dictionary reference means that possibly several variables have
been removed from the scope of the class methods. There is no special
initialization needed if a pooled dictionary is added to a class definition.
An example of class DisplayText in which a pooled dictionary,
TextConstants, is declared as shown in Figure 12.6.

268

Modifying Existing Class Definitions

Figure 12.6 000

SystQm Browser

•a p h i e s - P a t h s
- a p h . e s - v i e w s
•aphic s - E d i t o r s
-aphics-Cloc l · s
•aphic s - S u p p o r
i r n e l - u b i e c ts

Displa
Oispla
Displa

y Γνΐ e d ι υ m
v j b i e c t
ν Sere en

Form
Inf i r i i teForm

a c c e s s ι η q
displa y i n g
d i s p l a y bo·
co η v e r t ing
p r i v a t e

C ' i s p l a y ' j b j e c t s u b c l a s s : # C ' i s p l a y T e • t

i η s t a ri c e V a ri a b I e Ν a rn e s: ' t e • t t e • t S t y

c l a s s V a r i a b l e N a r n P s : "

ρ ο ο (D i c t i o n a r i e s ; " Τ e • t C IJ η s t a n t s

c a t e q o r y . ' G r a phic s-C' isp la y '" 'bjec t s '

e offset form

12.6

Class Category To change the category of class, you can edit the category reference in
the class definition. The class is moved to the new category and the
browser is updated. There are two cases of things you can do—move
the class to an existing category, or move the class to a new category.

In Figure 12.7a, the definition of class Path is shown in a browser.
Part of the class category, originally Graphics-Display Objects, is select-
ed. Replace the selected part by Primitives as shown in Figure 12.7b.
Choose the yellow button command accept to indicate that Path should
be moved to the existing category Graphics-Primitives.

269

12.6 Class Category

Figure 12.7a ion

Figure 12.7b Oio

Graphics-Paths
Graphics-Views
Graphics-Editors
Graphics-Clocks
G r a ρ h i c s - S u ρ ρ ο π
Kernel-Objects

InfiniteForm
OpaqueForrn
Paragraph

accessing
t e s t i n g
d i s ρ I a y i η q
display box a
transforming
a d d i η q

Display Object subclass: # P a t h

i η s t a η c e V a ri a b I e Ν a m e s: ' to rrn c oils c t i ο η Ο f Po i η t s '

c I a s s V a r i a b I e Ν a m e s: "

poolDictionaries.1 "

c • a. t e g ο r y: ' G r a p h i c s - y

Graphics-Paths
Graphics-Views
Graphics-Editors
Graphics-Clocks
Graphics-Suppor
Kernel-Objects

Form
InfiniteForm
OpaqueForm
Paragraph

a c c e s s ι η q
test ing
d i s ρ I a y i η q
display box ac
trans forming
addinr

D i s ρ I a y Ο b j e c t s υ b c I a s s; # Ρ a t h

instance V a r i a b I e Ν a m e s: 'for' rn (

c I a s s V a. ή a b I e Ν a m e s: "

poolDictionaries: "

c a t e g o r y : ' G r a ρ h i c s - Ρ r i m i t i ν e s'

again
undo
copy

do it
print it

format
spawn
e χ ρ I a i η

270
Modifying Existing Class Definitions

In Figure 12.8a, the definition of class MappedCollection is shown in
a browser. It is categorized under Collections-Sequenceable. The class
category is changed to Collections-Miscellaneous after you choose the
yellow button command accept (Figure 12.8b). Because this is a new
category, the browser must be explicitly updated. Choose the yellow
button command update in the class-category subview of the browser
(Figure 12.8c). Scroll to the end of the class-category menu. The new
category appears. Choose the new category, Collections-Miscellaneous, to
see that MappedCollection is in the class-names menu (Figure 12.8d).

Figure 12.8a l o o

:j ο 11 e c t i ο η :• - A m. ·, Ο rd e re d C ο 11 e c 11 ο η
: ο 11 e c t i ο η s - S t re .Η Ό ο r t e d C ο 11 e c t i ο η
:ollectionj-Supp.|llBBBP| , , _

a c c e s s ι η g
a d d i η g
c ο ρ y i η g
ρ ri η t i η g
private
en υ me rating

ο 11 e c t i ο η s u b c I a s s: # fvl a ρ ρ e d C ο 11 e c t i ο η

i η s t a η c 9 V a r i a b I e Ν a m e s: ' d ο m a i η m a ρ '

c I a s 3 V a r i a b I e Ν a m e s: "

poolDict ionar ies: ??

c a t e g οry: ' C ο 11 e c t iο η 3 -1

271
12.6 Class Category

Figure 12.8b
ioio

imEiima.Wffllru.tn.1.

OrderedCollecticm

a. c c e s s ι η g
a d d i η g
c ο ρ y ί η g
p r i n t i n g
private
en υ me rat in

l e c t i ο η s υ b c I a s s: # Μ a ρ ρ e d C ο 11 e c t i ο η

i n s t a n c e V a r i a b I e Ν a. rn e s: '6 ο m a. i η m a. p

class 'ν' a. r i a b I e Ν a. m e s: "

poolDict ionar ies: "

c a t e g o r y : ' C o l l e c t i o n s - fvl i s c e 11 a. n e ο υ s'

a g a. ι η
undo
copy
c u t

paste
do It

print it

c a. n & e I

rormat
spawn
e χ ρ lair

Figure 12.8c Oio

ϋ

;::-::::: : :
• '••••:•• •'.'•:•

: • : • - ' - • [. ' : • ' - • .

\

b
'-

η 11 Ρ Γ: t i ο Γι

f i l e ο

print c
spav.

s - A b -

u t

u t

η

a d d c a t e g o r y

rename
'•-] remo 1

A | e d i t .

r. I ,=i ••, ·-.'

ρ oolD

c a t P g

f

^ ^

rr
re

t

•'aria.ble

c t i e r

ο r v1

a r

Interval
LinkedList

Ordered Co
b o r t e d c o l l

s subclass:

.bleNames:

Names: 'Cl·:

es: "

I l e c t i o n s - S

1 e c t

e c 11 c

c 1 a s.

ιΦ* Ν 'Ί

eque

o r
l l

m

-ι ri

nc

n-ifni

rf'Ja .rr

J a m e

«able

=, --

1 Cla.ssV'ar"N3me2'

272
Modifying Existing Class Definitions

Figure 12.8d

100
000

Sy

F\W

Fik
Fili-

Μ;

stem Browser I
51 e rn - υ ο m ρ i 1 e r

31 e m - Fl e 1 e a. s i η c

rneOfSupercIa .

instanceV'a.ri

c a ^ .Var iab le

ρ ΓΙ η 1D i r r i η η a r

c a t e g o r y : 'C

Mapp

3 SUbC

able Ν a

j l l e c t i c

e d

la

me

n;

I

-Γνΐ

e c t ί ο r

N a . m

i η s t V a

3 cel l a.

sOf C l a s s

rNa me 1 inst'v'a.rNa

" e ο u s'

rn e is.1'

The two examples just presented show how to move a class into a
new category, either one that existed or one that is created anew. It is
possible to create a new category by choosing the command add catego-
ry from the yellow button menu of the class-category subview. Adding a
class category works in a way that is analogous to adding a new mes-
sage protocol (see Section 11.2). The yellow button menu also includes
the commands rename and remove. These also work in a way analogous
to the commands used for renaming and removing message protocols.

The command edit all is in the class-category subview yellow button
menu. If you choose this command, the class categories and class names
in each category appear in the text subview of the browser. The syntax
for the categorization is like that for the organization of the message
protocol/message selectors. You can modify the organization and then
choose the text subview yellow button command accept. The syntax will
be checked and, if correct, the class categorization will be updated. You
should not attempt to remove access to a class by deleting it. You can-
not specify more than one category for a class. And you cannot create a
new class simply by inserting its name in a category.

r

Creating a New Class
Description

13.1 Define a New Class

13.2 Define the Class Protocol

13.3 Define the Instance Protocol

274

Creating a New Class Description Τ

13.1

Class Commander represents an object that controls several line-draw-
ing Pens and coordinates their drawing a design. The class was present-
ed as a graphics example in the book Smalltalk-80: The Language and
its Implementation; it is presented here to illustrate the process of cre-
ating and testing a new class description. A Commander is an Array of
Pens. Pens controlled by a Commander can be given directions by hav-
ing the Commander enumerate each Pen and evaluate a block contain-
ing Pen commands. So, if a Commander's Pens should each go: 100, for
example, then the Commander can be sent the message

do: [-.each | each go: 100]

Alternatively, the Commander itself can be made to respond to the mes-
sage go: 100, where the method associated with the message go: con-
sists of the enumeration message.

A Commander also responds to messages to arrange its Pens so that
interesting designs based on symmetries can be created. The message
shown in the figures is fanOut. The purpose of fanOut is to arrange the
Pens so that their angles are evenly distributed around 360 degrees.

Define a New You have already reviewed all the parts of the browser that are used in
Class creating class descriptions, with the exception of declaring a new class

by editing the template for a class definition. When you want to add a
new class description to the system, you first decide on the class catego-
ry in which you want to access the class. Choose that category. A tem-
plate for specifying the class appears in the text subview. (See Section
12.6 on how to add a new category.)

Class category Graphics-Display Objects is an appropriate category
for class Commander. Choose this category (Figure 13.1a). The class def-
inition template is in the form of a message to a class. The first word in
the template represents the message receiver (NameOfSuperclass). It
should be replaced by the name of the class that is to be the superclass
of the new class. Select this word (Figure 13.1b). Type the superclass
name; in this example, the superclass is Array (Figure 13.1c). The mes-
sage pattern consists of keywords (those words with trailing colons) that
should not be changed, and message arguments. None of the syntax for
literals should be changed (that is, the hash mark # and the single
quotes). The message argument for the keyword subclass: must be a
symbol constant; the rest of the arguments must be string constants.

275
13.1 Define a New Class

Figure 13.1a

WO
000

iystern Browser

'Jollec t i o n s - b u p p
Graphic. 5-Prirni t iv

Lira ρ hies-Pa
Graphics " V i e w s
Gra phics-Editors
Graphics-Clocks

D i s ρ I a y Μ e d i u m
Display Object
Displa ySc re en
Display T e x t

nnaeiroKi
a m e Ο f b υ ρ e r c I a s s s υ b c I a s s: #· Ν a. rn e Ο f υ I a s s

ι η s t a Γι c e V a. ri a b I e Ν a. rn e s: ' i η s t V a rf'J a rn e 1 i η s t V a rf'.J a. m

c I a ; s V a r i a b I e i1·.] a rn e s: ' CI a s s V a r Ν a rn e l CI a s s V a r Ν a rn

poolDic tiona.ries:

c a t e g o r y : * G r a ρ h i c s - D i s ρ I a y > j b j e c t s'

Figure 13.1b Coo

'Stern Browser
1 • J o 11 e c 11 ο η s - b υ ρ ρ ι
G r a. ρ h i c s - Ρ r i m i t i ν j C υ r s ο r

D i s p l a y M e d i u m
Display Object
Display Screen

Graphics-Paths
Graphic;-views
Graphics-Editor;
Graphics-Clocks

NarneOfSupercN

D i s ρ I a y Τ e ;

g i a g I i I M

s u b c l a s s : # Ν a. rn e Ο f (J I a. s s

i Γι s t a n e e V a r i a l^e Ν a rn e s: ' i η ; t V a r Ν a rn e 1 i η s t V a r Γ' J a rn e 2"

c I a s ; V a r i a. b I e Ν a rn e s: ' CI a s s V a. r Ν a rn e l CI a ; s V a r Ν a rn e 2 '

poolC' ic t i o n a r i e s :

c a t s q ο r ·.·•: ' G r a ρ h i c s - C1 i s ρ I a y Ο b j e c t s'

276
Creating a New Class Description

Figure 13.1c

The desired class name is Commander. Select the first message argu-
ment NameOfClass (Figure 13.1c) and replace it with Commander (Fig-
ure 13.1d). Select the "dummy" instance variable names instVarNamel

System Browser

•.tray 5Ubda 5 5:

i η 5 ΐ a n c e V β r i 3 b I e Ν 3 ΓΙΊ e :•: ' i rf^ t 'v 3 r Ν a m e l in j t V a r I1··) a m e 2'

poolC' ic t i o n a r i e :>:

c a t e q o r y : " Ίϋ r a ρ hie .-.-C'iipla y C'b j e c t : . '

Figure 13. Id

System Browser

;: ο 11 e c 11 η η ι - b u ρ μι

ii"a ph ic j . - P r i m i t i v

raphic 5 - Pa r h j

τca phtc ; - Vie ν·.·1 _r.

i ra phic i - E d i t o r

IJ r"; ο r

: pi ay Medium

r.pla y j b j e c t

;pla y Sc re en

T i a ^ m g 3

r r a y ;. u b c I a 11: &' J ο m ΠΊ a n d e

ι Γι;. t a ri c e V a r i a b l e Ν a rri e J : '•

p o o l C ' i c r i o n a r i e ; :

c a t e q o r y : O r a p h i c . " - C ' i . ' p l a y C ' b j e c t : · '

instVarWame 1 instVarWame2

a me 1 Cla.ss

277
13.1 Define a New Class

and instVarName2, and remove them by choosing the yellow button
command cut (Figure 13.le). Similarly, remove the "dummy" class vari-
able names ClassVarNamel and ClassVarName2 (Figu^ 13.1f). (Notice

Figure 13. le
010

System Browser

o l l e c t i o n s - b u p p
raphic s-Primitiv

Graphics-Path;
Graphic ; - V iews
Sraphics-Edi tor ;
Graphics-Clocks

Cursor
D i s ρ I a v' Μ e d i υ m
Display Object
Display Screen
Di;playText

5 ν subclass: # Commander

i n s t a n c e V a r i a b I e f'•• J a . m e s: '

c I a s s V a r i a b I e Ν a m e s: 'Class'·

p o o l D i c t i o n a n e s :

c a t e g o r y : ' G r a ρ h i c s - D i s ρ I a. ;·.

instVarNamel instVarName2

' a rN a m e 1 c I a s s V a. rN a m ί

Objects'

Figure 13. If Oio

System Browser

C ο 11 e c 11 ο η s - S υ ρ ρ
G re ρ η ί c s - F'ri rn i t i ν

Graphic s-Pa ths
'lira phic ; - V i e w ;
Graphic s-Editors
Graphics-Clocks

C u r s o r
D i ; ρ I a y fvl e d i υ m
D i s p l a y Ο Inject
Displa ν Scree η
D i s p l a y T e x t

•.ft' a v1 s υ b c I a ; s: # C ο m m a η ι J e r

i η s t a n c e V a r i a b I e Ν a m e s: "

class V a r i a b l e Nam

poolDic t iona r i e ; : '"

c a t e g ο r ν: ' G ra ρ h i c ; - C1 i ; ρ I a

ClassVarNamel ClassVo.rName2

O b i e c t s '

278
Creating a New Class Description

that if you do add class variable names, the first letter of the name
should be capitalized.) Now evaluate the message expression by choos-
ing the yellow button command accept.

Class Commander is now defined in the system. Its name appears in
the browser class-names menu (Figure 13.2). Because it is a subclass of
Array, class Commander must be a "variable subclass," which means
that its instances may have different numbers of indexable instance
variables. The system automatically made this designation. All of the
capabilities that support browsing, querying, and modifying system
classes are available for this and any user-defined class.

Figure 13.2

a y ν a r i a b I e S u b c I a s s: # < J ο m m a n d e r

instance V a r i a b I e Ν a m e s: "

classVariabluNames: "

poolDictioriaries:

c a teg ο r y: ' G r a ρ h i c s - D i s ρ I a. y Ο b j e c t :

13.2

Define the
Class Protocol

An instance of class Commander should be initialized by sending the
class the message new: with an integer representing the number of
Pens that the Commander must coordinate. The message new: must be
reimplemented in the class protocol of Commander in order to create
the Pen elements of the array. Choose the browser menu item class
(Figure 13.3a). The message-category subview displays the categories for
the class protocol; none have been specified as yet. Add the protocol
name instance creation by choosing the yellow button command add
protocol in the message-category subview (Figure 13.3b). The prompter

279
13.2 Define the Class Protocol

: ο ΓΙΊ m a ri d e r c I a s s

i ri s t a ri c e V a r i a b I e Ν a m e s:

Figure 13.3a

100
000

: ο m m a n d e r c I a s s

i η s t a n e e V a r i a b I e i'cJ a m e s: "

Figure 13.3b
foio

280
Creating a New Class Description

appears; type the new name and then choose the yellow button com-
mand accept (Figure 13.3c).

Figure 13.3c 010

a c 11 ο η s - ο υ ρ ρ
aphies-Primiti1·,·

•a ρ hie."-Pat h i
••a ρ hie 5 - V i e w s
••aphics-Editors
•a. ρ hies -Clock s ι η •-. τ Λ. η Γ Ρ

Uοmm3Γιder el3.ss

i η s t a n c e V a r i 3. b I e Ν 3. m e s:

Enter new protocol

then accept or CR

ι r i ; 13. n e e e r e 311 ο η

a g a i n

undo
copy

cut
ρ a. s t e
do

print it

c a. nV e I

The new protocol appears in the message-category subview (Figure
13.3d). It is automatically selected and the method template appears in
the text subview. Edit the method template to specify the new method
for new: (shown in Figure 13.3e). This method creates an instance of
Commander and assigns it to the temporary variable newCommander.
For each element of the Commander array, a new Pen is created and
stored. The new instance is returned as the result of the method.
Choose the yellow button command accept in the text subview to com-
pile the method and add it to the class description.

r
281

13.2 Define the Class Protocol

Figure 13.3d iooo

Collections-Suppf
Graphics-Prirnitiv

Graphics-Paths
Graphics-Views
Graphics-Editors
Graphics-Clocks

Cursor
Display Medium
Display Object
Display Sere en
DisplayText

message selector and argument names

"comment stating purpose of message"

| temporary variable names |

s t a t e m e η t s

Figure 13.3e Oio

•imiaimaMMII.il

new: η υ m b e r Ο f Ρ e η s

" C r e a t e a Commander w i t h numberOfPens elements, each of

/•/hich is a Pen,"

| newCommander |

nevvCommander - super new: numberOfPens.

1 to: numberOfPens do:

[:index | newCommander a t : index put: Pen n e w] ,

t newCommarider

a g a ι η
undo
c o p y

c υ t
ρ a. s t e
do it

print it

l
cans elformat
spawn
e 'plain

282
Creating a New Class Description

Figure 13.3f 000

SystQm Brow;er 1

U ο 11 e c 11 ο η s - Ό υ ρ ρ ι

Lira p h i c ; P r i m i t i v

Irfifeiti A U » B w ta η IHN
Graphic;-Pa t h ;
Graphic ; ν IPW;

Graphic;-Clock;

new: numberOfPe

"Create a Cc

which i; a Pen."

| newCommar

1 to: number

[:inde • |

ι newComrna r

| Commander
ι:ur;or
D i;pl a. v Medium
Disp
Disp
Disp

ay Object

ay Text

n ;

rn rn a ri d e r w i t h η υ Γ

der |

er - ;• uper new: η
j f P e n ; do:

newC:ornma η der a

derA

usmmmam

ber'JfΡeη; e 1 err e η t ; , each of

jmberufPen;.

r: inde • ρ υ t: F e Γι η e w] .

The message selector new: appears in the message-selector menu
(Figure 13.3f). Find out whether this method works. In the text subview,
type the creation message Commander new: 4. (Note that we typically
opened up a separate workspace in which to type and evaluate expres-
sions. However, any text view in which the text editor and the do it
command are available can be used.) Send the new instance of
Commander the message inspect. The expression is shown in Figure
13.4. Select it and choose the yellow button command do it.

You designate a rectangular area in which the inspector will appear.
In the inspector, choose the pseudo-variable self. The value that prints
shows that the array has four elements, each a Pen (Figure 13.5). Do
not close the inspector because we will use it again.

Now let's go back to the browser to add line-drawing messages to
Commander. Before you will be able to make new selections in the
browser, you have to indicate that the text you typed in the text
subview was temporary and not to be saved. Do so by choosing the yel-
low button command cancel (Figure 13.6).

283

13.2 Define the Class Protocol

Figure 13.4
ΟΙΟ

Ι

i

System Browser I
1 : ο 11 M c t i ο ri s -:- υ ρ ρ ι

'graphic3 Pr imit iv i
uftSlnntJkOmiUnKWPi
Graphics-Pa ths
Gra phic s-Views
Graphics-Editors
Graphics-Clocks

[Commander]

cursor
D i s ρ 1 a ν Μ e d i υ rn
D i s p l a y O b j e c t
Displa yE'C re en
Displa y T e x t

i η s t a ri c e ^ ^ a ^ ^ ^ l

new: numberOfPens

"Create a Commander with nun

which is a Pen,"

| ri e w C ο rn rn a r d e r |

ri e w C ο rn rn a n d e r *~ s υ ρ e r η e w: η .

1 to: numberOfPens do:

[: i η d e :•• | ri e w' J ο m rn a n d e r a τ

τ newComma r der

«Commander new: 4) i n s p e c t ^ ^ ^ ^ l

berOfPens elements, each of

i : o p y Pens,

B ^ j Pen new],
[p~rinf\it|

accept

cancel
forma t
spawn
e : •• ρ 1 a i η

\\\\\\\].\:\::

::'V::'::\\':\\\':\'::':\':\':-']]]\:\]'.'[\':::\':':]\'-':'-\'-': :'•':':'• :'-:'-\'-\':\':':'-:<'-:'-'.^ \]\^\'

Figure 13.5

100
000

System Browser

c one c 11 ο η s - b υ ρ ρ ι
Gra phios-Primitiv

Gra phics~Paths
Gra phics- Views
Graphics-Editors
Graphics-Clocks

Ο ί s ρ I a. y Μ e d i υ rn
Display O b j e c t
Displa y b c r e

ri e w : η υ rn b e r Ο f Ρ e η s

'' C r e a t e a. C ο m rn a ri d e

w h i c h is a. Pen."

| n e w Comma nder |

ri e '·,•'.•' C ο rn rn a n d e r *• s υ \ι

1 t o : nurnberOfPens d

[: i η d e ·• | η e w C ο η

τ new 1 !: ο mm a nder

ι C on ι rn ? nder ne 4 ι ins ρ

284
Creating a New Class Description

Figure 13.6 010

new: numberufPens

" > J r e a t e a ' J ο m m a n d e r w i t h η υ m b e rO f Ρ e η s el

•·hic h is a Pen."

a. cj a ι η

υ ri d ο

copy
cut

ρ a. s t e

e a e h ο f

do it
newijommander - super new: numberufPeris. ρ Η η 1 . j t

1 trr. numberufPens do:

[: i η d e • | η e w C ο m m a n d e r a t : i η d e • p u t : F & S Q i l l] ·

τ newComma nder
| spawn

jla.inl
4) inspect

13.3

Define the
Instance
Protocol

Now select the browser menu item instance and specify three protocols,
distributing, moving, and geometric designs. You can use the add protocol
command. A faster way to add more than one protocol is to choose the
yellow button command protocols in the class-names subview (Figure
13.7a), and then edit the text subview as explained in Section 11.2 (Fig-
ure 13.7b). Choose yellow button command accept.

Choose the category distributing and edit the method template to spec-
ify the method for fanOut (Figure 13.8a). This method consists of one
enumeration statement in which each element of the Commander is re-
trieved (self at: index) and sent the message turn:. Each element is (360/
self size) degrees away from its neighbor. Choose the yellow button
command accept. The message selector is added to the menu in the
browser (Figure 13.8b).

Return to the inspector for the instance of Commander created earli-
er. Inspect one of its elements by choosing the element (for example, el-
ement 2), and then choosing the yellow button command inspect (Figure
13.9a). An inspector for the Pen is created. Choose its instance variable
direction and note that the value is 270.0 (degrees) (Figure 13.9b). This
value is the default for all Pens.

285
13.3 Define the Instance Protocol

Figure 13.7a Oio

file out
print out

spawn
spawn hierarchy

j rap hies-Pa
Graphic?-'·/
Graphics-Ed
Graphic s

-.rra y va riableSi
in sta.nceV a. rial
classVariableN
poolDictionariw·
category: ' G r a. p h i c s - D i s ρ I a. y Ob

rename
remove

lects'

Figure 13.7b Oio

' d i s t r i b u t i n g ' ί

' ΓΓι Ο V i Γι q')

'geori'ietric designs')

cartel
tormat
spawn
e χ ρ I a i r

286
Creating a New Class Description

Figure 13.8a
010

ran out
" A r r a n g e t h e Pen 5 so t h a t t h e i r a n g l e s o f o r i e n t a t ion i.rQ e v e n l y

d i s t r i b u t e d a r o u n d 3 6 0 d e g r e e s , '

1 to: self size do:

iself a t : inde^ i t u r n : ί index - 1Ί t: self s i z e i ^

a. g a. ι η

u n d o

copy
c υ t

Paste
do it

print it

format
spawn
e • ρ I a i η

Figure 13.8b ODD

C ο 11 e c t i ο η s - b ι j ρ ρ
Gra.phics-Primitiv

ΒΙΒΒΙΙΙΜΗΒΒΒΕΜ

Graphic s-Paths
lira ρ hie s-Views
Graphic 3-Editors
l ira ρ hie s-Clocks

(Jursor
D i s ρ I a y fvl e d i υ η
Display Object
Di splci ySc re en
Display T e x t

™"™
f a n O u t

"Arrange the Pens so t h a t the i r angles of o r i e n t a t i o n are eve η I;

d i s t r i b u t e d around 3 6 0 degrees."

1 t o : self size do:

[:inde· |

(self a t : in d e n t u r n : (index - 1) * (3 6 0 self s i z e i l

287
13.3 Define the Instance Protocol

Figure 13.9a Oio

by5tern Browser!
1J ο 11e c t1 ο η 5 - b υ ρ ρ <
Gra.phics-Primit iv<
Graphics-Display
Graphic 5-Paths
Graphic s-View s
Graphics-Editors
Graphic s-Clocks

Core man der

Display Medium
Display Object
D i s ρ I a y S c re exL·
Display Te t

m ο ν i η g
geometr ic design;

Comrnarider

f a n O u t

"Arrange the Pens so

d i s t r i b u t e d around 3 6 0 d

1 to: self size do:

[:index |

ί s e I f a t : i η d e χ ϊ 11.

Pen

Figure 13.9b

•00
000

b y stem B r o w s e r

U ο 11 e c 11 ο η s - b υ ρ ρ <
Graphic s - P r i m i t i v i

Graphics-Display
Lira ρ hie s - P a t h s
Gf aphic :•- v i e w s
'lira phic s - E d i t o r s
Graphic s-'I. locks

D i s ρ I a y Μ e d i u m
D i s p l a y O b j e c t
Displa y b c r e i
D i s p l a y T e x t

t h e Pens so t h a t

m ο ν ι ΓΙ g
geometric designs

1J ο m m a. n d e r

self
1

2

a Pen

270.0

i

288

Creating a New Class Description

Direct each of the Commander's Pens to "fan out" around 360 de-
grees by evaluating the expression self fanOut within the text subview
of the inspector for the Commander. Type and select the expression, and
then choose the yellow button command do it (Figure 13.10). Now check
the value of the variable direction of the Pen whose inspector was creat-
ed (Figure 13.11). This is the second of four Pens; each Pen orientation
should differ by 360/4 = 90 degrees. The first Pen should remain at 270
degrees, the second should be at 270 + 90 = 360 = 0, as indicated.

Continue to test the new Commander. In the inspector for the
Commander, type the expression

self do: [:each | each defaultNib: 4. each go: 100]

which directs each of the Pens to draw, with a 4 χ 4 square brush, a
straight line 100 pixels long. Type and select the expression, and choose
the yellow button command do it (Figure 13.12a). The result is a "plus"
sign as shown in Figure 13.12b.

Add more messages to the class description for Commander. Add the
messages turn: (Figure 13.13) and go: (Figure 13.14) to the category mov-
ing. Add the message spirakangle: (Figure 13.15) to the category geomet-
ric designs.

Figure 13.10 010

stem Browser

I e c 11 ο η s - b υ ρ ρ
Graphic s-Primitiv

Graphics-Paths
G r a p h i c s - V i e w s
Graphics-Edit or s
Graphic 5-Clocks

Display Medium
Display Object
Display Sere*
Display Text

η Out

.-.rr

distribu

Pen

width
height
s o u r c e '••'•

source Ί'
clip:-:
clip ν
clip Width
clipHeight
fra me
I o c a t i ο ΓΙ

direction
pen Down

distributing
m ο ν i η g
geometric design;

Commander

the Pens so that

Pen

289
13.3 Define the Instance Protocol

Figure 13.11

100
000

b ν ; t e r n B r o w s e r !

C o l l e c t i o n s - b u p p
Graphic: s-Primitiv

Graphics-Display
G r a p h i c s " Pa ths
Grs ρ hie s - V i e w s
Lira ρ hie ."-Editor;
Graphics-Clocks

Commander

D i s ρ I a. y fvl e d i υ m
Display O b j e c t
Displa vScrei
Display T e x t

fanuut

the Pens so that

geometr ic designs

(j ο rn m a. n d e r

self
1

mm

a Pen

self fa. η Out

Figure 13.12a
Dio

ο ν stem Browser!

Collect ion s-bupp<|
Gra. ρ hics-Prirniti vi
3 rap hi e*~ Display
Graphics-Paths
Gra. ρ hie s-Views
Ci raphics-Editors
•jraphics- Clocks

Commander
Cursor
D i s ρ I a. y fvl e d i υ rn
Display Object
Display Sere*
Displa y T e t

m ο ν i η g
geometric designs

Commander

irtsteunim

fanOut

distribu

Penl the Pens so t h a t

width
height
s o u n ; e '••

source ν
clip.:-:
clip Υ
clip Width
clipHeight
fra me
l o c a t i o n

drectwo
ρ en Dow η

290

Creating a New Class Description Τ

Figure 13.12b

Figure 13.13 IDB

ο 11 e c ΐ ι ο η s - b υ ρ ρ
ra phic 3-Primiti'v

i r a phi C5-Pa th3
ir* phie 3~View5
irz phie 5 — Ε d i t o r s
iraphie-.-ClueΚ3

C u r s o r
D i 5 ρ I a. y Μ e d i υ m
Dii pi ay Object
Displa ν S ere en
Display Text

™ " £ l i I g a

distr ibuting

geometric design:

turn: degrees

"Tell each of the Pens to turn degrees."

self do: [:eaeh j each turn: degree s i

a g a ι η
undo
copy

cut
ρ a s t e
do it

print it

can* el
forma, t
s ρ a ν·.·1 η

e χ ρ I a. i r

penDown

J

291
13.3 Define the Instance Protocol

Figure 13.14 Diu

qo

e c 11 ο η s - b ι
ρ h i c s - Pri m i t i ν j C υ r s ο r

Displa yfvlediur
distr ibut ing

aeometric desiqrDisplay Object
Displa y b c r e e r

ρ h ι c 5 - Ε1311 ο r j J D ι ;• ρ I a y Τ 9 χ t
ρ hie J - ' J I O C

"Toll each of t h y Pens to qo distance. '

self do: [:each | each go: d i s t a n c e ^

ρ « η D ο w ri

Figure 13.15 οίο

ol lect io ns-b
raphic s-Primit

spiral: numberOfLines angle: degrees

"Have each Pen d r a w a double spiral."

1 to: numberOfLines do:

[:i | self go: i, self t u r n : d e g r e e s !

ρ e η D ο w η

cop

do it
print it

format
spawn
explain

292
Creating a New Class Description

Now let's test these new messages. Create a workspace or use any
text view to evaluate the test expressions. For example, in the inspector
for the Commander, set the brush of each of its Pens to be a 1 χ 1
square, send each Pen home, and then direct the Commander to go: 50
and create the spiral geometric design. The expressions and the result
are shown in Figure 13.16.

Figure 13.16 000

Commander

self
self do:
[:each |
ga. ch default Nib: 1,
9 a C h h Ο ΓΠ 9] .

self go: 50,
self spiral: 60
angle: 89,

In a workspace, create a new Commander for six Pens, each with a
l x l square brush. Direct the Pens to fan out, go a distance of 50
pixels, and then make a spiral design, as shown in Figure 13.17.

You have now created and (incrementally) tested a new class descrip-
tion. To save your work, choose the yellow button command file out in
the class-names or class-category subviews. This creates a file in which
the class description is written in a format that can be read by another
Smalltalk-80 system. The file name is the class name or class category
name followed by a period and the characters st (meaning "Smalltalk"
file). The class description is still part of your system. But if you start
with a new system (or someone else wants to use your work), then note
that the System Workspace includes a template for the expression for
reading the file ((FileStream fileNamed: 'fileName')fileln).

Suppose you choose file out in the class-names subview, with
Commander selected. Then the file created is named Commander.st. To

Γ

293
13.3 Define the Instance Protocol

Figure 13.17 000

A
1
ΙΙϋ
ΙΙΙΙΙΙ

£...

i3g;S|j V-/orkspacQ ^ ^ ^ ^ l ^ ^ ^ J
| corn |

corn *- 'Jo mm a rider riQvv: 6.

•u c ι j rn d ο ι

[:each |
each defaultNib: 1,
9 a c h h ι J rn 9] .

corn fanuut.
C ι j ΓΓι q i j \ S U.

c ι j rn s ρ i r a 1: 6 0 a π q 1 e: S 9

read the file and thereby bring the definition of Commander into a new
system, evaluate the following expression in that system

(FileStream FileNamed: ' Commander.st') file In

More information about saving your work and about external files is
given in Part Five.

As additional exercises, you might add the messages defaultNib: and home to class
Commander. In each case, the Commander would distribute the message to its Pens.

An interesting exercise to try is to modify the system browser so that you can re-
tain reference to a full query — class category, class, protocol, and selector. The idea
is to add a list menu subview to the browser that is initially empty. Add a browser
yellow button command save query. When you choose this command, the current
menu selections of the browser are saved as a menu item of the new list menu. If
you choose such a menu item, the browser selections are all changed appropriately.

|Γ-1[<»4Ε*«»4

f-Jcc»**«»J

r«j[»a«>4

t>Jt<3HCi«»J

r-j[c>a«J

^

K« »"fcft h ft - j l 4 * ft - l l 4 » jf-SI 4 f iV—.ίΐ 41 ft - j l < > U*4E

Improving Performance

296
Improving Performance

We have seen that you can determine whether your methods work cor-
rectly by inspecting the state of the objects involved in the interactions.
Another question you might ask is what percentage of the total time in
evaluating the expression is spent carrying out various messages? You
can answer this question by using the Smalltalk-80 spy.

The purpose of the spy is to carry out an analysis of a block of code.
The analysis consists of the (nested) sequence of message-sends and the
total percentage of time taken up evaluating the original message. The
spy creates a workspace labeled Spy Results in which this hierarchy is
printed.

The best way to understand the spy is to follow an example of its
use. Suppose you are interested in analyzing the evaluation of the ex-
pression

Smalltalk keys asSortedCollection

This expression takes all the entries in the System Dictionary, Smalltalk,
and sorts their keys in alphabetical order. To spy on the execution of
this sort request, evaluate the expression

MessageTally spyOn: [Smalltalk keys asSortedCollection]

In other words, the spy is run by sending the message spyOn: to the
class MessageTally. The analysis is carried out on the argument.

When the analysis is completed, you are asked to designate a
workspace in which three levels of information are printed. First, it in-
dicates the number of tallies, that is, the number of times the execution
of the expression was interrupted to determine which message current-
ly is being sent. Then it provides a description of the tree, and itemizes
the "leaves" of the tree (the messages at the lowest level of nesting).

In sorting the keys of the SystemDictionary, Smalltalk, the tallies are

54 tallies

Note that if you try this example, you might get slightly different re-
sults because of differences in the statistical sampling (in the number of
interrupts).

The second level of information is the description of the tree itself.
You can follow the sequence of message calls: 53.7% of the time was
spent evaluating SortedCollection class new:; 22.2% in Collection
asSortedCollection; and 24.1% in Dictionary keys. (By SortedCollection
class new:, is meant send the message new: to the class SortedCollection.)
Of the 53.7% in SortedCollection class new:, most of the time was spent
in String < =, which in turn spent most of its time in primitives. The
message asSortedCollection is primarily a call on add All:, which calls re-
Sort, which calls sortto: recursively.

297
Improving Performance

Corresponding to each leaf of the tree is a number representing the
relative amount of time spent executing the method. Thus, in sorting
the keys of the System Dictionary, Smalltalk, 37.0% of the time was spent
executing the message compare: for a String, 7.4% was spent in the
method for SortedCollection sortto:, and so on. The purpose of the third
level of information, **Leaves**, is to gather in one place many occur-
rences of some message that, if listed separately, appears insignificant.

Tree
53.7 SortedCollection class new:

51.9 String < =
50.0 String compare:

37.0 primitives
11.1 Character asUppercase

24.1 Dictionary keys
24.1 Set add:

14.8 Set findElementOrNil:
| 13.0 primitives

7.4 Set atNewlndex:put
7.4 Set fullCheck

5.6 Set grow
5.6 Set noCheckAdd:

5.6 Set findElementOrNil:
22.2 Collection asSortedCollection
22.2 SortedCollection addAII:
18.5 SortedCollection reSort
| 18.5 SortedCollection sort:to:
| 18.5 SortedCollection sort:to:
| 16.7 SortedCollection sortto:
| 14.8 SortedCollection sortto:
| 11.1 SortedCollection sortto:
| 5.6 SortedCollection swap:with:
| 3.7 SortedCollection sortto:
3.7 Set do:
Leaves
37.0 String compare:
18.5 Set findElementOrNil:
11.1 Character asUppercase
9.3 SortedCollection swap:with:
7.4 SortedCollection sortto:
3.7 Set do:

When you know where the execution is spending its time, you can try
to improve that method to run faster, thus impacting overall execution
of the activity.

τ

Examples of Creating or
Changing Browsers

15.1 A Protocol Browser

15.2 A Project Browser

15.3 Modify Class Project

15.4 Change the System Menu

300
Examples of Creating or Changing Browser

15.1

One of the typical kinds of things that programmers do in the
Smalltalk-80 system is create special purpose browsers, either as addi-
tional software development tools or as applications. Example browsers
for applications might be:

calendar browsing personal or group schedules for visitors, talks,
trips out of town, meetings

electronic mail browsing mail sent to you, your responses, and any notes
about the mail

book index browsing the information in a book (An example is given
in a doctoral dissertation by Steve Weyer [Searching for In-
formation in a Dynamic Book, Xerox PARC Technical Re-
port SCG-82-1, February, 1982].)

budget browsing a database of financial plans, income, and
expenditures

Example browsers that count as software development tools might be a
protocol browser or a project browser. A protocol browser is one that
lets you access the complete protocol of a class; by "complete," we mean
the messages implemented in the superclasses as well as in the class. A
project browser gives you direct access to all existing projects, regard-
less of how they were created. Implementations for each of these two
browsers are given in this chapter as models to follow as you try to fig-
ure out how to use the system components for creating views and con-
trollers. Detailed tutorials on the implementation of the user interface
and on creating graphical interfaces to applications are provided in the
forthcoming book Smalltalk-80: Creating a User Interface and Graphi-
cal Applications.

In trying these examples, you should be careful not to make mistakes
while typing the text. If you find that you are making many mistakes
and are confused by the error handling mechanisms of the system, you
might put off reading this chapter until after you review Part Four
"How to Find and Correct Errors."

A Protocol The first example browser is one in which you can examine the mes-
Browser sage interface of a particular class. This protocol browser should have

the following characteristics:

• The browser should have two subviews, one containing a list menu
and the other editable text.

301
15.1 A Protocol Browser

• The list menu subview is a list of the messages implemented by a
class and its superclasses.

• The text subview is an area in which to edit the selected method,
as you would in a message-set browser.

• The message selectors should display in the list menu in alphabeti-
cal order.

• The name of the class in which each message selector is defined
should be indicated in the list menu.

• Selecting a message selector should cause its method to display in
the text subview.

• The method should be editable and recompilable.

• The standard queries about the message should be accessible,
namely senders, implementors, and messages.

We call this browser a Protocol Browser. This section contains step-
by-step instructions for creating the browser. From this example, you
can obtain a glimpse into some of the components that are available
in the Smalltalk-80 system for creating graphical user interfaces,
namely StandardSystemViews, CodeViews, SelectionlnListViews, and
ActionMenus.

In a system browser, create a new class category named Interface-
Protocol (Figures 15.1a and 15.1b). The new category is automatically
selected and a template for defining the new class is displayed in the
text subview. Edit the template to define Protocol Browser as a subclass
of Object (Figure 15.2). It should have four instance variables, as fol-
lows:

list An OrderedCollection whose elements are Strings, each of

which represents a message selector and the class in which

the message is defined. This is the information that will be

displayed in the list menu of the browser.

ClaSSDlCtionary A Dictionary whose keys are message selectors and whose

values are the classes in which the message is defined. This

is used for looking up methods when an item in the list

menu is chosen.

SeleCtedClaSS Either nil, if no list menu item is selected, or the class de-

fining the selected message selector.

SeleCtedSeleCtOr Either nil, if no list menu item is selected, or the selected

message selector.

302
Examples of Creating or Changing Browsers

Figure 15.1a
010

jysterri Browser

i Γι 3 t a n c e V a r\ a b I e Ν a rn e 3: ' i η.-. t V a r Ν a rn « 1 in 3 t V 5 r f\J a rn

c I a 3 3 V a r i a b I e Ν a rn e 3: ' CI a 3.-. V a r Ν a rn e l > I: I a 3 3 V a r Ν a rn

poolCMC t i c m a n e s : "

c a 16 q ϋ r y: Ί η t e r f a c e - Β r ο ν·.·13 e r'

Figure 15.1b Ho

Sy

I n t

In t
I n t

I n t
I n t

I n t

I n t

stem Browser

erf a
erf a
erf a

erra
erf a

erf a
«rr.=i

in j

C 1 ·:

ρι.ι

ce-buppur
i:e-Li.-to
c e - Τ e · t

c e - fvl e Γι υ 3
c e~F'rorn

ce-DebL

t a Γι c e •••/ .=

j t

1

:•:•''•/? r i a b l e

teqory; 'In

Brew 3
Brow;
fvl e t hi c

E n t e r

r hi Μ Γι

irprr.=i r

' J a ΓΓΙ e 3

terract

e r

er'v'iew
d L i s t B r

Γι Μ VV C •:

=ι Γ Γ Μ Γι Τ

M-pr-nrr

"01 a 3 3'

-Β r o w 3

te
" Γ

- |-

•'•a

3

Ι
Α

rNa

a q a ι Γι

υ "η d ο

i . o p y

c υ ΐ
ρ a - r ρ

j t i n t it

c a Γι Γ ^

•/a rNa me^.1'

3 3 V a r M a m e 2 -

j

303
15.1 A Protocol Browser

Figure 15.2 010

Inter fa ce-Erov·.
I n t e r f a c e - I n s p e c t
I n t e r f a c e - D e b u g c
I n t e r f a c e - F i l e Γνϊο
I n t e r f a c e - T r a n s c
I n t e r f a c e - P r o j e c t
I n t e r f a c e - C h a n q

O b j a c t s υ b c I a s s: # Pro t ο c ο ΙΒ ro vv ; e r

i ri s τ a n c e V a r i a b I e Ν a. rn e s: ' l ist c I a s s D i c t i ο η a. r;

selec t e d S e l e c t o r '

c la ss'v'a ri.3 bleNa mes: ^

poolC'ic t ionaries: "

>: a t e q o r v: ' I n t e r f a c e-Protoc o\'

selectedCIa ss

a. q a. ι η
u η d ο

copy
c u ΐ

paste
do it

pr int it

caflfcel

format
spawn

The ProtocolBrowser should have no class variables. Remember to
cut out the "dummy" class variable names from the method template.

After you have typed the class definition, choose the yellow button
command accept. The new class is added to the class-names menu and
is selected. In the class-names subview, choose the yellow button com-
mand comment (Figure 15.3a). The words This class has no comment
appear in the text subview. Edit it to provide a comment on the role of
the class (Figure 15.3b). Within the comment, you can also provide a
template for creating an instance of the class, such as

ProtocolBrowser openForClass: className

Choose the yellow button command accept to save the comment.

The protocol name private has no special meaning to the system. By convention, we
use this name to categorize messages that are sent by the object to itself, rather
than by other objects to it.

The next step is to define the instance creation message
OpenForClass:. Choose the browser menu item class so that you can de-
fine class protocol.

Note that when you choose class, the system attempts to guess what other selec-
tions you might also wish to see. Since you were examining the comment for class
ProtocolBrowser, the system guessed you might want to see the comment about
ProtocolBrowser's class (i.e., its metaclass). Currently this class has no comment.

Add the protocol name instance creation (Figures 15.4a and 15.4b).

304
Examples of Creating or Changing Browsers

Figure 15.3a 010

System Browser

il.gaciwaaM

Interfac e-Bt
Ι η ΐ erf.? r e - | η
Inter face-D
Interf.? c e-Fi
Interfac e-T
Ι Γ Ι Τ Μ

Int

: e r f a c e - T I
terface-Pri Μ 1
". e rf a c e ~C h .=ι ΓΙ η JlS

^ I ' b j e c t j u b c l a s s : # P r o

i n ; t a nc e'v'a r i a blef\

ζ. ρ ι Μ ,; r a d S e I e c t ο r

c t i o n a r

c la :• iVanable(\larriQ_": "

puulC'ii: ΐ ί ϋ η a rie.":

CUP q η r v1: ' I n t e r f a c e - Pro t ο c ο I'

Figure 15.3b
Bio

Inte
Inte
Inte
Inte
Inte
Inte
Inte
Thi

rf a c e - Β ro vv
r f a c e -1 n s ρ e c t
rface-Debugc
rface-File Mo
rf a. c e - Τ ra η s c
rface-Projec
rface-Chanc

cl3.ss represents a. b r o w s e r in w h i c h you c a n examine t h e

rnessa.qe i n t e r f a c e of a p a r t i c u l a r class.

Ρ r ο toe ο ΙΒ r ο w s e r ο ρ e η F ο r CI a. s s: c I a s s Ν a. rn e

a g a. ι η
undo
copy

cut
ρ a. _-. t e
do it

irint it

carle el
format
spawn
explain

i

r
305

15.1 A Protocol Browser

Figure 15.4a Bio

Interface-Bro\
Interface-Inspect
I n t e r f a c e - D e b υ q c
Interface-File Mo
I n t e r f a. c e - Τ η. η s c
Interface-Project
Interface-Changj

This class has no comment

Figure 15.4b Oio

Inter face-Browse
Interface-Inspect
Interface-Debugc:
Interface-File Mo
Interface-Transc
In terfa.ee-Project
Interface-Changt

lawiMfll.uiivaa,

This class has no comment

Enter new ρ rot

then accept or

instance creat ion

a q a ι η
υ η d o
copy
cut

do it
irint it

c a η"Λζ

306
Examples of Creating or Changing Browsers

openForClass: aClass
" Create and schedule a browser for the entire protocol
of the class."

| topView aPBrowser label |
aPBrowser «- super new on: aClass.
label <- ' Entire protocol of: ' , aClass name.
topView <-

StandardSystemView
model: aPBrowser
label: label
minimumSize: 200 @ 200.

topView
addSubView:

(SelectionlnListView
on: aPBrowser
aspect: #selector
change: #selector:
list: #selectorList
menu: #selectorListMenu
initialSelection: nil)

in: (0@0.0 extent: 1@0.3)
borderWidth: 1.

topView
addSubView:

(CodeView
on: aPBrowser
aspect: #text
change: #acceptText:from:
menu: #textMenu
initialSelection: nil)

in: (0@0.3 extent: 1@0.7)
borderWidth: 1.

topView controller open

In this method, the temporary variable aPBrowser is created as an in-
stance of class ProtocolBrowser and is initialized by sending it the mes-
sage on:. The label of the browser is then defined to be

Entire protocol of < class name >

where < class name> denotes the place in which the actual name of
the class appears.

307

15.1 A Protocol Browser

Figure 15.5 010

Interface-Browst
Interface-Inspect
I n t erf a c e-Debug:
Interface-File Γνϊο
I n t erf a ι
I n t erf a ι

i-Transc
5-Project

I n t e rf.3. c e - <_·' h a n α, <•.ι η s t a. n ι_· « ι
o p e n F o r c l a ss:

''' _: r e a t e a n d s c h e d υ I e a. b r ο w s<ir f o r t h e e n t i r e p r o

can* el
torrna t
spawn

| t o p V i e w a P B r o w s e r l a b e l |

a Ρ Β r ο w s e r *• s u p e r n e w on: a CI a s s,

l a b e l - ' E n t i r e p r o t o c o l of: ", a C l a s s n a m e .

t ο ρ V i e w -

S r a Γι d a r d S ν s t e m V i e w

model: aPBrowser label: label mini m υ m S i ζ e: 2 0 0' ϊ 1 2 ί

to ρ V iew addSubView:

ι S e I e c t i ο η Ι η L i s t V i e w on: aPBrowser aspect : v? s e I e c t ο r

again
undo

copy
c υ t

paste
do it

print it

The rest of the method consists of four main steps.

1. Create an instance of StandardSystemView.

2. Create an instance of Selection I n ListView and make it a subview of
the StandardSystemView.

3. Create an instance of CodeView and make it a subview of the
StandardSystemView.

4. Send a message to the StandardSystemView to obtain its control-
ler, that is, the class that provides the user interaction scheduling
(StandardSystemController), and then send a message to the con-
troller to open a rectangular area for itself on the display screen
and to make its view the active view. The user will be asked to
designate the rectangular area.

Each of StandardSystemView, CodeView, and Selection I n ListView, are
subclasses of View. View provides protocol for managing a hierarchical
nesting of subviews, and for managing the windowing transformations
needed so that the user can move and reframe the view and so that
all the subviews will maintain their relative positions and sizes.
The subview insertion message used in this example is
addSubView:in:borderWidth. The first argument indicates the subview
that is to be inserted, the second indicates the relative position and size

308
Examples of Creating or Changing Browsers

Τ
of the subview, and the third the width of the frame around the
subview.

Once your example protocol browser works, you can play with these numbers to
see the affect of any changes.

When the StandardSystemView is created, it is informed of the object
to be viewed on the display screen, its label, and its minimum size.

A SelectionlnListView is one of the kinds of menus in the system. Its
instance creation message requires six arguments.

ΟΠ: The object, one aspect of which is viewed by the list menu.

aspGCt: A Symbol identifying the menu to other parts of the view.

Change: A Symbol denoting the message selector for changing the

information that shows in the list menu.

list: A Symbol denoting the message selector for retrieving the

list of strings that show in the list menu.

menu: A Symbol denoting the message selector for obtaining the

yellow button menu; nil if there is no menu.

initiaiSelection: A String representing the initial current selection; nil if no

initial selection.

A CodeView represents a view of text that is editable and in which
the command accept means to compile. Its instance creation message
requires six arguments.

On: The object, one aspect of which is text.

aspect: A Symbol denoting the message selector for retrieving the

text that is displayed.

Change: A Symbol denoting the message selector for changing the

text that is displayed.

menu: A Symbol denoting the message selector for obtaining the

yellow button menu; nil if there is no menu.

initiaiSelection: A String representing the initial current selection (subpart

of the text displayed highlighted); nil if no initial selection.

Once you have defined the instance creation message openForClass:,
then choose the browser menu item instance so that you can specify the
instance protocol. In the message-category subview, choose the yellow
button command add protocol so that you can add the protocol private
(Figure 15.6a and 15.6b). Do the same for protocol names list access and
text access.

309
15.1 A Protocol Browser

Figure 15.6b

erface-Browse
erf a c e-In spec t
erface-Debugc
erface-File Γνϊο
erfa c e-Trans c
erfa c e-Projec
erface-Chanc

ρ b j set s u b c I a s s: # Pro t ο,; η | Β η;, •...··.•· s e r

i η s t a η c e V a r i a b I e Ν a m e ;: ' l ist c I a s s D i c t ί ο η a r

selectedSelector '

c I a ι s V a r i a b I e Ν a m es: "

μ ο ο ID i c τ Ι η η a ri e ζ:

r a t e q ο ry: " I n t e r f a c e - Pro t ο c ο I'

Figure 15.6a

IsHfaMAMIsfJBBM

"̂..ι b j e υ t subclass: # Ρ r ο ΐ ο c ο ΙΒ r ο w s e r

i η s t a ri c e V a ri a b I e Ν a m e s: ' l ist c I a s s

selec f edSelec f o r '

c la 5 s'v1 a ri a bleNa mes:

poolC'ic t iona ries:

c a t e q ο r ν: ' I n t e r f a c e - Pro t ο c ο I'

Enter new r.

t h e n a c c e p t

a q a ι η
υ η d ο

cop

310
Examples of Creating or Changing Browsers

Τ
Choose the protocol name private and edit the method template to

specify the method for on:.

on: aClass
" Create the protocol browser for the class, a Class. "

| defClass |

list <- OrderedCollection new.

classDictionary «- Dictionary new.

aClass allSelectors asSortedCollection do:

[.selector |

defClass — aClass whichClasslncludesSelector: selector.

l ist a d d : s e l e c t o r p r i n t S t r i n g , ' (' , d e f C l a s s n a m e , ') ' .

classDictionary add: (Association key: selector value: defClass)]

Only two of the instance variables are initialized, list and
classDictionary. For each selector specified in the class (aClass
allSelectors), the class in which the selector is defined is determined
(whichClasslncludesSelector:) and then the selector, followed by a tab,
left parenthesis, defining class name, and a right parenthesis, is added
to list. The selector and the defining class are then stored as an entry in
classDictionary.

Remember to type carefully to specify a tab before the left parenthesis. The tab
will be used in another method for distinguishing the selector from the class name.

Choose the yellow button command accept (Figure 15.7).

The protocol name private has no special meaning to the system. By convention, we
use this name to categorize messages that are sent by the object to itself, rather
than by other objects to it.

You now have to define the messages that access the information for
the SelectionlnListView and the CodeView. There are two list-accessing
messages, selectorList and selector:; there are two text-accessing mes-
sages, text and acceptTextfrom:. The methods are shown in Figures
15.8, 15.9, 15.10, and 15.11. Note that in the implementaiton of selector:,
the list menu item is a String that must be parsed to determine the se-
lected selector and class. Instances of String respond to messages such as
copyUpTo: that support the parsing. The message changed: is specified
in class Object as broadcasting the fact that an object changed so that
any dependents, such as a model, its view, or controller, can choose to
update itself.

J

311
15.1 A Protocol Browser

Figure 15.7 Oio

System Browser

In terrace-Brow.-ς
I n t erf a ce-Inspect
Interface-Debugc
Interface-File Mo
Interface-Trans c
Interface-Project

text access
list access

c r e a t e t h e p r o t o c o l b r o w s e r for the class, ;

| defClass |
list *• Or d ere d C ο 11 e c t i ο η η e w,
c I a s s C' i c t i ο η a r y - D i c t i ο η a r ν η e ••.•••/.

a Class a II Selectors a sSortedCol lect ion do:

['.selector |

defClass - a Class whic hCIa s sine ludesSe le

list add: selector pr int S t r i n g , ' (\ def Cla

c l a s s D i c t i o n a r y add:

(A s s o c i a t i o n (•••ey: se lector value: defC

a. q a ι η
undo
c o p y
cut

paste
do it

print it

rormat
•spawn
explain

e tor
ss n

: sel
ame

ector.

ass)!

Figure 15.8

iystem Brov/ser

ire
In terrac
Interfac
Interfac
In t erf a c
Interfac
In t erf a c

e-File Mo
e-Transc
e-Project
e - C h a n q <•.

iCtorList

"Answer the ist of str ings t h a t show in the list menu.

312

Examples of Creating or Changing Browsers

Figure 15.9 000

I n t e r f 3. c e - Β r ο w s
In t erf 3. ce-Inspect
Interface-Debuge
Interf3.ce-File fvio
Interf3.ce-Tr3.ri5c
Interface-Project
Intyrfa.ce-Cha.nQ

select orList

selector: a.string

"Answer the message selector for changing the in format ion t h a t

shows in the list menu."

aStr ing = = nil i fTrue: [se lectedSelector *- nil. t s e l f] .

selectedSelector - (aStr ing copyUpTo: C h a r a c t e r t a b) a.sSymbol.

selectedClass - classDict ionary at : selectedSelector.

self changed: # t e t

Figure 15.10 BOO

Inter face-Brow;
Interface-Inspect
Interface-Debuge
Interface-File Γνίο
Interface-Transc
Interface-Pro ject
Iriterfa.ce-Cha.ru":

Protoco Browser text access
list a c c e s s
ρ ri ν a t e

"Answer the symbol ident i fy ing the t e x t of the menu."

s e I e c t e d S e I e c t ο r = = π i I

ifTrue: [t " asText]

ifFalse:

[t (_-. e I e c t e d C las s s ο u r c e C ο d e A t : s e I e c t e d S e I e c t ο r) a. s Τ e χ t

Am a l··. e S e I e c ΐ ο r Β ο | d Ι η: s e I e c t e d CI a s s]

τ 313
15.1 A Protocol Browser

Figure 15.11 uuu

'-:•'•.:'•.:'•.'•'•,••'•,•';•'•.'•'·/•'•.:':'':

•':'•':'•':'• \'•':'•'·.'•'•.'•:'•'•.'•'•.'-':'•

'•':'••:•'•:•'•.'•·.'·'·.'•·:••'•':'•':'•'•:•'

I
•".

• ' •

' .

LJ

Inter fa ce-B ro w s ί
I n t e r f a c e -1 n s ρ e c t
I n t e rfd. c e - D e b υ q c
Interface-File Mo
Interface-Transc
Interface-Pro iect
I n t e rf a c e - Chang*IHf=HFin{H c ι a. s :•

list access
private

text i::i:j

acceptText: aText f r o m : aController ii;:|

"Answer the message selector for changing the displayed text." i|i;|;
| newSelector | i;;;ij

newSelector *- ;::;;;

selectedClass compile: aText B]\

classified: (selectedClass organization i;!jii
cateqοrν0fΕ1 e·meηt; solectΡdSΜ|Μ,-. rηrΊ i;;i;;

notifying: aController, iiiiij

newSelector == nil ifTrue: [tfa. 56], W.
newSelector == selectedSelector ifFalse: [self newSelectorList: iijiji

π ο ν·,·'κ (=· 1 e'• t o r] .

ttrue ^ Μ

Although we have not as yet specified the yellow button menus, you
can now try out the protocol browser. Evaluate an expression of the
form

ProtocolBrowser openForClass: < className >

In the workspace in Figure 15.12a, we substituted True for < className >
to open a ProtocolBrowser on the class True, a subclass of Boolean (Fig-
ure 15.12b). If you select a menu item, the method shows in the text
subview. Scrolling works. So does the blue button menu for framing,
moving, and so on. Much of the programming work has already been
done for you!

314

Examples of Creating or Changing Browsers

Figure 15.12a
010

b ν stem Browser

Interface H^tse
In terra c e- Β t-o ν.

-1 n s ρ e Γ τ
-Debug ι:
-File Γνϊο
-Τ ran si-

erra c e-P'ro iec t

rf a c

rfac

ProtoeolBrowser

class

list ac
pr ivat

a c c e p t Te;< t i f rom
r ρ χ t

Γη e s s a q e select ο r a. η d a r g υ m e η t η a m e s
ent s t a t i n g purpose of message11

Workspace

|protocolBrowser openForClass: True

Figure 15.12b 000

by stern Browser

Intc
In·
Inti

rf a c
rf a c

i r fac
:erfac

e-Brov·.
-Inspect
-Debug·:
-File Γνίο
-Transc
- Proiecd

m e s s a g e s e I e c t ο r a n d a r

"'on space *nT- i t a t i n q put

Ρ r ο toe ο ΙΒ r ο w :·αν ο ρ e η F ο r >'.

= (Object)
= = (O b j e c t)
a. d d D e ρ e η d e ri t: (Ο b j e c t')

& alternativeObject

" Ε ν a Ι υ a. t i η g c ο η ί υ η c t i ο η - - a n s w e r

a Iterna t iveOb iec t since receiver is true

t a Iterna t i v e O b j e c t

i

315
15.1 A Protocol Browser

If you try to use the yellow button menu, you will receive an error
notification. Leave the ProtocolBrowser on the screen.

Let's define two messages, textMenu and selectorListMenu. Each of
these creates an instance of class ActionMenu, an object that represents
a pop-up menu that can have lines between its items. An ActionMenu is
created with the message labels:lines:selectors.\ Here are the three ar-
guments

labels:

lines:

selectors:

A String of the menu items, each item separated by a car-

riage return. The withCrs message to instances of String re-

turns a String that substitutes a carriage return character

in place of any \ characters. Thus you can use the \ to in-

dicate the line change.

An Array of numbers indicating after which item to draw a

line.

An Array of message selectors that will be invoked if the

corresponding menu item is chosen.

The convention is that the object being viewed will be sent the message, although
in several notable cases, such as editing text, the controller (paragraph editor) re-
ceives the messages.

The yellow button menu for the CodeView is for text editing, as in a
browser text subview. Edit the method template to specify the message
textMenu (Figure 15.13a).

Figure 15.13a

System Bro'vvser

Entire p r o t o c o l of: True

I n t e r f a c
I n t e r f a c
I n t er f a c
I n t erf a n
I n t e r f a i i
I n t erf a c

e-Erc·.·
- Inspect
-Debugc
-File fvio
- T r a n s c
-Pro iec t

ProtocolBrowser text access

"™ma

l ist access
pnva te

a . c c e p t T e x t i f r o m :
t Μ :•: t

textMenu
'' A, ri _r. •• .•••/ e r a n m e η υ f ο r r e q υ e s t i η q e d i t s ο f t h e t e χ t ο f a. rn e t h ο d."

τ A c t i ο Γι Μ e Γι υ

l a b e l s : ' a q a i η \ υ η d ο \ c ο ρ y \ c υ t \ ρ a s t e \ a c c e ρ t '•·. c a n e e l ' vv i t h C Fi s

l i n e s : # (2 5)

s e l e c t o r s : # (a g a in u n d o c o p y S e l e c t i o n c u t p a s t e a c c e p t c a n c e l)

316
Examples of Creating or Changing Browsers Τ

Since the messages are the standard ones used in all views in which
paragraphs are edited (TextViews as well as CodeViews), you do not
need to do anything further in order to use the yellow button menu.
Return to the protocol browser you made earlier, and try using the
menu (Figure 15.13b).

Figure 15.13b 010

Entire protocol of: True

by;tern Browser!

Interfac
In t e rf a. c
Interfac
Interfac
Interfa c
Interfa c

-1 n s ρec τ
-Debugc
-File Γνΐο
- T r a nsc
-Prciiec τ

textMenu
"Answer an rrienu for re

ι Ac t ion Men υ
labels: 'again'·,
lines: # (2 5)
selectors: # i a

υ Γι d ο'

gain

Object)
= = (Object)
a d d D e ρ e η d e Γι t: (0 b j e c t)

& alternativeObject
"Evaluating conjunction - - a. η s ν·.·1 e r

a. 11 e rn a t i ν e 0 b i e ο t since receiver is t r u ς

alternativeObject

ρ ν :
η c u t p ? ρ t c a n c e 11

The yellow button menu for the SelectionlnListView is for asking
questions about the messages, similar to the queries available in the list
menu of a message-set browser. It is defined in response to the message
selectorListMenu (Figure 15.14). If the response to selectorListMenu is nil,
then the subview will flash to indicate that no menu is appropriate.

The three messages, browseSenders, browselmplementors, and
browseMessages, will be sent to the ProtocolBrowser. Figures 15.15,
15.16, and 15.17 show their definitions, categorized under list functions.

J

317

15.1 A Protocol Browser

Figure 15.14
roo

"it erf a c >
Interface
I n t e r f a x
Interface
I n t erf a o
I nterfa c ι

Entire protocol of: True

BHHUH
selectorListMenu

" Α η ivv e r 3 m e η υ for m 3 l· ί η g queries .about rn e s s a g e s and rn e t h 0 d;

selec tedSelec tor= = nil

if True: [T n i l]

ifFalse:

[t A c t i 13 Γι Μ e ΓΙ υ

label ; : 'sender ί '·•. i m ρ I e rn e η 10 r ί \ rn e; 3 a g e s' w i t hi C Fi;

lines: # ()

selectors: # (b r 0 vv s e 5 e η d e r 3 b r ο '..·ν 3 e I rn ρ I e m e η 10 r 3

b r o v v s e M e s s a g e s ; ^ .

Figure 15.15
000

t e rf a c e - Β ro vv
Interfac e-Inspec
Interface-Debug
Interface-File Γ
Interfac e-Transc
Interfa c e-Projec
Interfac e-Ghana

browseSenders

" C : r e a t e a m e s s a g e - s e t b r o w s e r f o r t h e m e t h o d s t h a t i n c l u d e t h i

s e l e c t e d rn e ; s a g e "

S rn a 111 a 11 b r ο ν·/ s e A11C a 113 Ο η: s e I e c t e d S e I e c 10 r

318
Examples of Creating or Changing Browsers

Figure 15.16 000

System Browser

Entire protocol of: True

Interface-υ ha rig

browselrnplernentors

"Create a message-set browser for the im pie me η tors of the

selected message."

Smalltalk brer Ί ρ I e m e η t ο rz Ο f: s e I e c t e d b e I e c t ο r

Figure 15.17

Entire protocol of: True

Interfa.c
Interfa.ce-Tra.nsc
Interfa.ce-Projec
Interface-Ghana

bn:

I'Ji1

b n :

w s elmpleme
UAcUsreli
eSenders

nt

b r ο w s e Γνΐ e s s a g e s

"Create a menu of the messages in the selected method and then,

if the user selects a menu item, create a messaqe-set browser for

the methods t h a t implement it."

S m a 111 a I \ s h ο w Μ e η υ Τ h e η Β ro w s e:

ι' s e I e c t e d CI a. s s c ο rn pile d (vl e t h ο d A t; s e I e c t e d S e I e c t ο r)

messages a. s S ο r t e d C ο 11 e c t i ο r^

319
15.1 A Protocol Browser

Now return to the protocol browser you created (or open a new one),
and try out the menus for the top view (Figure 15.18). Close the browser
when you are done experimenting.

Figure 15.18
010

System Browser

I n t e rfa
Interfa
Interfa
Interfa
I n t e r f a.
Inter fa

c e - Β r ο w s e
ce-Inspect
ce-Debugc
ce-File Mo
c e - Τ r a. n s c
ce-Project

browseSenders

"Create a. mes

."elected messa.qe."

saqe-set br

Ό ΓΙΊ a 111 a bro·

(Object)
= = (Object)
a. d d D e ρ e η d e η t : (Ο b j e c t) |j m ρ I e m e^i t ο r s

& alternativeObject | messages

"Evaluating conjunction - - answer

a. 11 e rη a. t i ν e Ο b i e c t sin c e re c e i ν e r i s true

t alternativeubiect

Notice that the yellow button menus for the Protocol Browser seem to work differ-
ently than the ones you have been using in the system in that they do not remem-
ber the last item you chose. This is because the menu is recreated each time you
press the yellow button, rather than remembered as a class variable. The use of
class variables to store the menu is described in the next section.

An interesting modification of this example is to be able to specify
that protocol from one or more superclasses should not be included in
the protocol browser. In particular, a user will probably not want to see
the protocol of class Object included.

Suppose we wish to create a protocol browser for only some of the
protocol of a class.

Protocol Browser openForClass: aClass without: aCollection

The second argument would be an Array of classes whose protocol
should be excluded. Add the message openForClass:without: to the class
protocol of class ProtocolBrowser (Figure 15.19). The only difference be-
tween this method and that of openForClass: is the ProtocolBrowser cre-
ation message (on:without:) which must be implemented, and the label,
which says Some of the protocol... rather than Entire protocol.... When

320
Examples of Creating or Changing Browsers

you add this new method and choose the yellow button command ac-
cept, another menu will probably appear stating that the message
on:without: is new. Choose the command proceed as is, since your inten-
tion is to specify the missing message next (Figure 15.20).

Figure 15.19
010

Figure 15.20
100

Interface-Bro1 · ;
I n t e r f a. c e -1 n s ρ e c t
Ι η t er f a c e - D e b υ g c
Interface-Fi le Mo
I n t e r f a c e - Τ ransc
Interface-Project

ο ρ e η F ο r CI a. s S : a. <J I a. s s w i t h ο υ t : a U ο II e c t i ο η

"Create arid schedule a browser for p a r t of the protocol of a

| top View a.PBrowser label |

a.PBrowser *- super new on: a.Class w i t h o u t : aCollection.

label - 'Some of the protocol of: \ a Class name.

top View «-

31 a. n d a. r d S y s t e m V i e w

model: aPBrowser label: label minimum Size: 2 0 0 © 2 ΰ ϋ .

t ο ρ V i e w a d d 3 υ b V i e w:

(Selectionlr iListView on: aPBrowser aspect: # select or

again
undo
copy
cut

ρ a s t e
do it
irint it

f ο rrn a. t
spawn
e χ ρ lain

Pi

τ
Interface-Brows
Interface-Inspect
Interfa ce-Debugc
Inter face-File ίνίο
Interface-Transc
Interface-Project
Interfa ce-Chanqs

ProtocolBrowser instance creatior ooenForClas:

ο ρ e η F ο r CI a s s: a UI a. s s w i t h ο υ t: a C ο 11 e c t i ο η

"Create arid schedule a. browser for p a r t of the protocol of

| top View aPBrowser label

a Ρ Β r ο w ar - super η e w

label - 'Some of

top View -

on: aClass without: aCollection

on:without: is a. new message

b t a η ι j a. r d b y s t e m V i e w

model: aPBrowser I,

t ο ρ V i e w a. d d 3 υ b V i e w:

correct
abort ι rrι υ m b ι ζ e: k' U U '£.' k' U U.

b e I e c t i ο η 1 η Li s t V i e w ο Γι: a PB ro w s e r a s ρ e c t: # s e I e c t ο r

321
15.1 A Protocol Browser

You can create the new method openForClass.without: by copying the method for
openForClass: and editing it, changing the first few lines. Similarly, you can create
the new method on:without: by copying and editing the method for on:.

Now choose the browser menu item instance and the message catego-
ry private, and then specify the method for on:without: (Figure 15.21). It
differs from the method for on: only in checking the argument
aCollection; if the defining class is in the collection, then the message is
not added to the instance variable list.

Figure 15.21
000

System Browser

Interface-Browse
Interface-Inspect
Interface-Debugc
Interface-File Mo
Interface-Transc
I n t erf a ce-Project
In t erf ace-Chang
System-Support

lammiimiaimBaai-ii text access
list access
list functions

on: aClass without: aCollection
"Create the protocol browser for the class, a Class, but exclude

the ρ r ο ΐ ο r ο I for a η ν c I a s s in the c ο 11 e c t i ο η, a C ο 11 e c t i ο η."

I defClass |

list - Order edCollect ion new,

r I a s s D i c t i ο η a r y - D ί c t ί ο η a. r y η e w.

a11:1 ass a II Selectors asSortedCollection do: fc

[selector |

d e f CI a s s - i'jidsi· which υ I a s s Ι η c I u d e s s e I e c t ο r: selector.

(aCollection includes: def Class) if False:

[l ist add: selector print String, '(•', uafOli.S:· name, ') ' .

classDictionary add:

(Association Key: selector value; d e f C l a s s i] ^

Figure 15.22 shows an example for class True when class Object is
omitted. It was obtained by evaluating the expression

Protocol Browser openForClass: True without: (Array with: Object)

Only messages implemented in Boolean and True are accessible from
this protocol browser.

Another kind of protocol browser that you might try is to be able to switch be-
tween the messages to an instance of the class and the messages to the class itself,
as is done in the system class browser. You can examine the implementation of
class Browser for examples of how to create such a protocol browser.

The implementation of file list provides another good example of how to create a
simple browser. Examine the code for classes FileListView and FileListController.

322
Examples of Creating or Changing Browsers

Figure 15.22 000

•stem Eire-

I n t e rf a. c: e - Β ro w
I n t erf a ce-Inspect
Interfac e-Debuqc
Interface-File Γνίο
Interra c e-Tra nsc
Interface-Project
I n t e rf a c e - C h a. n q ί „.
System-Support

on: aClass without
ate the pr

:ocol for a. (
Vorkspa ce

Ρ r o t o c o IB r o w s e r ο ρ e n

w i t h o u t : ι' Arra v1 w i t h :

1 True Ί

deepCopy ί Boolean)
e q ν: (Β ο ο I e a n')

and: alternativeBlock
" Ν ο η e ν a I u a. t i η q c o n j u n c t i o n - - a n s w e r

t h e value of a l t e r n a t i v e B l o c k since

the rec eiver is true."

t a l t e r η a t iveBlock value

si ifFalse:

ri η q, ' (', d e f CI a s s η a. m e,

i c t o r value: d e f C l a s s)]]

15.2

A Project
Browser

The next example is a browser for creating and accessing projects. It
could be used in place of the hierarchical access to projects available in
the standard Smalltalk-80 system. We call this a Project Browser. It
should have the following characteristics:

• The browser should have two subviews, one containing a list menu
and the other editable text.

• The list menu should contain the titles of projects.

• The text should be a description of the project; the user should be
able to edit the text and to cancel any changes.

• Selecting a project title should display the description in the text
subview.

• The yellow button menu in the list menu should support adding
new projects, removing existing projects, and entering a project.
Adding a new project should prompt the user to specify a project
title. Removing a project should require a confirmation if the proj-
ect has open views or unsaved changes.

323
15.2 A Project Browser

• Whenever a new project browser is created, it should provide ac-
cess to every project in the system, regardless of the project in
which each was created.

A project browser can be created in a manner very similar to the proto-
col browser of the previous section. The list menu subview will be an
instance of Selection I n ListView and the text subview will be a CodeView.
However, the command accept in the CodeView will not mean compile;
it will mean store the text as the description of the selected project. As
in the Protocol Browser, commands do it and print it will not be supported
in the example project browser.

In a system browser, select the existing class category named Inter-
face-Projects and then edit the template in the text subview to define
ProjectBrowser as a subclass of Object (Figure 15.23). It should have two
instance variables as follows.

projects

currentProject

A Set of all the instances of class Project that exist in the

system.

Either nil, if no list menu item is selected, or the currently

selected Project.

The class ProjectBrowser has no class variables.

Figure 15.23 ΟΪ0

lnterfa.ee -Brow;
I n t e rf a c e -1 η ι ρ e c tj Pro j e c t
Interface-Debugd ProjectController
Ι η t e rf a ι: e - Fi I e Mel Pro j e c t V i e v·/
Interface-Transc"

ΙΙΜΜΜΙΚΗΜΗΙΒ»

Interface-Changs

Ο b j e e t s υ b c I a s 3: # Pro j e c t Β ro w 5 e r
i η 31 a. η e e V a r i a. b I e Ν a. rn e 3: 'projects c υ r r e η t Ρ r 1
c I a 3 3 V a r i a b I e Ν a rn e 3:
p o o l D i c t i o n a r i e s : "'
c a t e q 0 ry: ' Interface- Pro j e c 13'

324

Examples of Creating or Changing Browsers

After you have typed the class definition, choose the yellow button
command accept. The new class is added to the class-names menu and
is selected. In the class-names subview, choose the yellow button com-
mand comment and provide a comment on the role of the class (Figure
15.24). You can also provide an expression for creating an instance of
the class. ProjectBrowser open.

Choose the yellow button command accept to store the comment. The
next step is to define the instance creation message open. Choose the
browser menu item class so that you can define class protocol. Add the
protocol name instance creation and then edit the method template to
define the message open.

Figure 15.24 ioiD

Interface-Brovv
I n t e rf a. c e -1 n s ρ e c d Pro j e c t
I n t e rf a c 9 - D 9 b υ q j iamia—«myjaai
I n 19 rf a. c e - Fi I e Μ ο Pro j e c t C ο η ΐ ro Her
l,n t erf a. c e - Τ ra η s c Pro i e c t V i e w

Interfa.ce-Cha.nqi

Τ h i s c lass r e p r e s e n t s a. b r ο w s e r f o r c r e a. t i r
1' j r 9 a 19 ο Γι 9 b y 9 '• / a I u a t i η q

Project Browser open

a q a. ι η
undo
copy

c υ t
Paste
do it

print it

c a nSe I

p
9 χ ρ I a. i η

ccess inq p r o j e c t s ,

325
15.2 A Project Browser

open
" Create and schedule a browser for all the projects in the system "

| topView aBrowser
aBrowser «- super new initialize.
topView <-

StandardSystemView
model: aBrowser
label: ' Project Browser'
minimumSize: 200 @ 200.

topView
addSubView:

(SelectionlnListView
on: aBrowser
printltems: true
oneltem: false
aspect: #currentProject
change: #currentProject:
list: #projectList
menu: #projectMenu
initialSelection: nil)

in: (0@0.0 extent: 1@0.4)
borderWidth: 1.

topView
addSubView:

(CodeView
on: aBrowser
aspect: #text
change: #acceptText:from:
menu: #textMenu
initialSelection: nil)

in: (0@0.4 extent: 1@0.6)
borderWidth: 1.

topView controller open

This method is the same as the one used in creating a Protocol Browser,
with the exception of the proportions used for the subviews, and the
message sent to SelectionlnListView to create an instance. The message
used here contains two additional arguments associated with the key-
words printltems: and oneltem:.

printltems: A Boolean, either true or false. The argument of the key-

word list: is a message to the browser. It returns an

OrderedCollection, either of strings that can be printed in

the list menu, or of objects that must be sent the message

326
Examples of Creating or Changing Browsers

oneltem:

printString in order to obtain the entry in the list menu. If

the argument to printltems: is false, the response will be

strings; if the argument is true, then the message

printString should be sent. We plan to keep a list of Projects

rather than string representations of Projects, so the argu-

ment must be true.

If it is known that a list menu contains only one item, then

it will be automatically selected if the argument to this

keyword is true. There may be more than one Project, so

the argument is false.

Once you have defined the instance creation message open, then choose
the browser menu item instance so that you can specify the instance
protocol. In the message-category subview, add the protocol names
initialize-release, list access, list functions, and text access (Figure 15.25).

Figure 15.25

System Browser

ini tializH-relea.se
list a c c e s s
list functions
t e x t access

ect subclass: #ProjectBrowser

iristanc e'v'ana.tilef'Ja.mes: 'projects currentProject '

c I a s s V a ri a. b I e Ν a. rn e s: "

ρ oo I CM C tionaries: "

c a t e q ο ry; Ί η t e rf a. c e - Pro j e c t s'

The message initialize is sent from the instance creation message open
to initialize the instance variables. Only the instance variable projects
is initialized; it is assigned an OrderedCollection of all the instances of
class Project currently in the system (Figure 15.26).

Under the category list access, define the method for projectList (Fig-
ure 15.27). This is the message sent to obtain the list of items for the
list menu.

r
327

15.2 A Project Browser

Figure 15.26 ooo

terrace-Brows
I n t e rf a c e -1 n s ρ e c tj Pro i e c t

J
I n t e r f a c e - Fi I e Μ ο Pro j e c t C ο η t ro Her
Ι η t e r f a. c e - Τ r a. η s cl Ρ r ο ie c t V i e

Interfa.ce-Chci.rig

initia ιζθ-re ease initialize
list access
list functions
t e x t access

p r o j e c t s - Project aI l lnstances

Figure 15.27
ΕΠΟ

"Answer the col lect ion of items to be displayed in the menu

System Browser

I n t e rf a c e - Β ro w s ί
Interra c e-lnspec t
Interface-Debuqc
Interface-File Mo
Interface-Trans c

I n t erf a ce-uha.nqi

Project initialise-release

ProjectBrowser list access
Pro iect Controller
Pro iect View

ist functions

328
Examples of Creating or Changing Browsers

Also define methods for currentProject (Figure 15.28) and
currentProject: (Figure 15.29); these are the messages used to set and
change the reference to the currently selected project.

Figure 15.28 000

>ystern Browser

I n t erf a f e -
int erf a
I n t erf a ce-Debuq
Interra
Interfa

ce-Browsd—_ I
ce-Inspect! Project i n i t i a l i z e - r e I e a s e

ProjectBrowser list a.ccQS:
i5t function;:e-File Mo ProiectCoritrollet

11An:wer the currently selected project."

project List

τ c urrentPro iec t

Figure 15.29 000

In t erf ace-Β rows (
Ι η t e r f a c e -1 n s ρ e c tj Pro j e c t
Interface-Debug J|

initialize-release I currentProject

Interface-File Mo|
Interface-Transc

ProjectBro1

Project Cent roller
Project View

list function;
text access

project List

t'Q η t Pro j e c t: a Pro j e c t

"Set the currently selected project to be a Project."

currentProject *- a Project,

self changed: # t e x t

329
15.2 A Project Browser

The second statement of the method for currentProject: is self
changed: #text. The purpose of this message is to broadcast the fact
that the list menu selection has changed and that, therefore, any ob-
jects dependent on the selection may wish to change. Subviews are de-
pendent on one another and are notified when one another announces a
change. The subview CodeView must change the text it displays when-
ever the menu selection changes.

According to the arguments of the creation message for the
CodeView, you must define methods for text (Figure 15.30) and
acceptTextifrom: (Figure 15.31). The response from text is the current
project's description, converted from a String to an instance of Text. The
purpose of acceptTextifrom: is to store the String representation of the
text that appears in the CodeView in order to update the description of
the current project. These methods are defined under the category text
access.

Although we have not as yet specified the yellow button menus, you
can now try out the project browser. First use the System Menu com-
mand project to create two projects other than the one in which you are
working (Figure 15.32). In each of them, type some text and choose the

Figure 15.30
ODD

I n t e r f a c e ! - B r o w se
Interfa. c e -1nsρ e ct
I n t e rf a. c e - D e b u g c
I n t e r f a c e - F i l e Mo
Interfa.ce-Tra.nsc

Interfa.ce-Cha.nqi

Project
laMHWriflmicM

Project Controller
Project View

initia.li2e-relea.se
list access
ist functions

"Answer the text to be displayed in the code view."

c υ rre η t Pro i e c t is Ν i I

ifTrue: [t " asTe t]

if False: [t current Project contents as Text"!

330
Examples of Creating or Changing Browsers

Figure 15.31 000

BITOHMC1MIIMIIII

text

accept Text: aText from: whoCares
"Store the text to be displayed in the code view,"

current Project content:.: a Text i t ring,

•t true.

Figure 15.32

System Browser

In t erf ace-Em v\
Interface-Inspect
Interface-Debugc
Interface-File Γνϊο
Interface-Transc

Interface-Chang'

Project

Project Controller
Project Vie Vv1

class

initialize-release

list functions

a c c e ρ t Τ e χ t: a T e χ ΐ f r ο m: w h ο C a res
"Store the text to be displayed in the code view,"

current Project contents: aText string,

τ true

b c r e e η with sample browsers

i

331
15.2 A Project Browser

Figure 15.33 010

yellow button command accept. This stores a description for each proj-
ect so that you will be able to distinguish them in the browser. Evalu-
ate the expression (Figure 15.33)

ProjectBrowser open

(Recall that this expression was included in the comment for the class
ProjectBrowser.)

Interface-Browse
Interface-Inspect
Interface-Debugc
Interface-File Mo
Interface-Transc

Interface-ijhanqi

Project
lawHm.imvMjj
Project Controller
Project View

••««,Ι.ΤΤ-J n.

initialize-release

list function."
r Ρ γ r a r. r ρ •-. •=;

This class represent." a b r o w s e r for c r e a t i n

C r « a t e one b y e ν a I u a t i η q

ProjectBrowser open

ccessing projects.

J

You are asked to designate a rectangular area in which the browser
appears (Figure 15.34). In this new browser, you can select projects and
the descriptions will be displayed. Since the project browser is con-
structed using a StandardSystemView, the blue button menu is immedi-
ately available. Notice, however, that each item in the projects menu
simply refers to the words a Project, rather than to some unique label
or title. Instances of class Project have no titles. To improve the projects
menu, you will have to modify class Project to declare an instance vari-
able for the title and to access the title. We will make this change to
class Project in Section 15.3.

We must now specify the yellow button menus. In this example, we
will declare two class variables in which to maintain a reference to
each menu so that they do not have to be recreated each time the yel-
low button is pressed (as was done in the protocol browser example),
and so that the last selection is remembered.

332
Examples of Creating or Changing Browsers

Figure 15.34 000

System Browser

Ι η t s r f a c e - Β r ο w s e
Interface-Inspect
Interface-Debugc
In t erf ace-File Γνϊο
Interface-Transc

I n t erf a re-Changs

Projec

Proi
Proi

This class represents a. brov·.

C r e a t e ο η e b y eν a I u a t i η g

Ρ r ο i e c t Β r ο w s e r ο ρ e η

a Project
Project
Project

be re en with pictures

Figure 15.35 Bio

Interface-Browse
In terfa.ee-Inspect
Interface-Debugc
Interface-File fvlo
Interface-Tronic

Interface-Chanqi

Project Browser

Project

Project Controller
Project View

initialize-release
list a. c c e s s
list functions
r ft y: Τ Λ Γ: Γ: Μ •-, •-,

Object subclass: # Project Browse r

ί η s t a n c e V a π a b I e Ν a m e s: ' ρ ro j e c t s c u rre η t Pro j e c t '

c I a. s s V a r i a b I e Ν a. ΓΙΊ e s: ' Τ e • t fvi e η u Pro ject Μ e η υ'

poolDict ionar ies: "

c a t e q o r y : ' I n t e r f a c e-Projec t s '

a g a ι η
υ ΓΙ 6 ο
copy
cut

paste
do it

print it
IS*

format
spawn
explain

333
15.2 A Project Browser

In the class-names subview of the system browser, choose the yellow
button command definition. Edit the definition of the ProjectBrowser to
add class variables TextMenu and ProjectMenu. Choose the yellow but-
ton command accept (Figure 15.35). The class ProjectBrowser is
recompiled. (Note that this change can be made even though a
ProjectBrowser may be open.)

Under the instance protocol name text access, specify the method for
textMenu (Figure 15.36).

Figure 15.36 000

System Browser

Interface-Brow si
Interfax e-In spec t
Interface-Debugc
Interface-File fvio
Interface-Transc

Inter fa ce-'-Jha.nqi

Project Browser-

Pro i e c t
i a i

Projecfjontroller
Pro iect View

ι η 111 ο 11; Η - f Ρ ι Η-3 :-e

list funct ions

A n s w e r a menu tor edit ing the re . r m thy code

a c c e p t T e • t:from

c u r r e n t Project is Nil if True: [t n i l] ,

Τ e: • t fvl e ΓΙ υ i s Ν i I i f Τ r υ e:

[T e x t Μ e η u - A, c t i ο η Γνΐ e η υ

labels: ' a. g a i η \ υ η d ο \ c ο ρ y \ c υ t '•·, ρ a s t e \ a c c e ρ t \ c a n c e Γ w i t h C Fi ι

lines: # (2 5)

selectors:

(a g a ί η υ η d ο c ο ρ y S e I e c t i ο η c υ ΐ p a s t e a c c e ρ t c a n c e I)] .

t T«>: tlvienu

The menu is an instance of ActionMenu that is only created if the
class variable TextMenu is nil; otherwise the menu is accessible as the
class variable TextMenu. If there is no selection, then no text editor for
a project description is needed. The method returns the value nil to in-
dicate this. According to the implementation of ActionMenu, you try to
obtain the menu when no project is selected, the subview will flash. If
you now return to the project browser, you will notice that you can
press the yellow button and obtain the menu. Modify one of the project
descriptions to try the editor (Figure 15.37). (Notice that the commands
do it and print it were not included in the menu.) Under the instance
protocol name list access, specify the method for projectMenu (Figure
15.38).

334

Examples of Creating or Changing Browsers
1

Figure 15.37 010

System Browser

I n t e r f a c e - Β r ο w s e
I n t erf.a ce-Inspect
In terrace-De bug ι:
Interface-File Γνϊο
Interface-Transc

Interface-Cha, ngi

Project

Project uon
Project Vie ν

a Project
a. Project

A J ere en with pictures

a. q a. ι η
υ η d o
copy
cut

paste

canc\il

t e χ t Γνΐ e η υ

"Answer a. menu for

current Pro ject is Nil

Text Menu isNil ifTn.

[Textfvienu «- Acti

I a b e I s: ' a. g a i η \ u r

lines: #('2 5)

selectors:

(a. g a. i Γι ι J η d ο c ο ρ y S e I e c t i ι J η c υ t ρ a. s t e a. c c e ρ t c a n c el')],

t Text Menu

Figure 15.38 ΟθΟ

System Browser

Projec t Browserl

Interface-Brows
I n t e r f a c e -1 n s ρ e c tj Pro j e c t
Interface-Debug Pro iPCTnrnwspr Μ 11 ~. τ across
Ι η t e rf a c e - Fi I e Μ ol Pro i e c t"C ο η t ro Her

Interface-Cha

initia.lize-relea.se I currentProiect

Ι η t e r f a c e - Τ r 3. η s c I P r ο j e c t V i e
list functions
t e χ t a c c e s s

projectList

pro j e c t Μ en υ

"Answer a menu for accessing or changing projects."

current Project isNil ifTrue: [t n i l] ,

Pro j e c t Menu is Nil i fTrue:

[Projectfvlenu *- ActionMenu

labels: 'enter'··, add pro ject'1·. re move project" withCRs

lines: # ()

s e I e c t ο r s: # (e η t e r F'r ο j e c t a d d Pr ο i e c t re m ο ν e Pr ο j e c ΐ)] .

tProiectMenu

J

335
15.2 A Project Browser

The menu has three commands.

enter

add project

remove project

Enter the selected project.

Add a new project to the menu. Prompt the user for a proj-

ect title. Initially the new project has no description.

Remove the selected project, unless it is the one in which

the user is currently running.

The messages associated with each item must be specified in the in-
stance protocol of class ProjectBrowser. Figures 15.39, 15.40, and 15.41,
show the methods for enterProject, addProject, and removeProject; they
are each categorized under the protocol for list functions,

Figure 15.39 000

Project Browser

Interface-Brow
Ι η t e rf a. c e -1 n s ρ e c tl Proj e c t
I n t e rfa c e - D e b u q \t-lJMJAi.\J.V}LU.
I n t e rfa c e - Fi I e Μ οι Proj e c t C ο η t ro Her
Inter face-Tr a η s c Ι Ρ r ο j e c t V i e w

ΙϋΜϋΗΙΜΜΒίηίΜΙ

Interface- C h a n q ί

te χt a ccess

enterProject
"Make the selected project the current one,"

currentProiect notNil ifTrue: rcurrentPrnject enter!

The method for removeProject has several interesting aspects. First,
if no project is selected, the command means nothing. Second, if the
project selected is the project in which you are currently running, delet-
ing that project is very dangerous. The message error: will cause an er-
ror notification (notifier view) to appear, warning you that you are
trying to do something that should not be done. If you try to remove
the project in which you are running and get the notifier, simply choose
the blue button command close to erase the notifier from the screen.

336
Examples of Creating or Changing Browsers

Figure 15.40 000

Project Browser!:;

addProject
"Add another project to the menu of projects,"

| aProject |
a P r ο j e c t *• Project η e w.
project." add: aProject.
currentProject *• aProject. ^
self changed: # current Project ^

Figure 15.41
000

Interface-Browse
Interface-Inspect
Interface-Debugc
Interface-File Mo
Interface-Transc

Project Browser!

Project

Project Controller
Project View

initialize-release I addProject
list access I enterProject

text access

rernoveProject
"Remove the currently selected project from the menu."

currentProject is Nil if True: [t s e l f] ,
currentProject == Project current if True:

[•tself error: 'You can not remove the project in which you
&.rti currently running.'],

c υ rrii η t Pro j e c t re I e a s e.
projects remove: currentProject if Absent: [] . ^
currentProject *- nil.
self changed: # current Project^

,., Jiiilll

^ H |

337
15.2 A Project Browser

The third statement is currentProject release. The message release is
sent to a Project so that it can remove from the system any views that
it knows about. The style of using the viewing and controlling compo-
nents of the system includes sending the message release to a view
whenever it is erased from the screen and should no longer be accessible.

You can improve on this method. For example, you might check to see if the proj-
ect to be removed has any views or unsaved changes and, if so, you can inform the
user and ask for confirmation. The system class Confirmer can be used for this pur-
pose.

The last statement of the method broadcasts the fact that the menu
changed again. Note that this time the argument is the Symbol
#currentProject, whereas in the earlier example the argument was
#text; these arguments help the CodeView decide what messages to
send to the model to obtain updated information.

Try the yellow button commands. Enter a project (Figure 15.42). Cre-
ate some views in the new project, including a project browser (recall
that to create a project browser you evaluate the expression
ProjectBrowser open). Use the project browser to return to the original
project. Try to remove a project, and to add a new one.

Figure 15.42 010

System Browser

add projfpt
remove project

I n t erf a ι
In t erf.a
In t erf a

Interface-Change

rernoveProject
"Remove the currently z>=

currentProject is Nil ifTru
currentProject == Pro iec 1

[τ self error: 'You car
•are currently running,'],

c υrreη tPro iec t release.

Screen w i t h sample browser s

projects remove: currentProject if Absent: [] ,
currentProject - nil.
self changed: # current Project

338
Examples of Creating or Changing Browsers

Notice that if no item is selected and you try to obtain the yellow
button menu in the list menu subview of the project browser, the
subview flashes. However, when no item is selected in the subview, it is
appropriate to be able to invoke the command to add a new project. The
method for projectMenu in class ProjectBrowser can be changed. One
such change is shown in Figure 15.43. When the currentProject is nil, the
menu is an ActionMenu of one item, add project; when currentProject is
not nil, the menu is an ActionMenu of three items. (In fact, the class
variable ProjectMenu is no longer used.) Figure 15.44 shows the yellow
button menu that appears when no item is selected in the subview.

We have fulfilled all but one specification for the ProjectBrowser. We
still have to provide a prompter for the title of a new project. To do so,
we must first modify class Project.

Figure 15.43
000

Interface-Browse
Interface-Inspect
Interface-Debuge
Interface-File Mo
Interface-Transc

Project Browser-

Project ink iali2e-relea.se

ProjectBrowsQr list ace
Ρ reject uon tr oiler
Project View

Interface-rface-Changl·

I

I i s t f υ η c t i ο η s
text access

current Project
currentProject:
project List

projectMenu

" A n s w e r a m e η υ for accessing or changing projects."

current Pro ject is Nil

i f Τ r u e: [Project Μ e η ι j *· Act ionMenu

labels: 'add p r o j e c t ' lines: #(') selectors: # (a d d P r o j e c t)]

if False: [Pro jectMenu - Act ion Menu

labels: ' e η t e r \ a d d ρ r ο j e c t '·•. r e m ο ν e pro ject ' w i t h G Fi s

lines: •# ()

s e I e c t ο rs; # (' e η t e rPro i e c t a d d Pro j e c t re m ο ν e Pro j e c t)] .

t P r o j e c t M e n u .

339
15.3 Modify Class Project

Figure 15.44 010

System Browser·!

I n t e r f a c e - B r o w 3
I n t erf a ce -Ins pec
I n t e rf a c e - D e b υ q c
Interface-File M"O
Interfa c e-Tra nsc

Interfa c e-Cha

Pro I«L:

Proiec
Proiec

Project Browser

a Project
a Project

projectMenu
1' A n s w e r a m e η υ f ο r a c c ί

c υ t't'ii ri t Pro i e c t is Ν i I

i f T r u e : [Pro jer t M e n u

Labels: 'add proje

if False: [P r o j e c t M e n u

labels: ' e n t e r '•·, a d d ρ r ο j e c t \ r e m ο ν e p r o j e c t ' w i t h >_: Fi s

lines: # ()

selectors: # (e n t e r P r o j e c t addProjec t remo veProjec t)] .

τ Project Menu

X

15.3
Modify Class
Project

Close any example project browsers and project views that you might
have created by choosing the blue button command close in each view.

In the system browser, choose the class name Project. The definition
for Project displays in the text subview of the browser. Change the defi-
nition by adding the instance variable title (Figure 15.45). Choose the
yellow button command accept. The class is recompiled. All existing in-
stances of Project are updated to have one additional instance variable;
in each case, the initial value of the variable is nil.

Each of the existing projects must be given a title before you can
change the way in which Projects print a description of themselves. One
way to solve this problem is to create an inspector for all existing proj-
ects by evaluating the expression Project all Instances inspect (Figure
15.46a). There is at least one Project, the one in which you are current-
ly running.

Choose each project, one at a time, and open an inspector on it (Fig-
ure 15.46b). Choose the instance variable name title. In the text subview
of the inspector, type a literal String that is the title for this project
(Figure 15.46c). Choose the yellow button command accept to store the
title. Do this for each existing Project. Close each inspector.

340
Examples of Creating or Changing Browsers

Figure 15.45
010

System Browser

Interface-Brow si
Interfax: Θ-Inspect
In t erf 3 ce-Debug:
Interface-File Γνϊο
Iriterf3.ce-Tr3.nsc
miaiBiiiaiaiiiia»

I n t e r f a c e - υ hang n

Pro iect Browser
Pro ject Con t roller-
Pro iect View

initia .lize-relea. se
control l ing
d e ρ eη dent s a c ce:
c h a n q e rn a n a q e rn ι

private

b t r i η g Η ο I d e r s u b c l a s s : # Ρ r ο j e c t

i η s t a η c e V a r i a. b I e f'• J a m e s: ' ρ r ο j e c t W i η d ο •

c 13. s s V a ri a. b I e I'J a. rn e s: ' C υ r r e n t Ρrο i e c t ?

p o o l D i c t i o n a r i e s : "
c a t e qο r y: ' I n t e r f a c e - Pro i e c t s'

ν 3 pr

a. q a ι η

υ η d o

c ο ρ ν

cut
paste
do it

print it

cancel
rormat
spawn
explain

a. n q e b e t

Figure 15.46a

by stern Browser!

Ιη terra
lnr.erfa
Interra
Interra
In terra

Brov·.
Inspect
Debug:
File Mo
Transc

Interface-Chanqi

0
Pro j e c t Browser-
Pro j e c t Controller-
Pro iect V iew

ir1iti3.lize-relea.se
con trol l ing
d e ρ e η dent s a. c c e
c h a n q e rn a. n a q e rn

private

ι gH older subclass: #Project
. e V a. r i a. b I e Ν 3. rrι e s: ' ρ r ο j e c t W i η d ο w s ρ r ο j e c t C h a. n g e S e t

t i t l e '
sηtPro iect '

341
15.3 Mqdify Class Project

Figure 15.46b

S ν 51 e m Β ro w s e r I

I n t e r f a c e - Β ro w s e
Interface-Inspect
Interface-Debugc
Interface-Fi le Mo
I n t e r f a c e - Τ r a n s c

Interface-Changs

Project
Project
Project

StringHolder subclass: # F

ice Variable Nam
Workspace

Project al l lnstances inspec

TO

a Project

Figure 15.46c BIO

System Browser!

Interface-Browse
Interface-Inspect
Interface-Debugc
Interface-File Mo
Interface-Transc

Interface-Changs

Project Brovv
Project Cont
Project View

ci

S t r i η q Η ο I d e r s u b c I a s 5:" # Pr ο j e

,. . ' l i c e V a r i a b I e Ν a m e s: '
Workspace

.-..·.-. i .-..-.<• U .-. I .-I

Ρ r ο j e c t allln s t a n c e s inspect

Ordered. Collect ion

Project

'Top Project'

a g a ι η
u η d ο
copy

c υ t
ρ a s t e
do it

print it

342
Examples of Creating or Changing Browsers

Currently, when a Project prints a description of itself, it uses the de-
fault description, a Project, specified in the method for printOn: as de-
fined in class Object. We want a Project to print its title instead. Create
the protocol printing for class Project, and specify a new method for
printOn: (Figure 15.47), You must also provide a message for setting the
value of title that can be used in creating a new Project. The value
should be an instance of String. Add the message title: to the category
initialize-release (Figure 15.48).

Now open a new project browser. You can see that each existing
project now displays its title in the list menu (Figure 15.49).

Figure 15.47
roc

Interface-Browse
Interface-Inspect
Inter fa ce-Debugc
Interface-File Mo

Project Browser
Project Controller
Project View

controlling
dependent;, acce:
change maηagem
lock access

aStream next Put AII: title

343
15.3 Modify Class Project

Figure 15.48 BOO

System Browser

Interface-Browse
Interface-Inspect
Interface-Debug:
Interface-File Γνΐο
Interface-Transc

•iii.u«K»iMaM«a»)

Interface-Changs

Project
Project Browser
Project Cunt roller
Pro jeer v iew

initiahze-release
print ing
contro l l ing
d e ρ e η d e Γι t s a c c e
c h a. n g e m a. n a g e rn
lock access

release

t i t l e : a.String

"Set the title of the project,"

title - aStrina

Figure 15.49

Project Browser

bvstem Browser

Interface-Browse
Interface-Inspect
Interface-Debug:
Interface-File Γνϊο
Ι η t e rfi c e - Τ re η s c

Interface-Changi

ProiectBr
Projec tC:
Project V'i,

t i t le: abtrmg

I"i h e t it le of the ρ mi err

Project aliinstanc es inspect

Ρ r ο i e c t Ει r ο w s e r ο ρ e η

Top Project

344
Examples of Creating or Changing Browsers

The next step is to change the method associated with addProject in
class ProjectBrowser to prompt for a title. The new method is shown in
Figure 15.50. It uses an instance of the system class FilllnTheBlank to re-
quest a title, then sends the newly created project the message title: in
order to store the response. The two arguments in the creation of the
FilllnTheBlank instance specify the noneditable text that appears in the
upper subview, stating what kind of information is expected, and the
editable text that appears in the lower subview. In this case, the "de-
fault" title, a Project, will appear in the lower subview; it can then be
edited by the user.

Figure 15.50
000

addProject
"Add another project to the menu of projects."

| a Project a3tring|
•aString - FilllnTheBlank

request: 'Title for Project?'
i η i t i a IA n s w e r: 'a. Project'.

a String isEmpty if Τ rue: [τ self],
a Project *• Project new title: a String,
projects add: a Project,
current Project *- a Project,
self changed: #current Project

The user of this kind of prompter can abort the action of adding a
project by typing nothing in the lower subview. The second statement
in the method for addProject tests to see if the response is nothing
(isEmpty) and, if so, terminates (Τ self).

Try it. Choose the yellow button command add project (as shown ear-
lier). A prompter appears. The initial response is the default title a Proj-
ect (Figure 15.51a). Edit the response and then choose the yellow button
command accept (Figure 15.51b). The new project appears in the project
browser menu (Figure 15.51c).

Figure 15.51a BOO

345
15.3 Modify Class Project

addProject
"Add another project to the]

| a Project aString|
aString «- FilllnTheBlank

request: 'Title for Project'
initial A ri s w e r: 'a P r ο j e c t ' ,

a. String isEmpty if True: [t s e l f j .
aProiect *· Project new title: aString.
project s add: a Project.
current Project *· a Project.
i.zlf changed: # current Project

Figure 15.51b Oio

Project Browser
System B r o w s e r !

Inter' τ·α>. c e - Β r ο w s s
Interface-Inspect
Ι η t e rf a c e - D e h υ g >'•
Interface-File Mo,
Interface-Transc

In ter face-Change

Project

Project Con tro
Pro iect View

fostaric»!
addProject

"Add another pro ject to the]

| a Project aStr ing|

aStr ing - FilllnTheBlanl·

Top Ρ
Tit le for Proiec

Pro iect T w o

request: 'T i t le for Project? '

init ial A n s w e r: ' a Pro j e c t ' .

a Str ing is Empty if True: [-tself],

aProiect - Pro iect new t i t le : aStr ing,

projects add: a Project.

ο u r r e η t Ρ r ο j e c t *· a p r ο j e c t .

self changed: # c u r r e η t P r o j e c t

a g a ι η
υ η d o
copy

cut

do it
[print i t

346
Examples of Creating or Changing Browsers

Figure 15.51c 000

by stern Browser I

Interface-Browse
Interface-lnspec
In t erf a ce-Debuqc
Interface-File Mo
Interface-Trans c

Interface-Chanqt

Top Project
Proiect Two

addProject
"Add another project to the

| a Project aString|
a.Strinq *• FilllnTheBlank

request: 'Title for Project?'
i η i t i a IA n s w en 'a. Project'.

a.Strinq isErnpty if Τ rue: [t s e l f] ,
a Project - Project new title: a String.
projects add: a P r ο j e c t.
current Project - a Project,
self changed: # current Project

15.4

Change the
System Menu

It would be more convenient to be able to create a project browser with
the same ease that we can create a system browser, that is, by choosing
an item from the System Menu.

The creation of the System Menu is specified in the system class
ScreenController. In the system browser, choose the class category Inter-
face-Support and then choose the class name ScreenController. Choose
the browser menu item class. The only message selector in the category
class initialization is initialize. Choose it (Figure 15.52). The System Menu
is a PopUpMenu. PopUpMenu is an alternative way to create menus
that know about item labels and lines, similar to ActionMenu. A
PopUpMenu does not store the messages associated with the menu
items. Class ScreenController has two class variables in which the
PopUpMenu and the corresponding array of messages are stored
(ScreenYellowButtonMenu and ScreenYellowButtonMessages). To modify
the System Menu, you must edit the method for ScreenController
initialize. Delete the exit project and project items in the menu labels and
insert project browser. The line numbers must change as well as the
messages. Delete the messages exitProject and open Project, and insert
the new message openProjectBrowser. Choose the yellow button com-
mand accept to recompile the method (Figure 15.53).

347

Change the System Menu

Figure 15.52 iooo

Kernel-Support
Interface-Frame1·.•

Interface-Lists
Inter face-Text
Interface-Men us
I n t e rf a c e - Pro m ρ t

Explainer
MouseMenuContr

ScrollCont roller
S t a n d a r d S y s t e m ί

c l a s s i n i t i a l i z a t i o n h n i t i a i z e

initialize
"Initial ize the S y s t e m Menu."

S c r e e η Υ e 11 o w Β υ 11 ο η Μ e η υ *•

PopUpΜenu

labels:

' r e s t o r e display

exi t p r o j e c t

project

file list

browser

wori space

Figure 15.53 Οίο

Kernel-Support
Interface-Frame1·/

Interface-Lists
Interface-Text
Interface-Menus
Interface-Prompt

Ε χ ρ I a i η e r
MouseMenuContr

ScrollCont roller
StandardSysternC

'restore display

project browser-

file list

browser-

workspace

system transcript

system workspace

s a v e

quit'

lines: # (1 7),

S c re e η Υ e 11 o w Butt ο η Μ e s s a g e s *-

(re s t ο re D i s ρ I a y ο ρ e η Pro j e c t Β ro w ser

again
undo
copy

cut
paste
do it

print it

cane el
f ο rm a t
spawn
explain

348
Examples of Creating or Changing Browsers

You need to update the class variables and to inform existing in-
stances of ScreenController that the menu has changed. This is done by
evaluating the expressions

ScreenController initialize.
ScreenController alllnstancesDo: [:sc I sc initializeYellowButtonMenu]

that appear at the end of the method initialize, as shown in Figure 15.54.

Figure 15.54 010

Kernel-Support
Interface-Frame1·/

Interface-Lists
Interface-Text
Interface-Menus
Interface-Prompt

Ε χ ρ I a i η e r
MouseMenuContr

KMMaMwnmmai
be rollCont roller
Standardsvjtemf

MEMMIIIHEIIBC^IUI

lines: # (1 7),

S c r e e η Υ e 11 o w B u t t ο η Μ e s s a g e s *-

(r e s t ο r e D i s ρ I a y ο ρ e η Ρ r ο j e c t Β r ο w s e

ο ρ e η F i I e L i s t ο ρ e η Β r ο ν·.·· s e r ο ρ e η W ο r k s ρ

ο ρ Θ Γι S y s t e m W ο rks ρ a c e

save qui t) .

η Τ ran scr ipt

The ScreenController must be able to response to the message
openProjectBrowser. The method is shoiwn in Figure 15.55. Add this
method to ScreenController. The System Menu is now changed so that
you can try it out (Figure 15.56).

Now that you can create project browsers using the System Menu, you will find
that adding projects and removing projects must be broadcast in some way to all
existing project browsers. Moreover, unless you are careful, broadcasting a message
to change a browser will cause it to redisplay. If project browsers from different
projects redisplay on the single display screen, this will look very peculiar. Thus
you might prefer to add a menu item to the yellow button menu of the project
browser list menu subview, update projects. You can broadcast the addition and re-
moval information without updating the display of the browser, and then select the
new menu item update projects to obtain the proper display. This is the technique
adopted by the system browser. Perhaps you can think of an improved approach.
Also note that if you do change the menu for the project browser, you must reset
all the class variables referring to the menu.

349

15.4 Change the System Menu

Figure 15.55

Kern el-Sup port
Interface-Frame'·

imiaitnKHaiimw!

Interface "List 5
In terrace-Text
Interface-Menus
Interface-Prompt

Ε χ ρ I a i η e r
MouseMenuContr

initialize-release
control defaults

ScreenContro 9r Imenu messa<
be rol lCont roller
S t a n d a. rd S ν s t e m (

cursor
private

ex it Project
ο pen Browser
openF'roject

ο ρ e η S y s t e m W ο r k
ope η T r a n s c r i p t
open Workspace

openProjectBrowser

Ρ r ο j e c t Β r ο ν·.·1 s e r ο ρ e n ;

Figure 15.56

b y s t e ΓΓΙ

kernel-
Interfac

In t erf a c
Intarfac
In t erf a c
Interfar

S c >

ο ρ e ri S y

i η i t i a 1 i r

Bro\

.ιυμμ
e-Fr

e-Li
e-T
e-M
e-Pt

Ρ ρ Γι '

31 e η-

re en
μμΓ. ι"

, 3 e r L

st s
9 :•: Τ

e η υ s

0 ΓΓι p t

Ε χ ρ 1 a i ri e r

Μ ο υ s e Μ e η υ υ ο η t r

Screen Co rttrrtter
: = .crol ir:onrrol ler

It
·

insta rice|i:;i:iyisisiSi::i,

restore dis

"****η t i i e 115.1

WL.rK:.pd

sv'stern t r a r
system worl·

3 a v e
quit

lines: # (1 7),

e l l o w B u t t o n M e s s a q e s -

(r e 3t ο r e D i s ρ 1 a. y ο ρ e η Ρ r ο j e c ΐ Β r ο w s e r

ο ρ e η F i 1 e L i s t ο ρ e η Β r ο w s e r ο ρ e η W ο r k s ρ a c ί

Wori space

3 a ··.•• e qui t) ,

I: o ri t r

:ontr

owBu

j 11 e r i η i t i a 1 i r e,

Her a l l lnstancesDc

t t o n M e n u] "

: [:c

play

ffifl mm 'mm

,• I · . "

script
space

I

openTra nscr ipt

is

How to Find and
Correct Errors

In the previous book parts, you were introduced to the views and menus
that provide support in finding out information about existing system
functionality and in creating new functionality. In examples presented,
we attempted to minimize the errors you would encounter. The purpose
of Part Four is to explain how to find and correct errors, in particular,
syntax errors and runtime execution errors. The examples will ask you
to create errors so that you can learn how to correct them. The error-
handling support takes the form of error correction aides, error notifi-
cation (either in-line error messages or use of the notifier view), and the
debugger view. The debugger is used to find an error that occurs during
execution of an activity, and it is used to find out how an activity is
implemented.

ΙΙΙΙΙΪΙ

16
Spelling Correction

354
Spelling Correction

A major area of research in the development of programming environ-
ments has been to provide on-line assistance to the programmer. Some
of the earliest work in this area was done in the context of the develop-
ment of the Interlisp programming environment under the research ti-
tle of "programmer's assistant." [W. Teitelman, "Automated
Programmering—The Programmer's Assistant," Proceedings of the Fall
Joint Computer Conference, Dec. 1972; W. Teitelman and L. Masinter,
"The Interlisp Programming Environment," IEEE Computer Magazine,
April 1981, pp. 25-33]. One of the results of this research was the intro-
duction of the DWIM, or "do-what-I-mean" spelling correction, ap-
proach to interaction and error handling.

Adapted from this research on spelling correction, the Smalltalk-80
system includes the ability to assist the programmer by correcting mis-
spellings of variable names and message selectors. Spelling correction is
done within the context in which you are working, that is, within the
scope of the variables and message selectors of a class definition or of
an interrupted context. This chapter describes the spelling correction
mechanisms as you might encounter them when evaluating expressions
in a workspace. Chapter 17 explores the way in which the Smalltalk-80
parser reports syntax errors in method definitions, and the way the sys-
tem uses the spelling corrector to help you correct these errors. And
Chapter 18 illustrates how you are notified of runtime errors that are
associated with unrecognized message selectors, and how the spelling
corrector can help you determine the correct message selectors.

Figure 16.1a shows a workspace in which the text consists of a tem-
porary variable declaration for bic, and an expression to assign an in-
stance of class Pen to the variable spelled bik. This could either be an
undeclared variable name, or a misspelling. If you select this text and
then choose the yellow button command do it, the system guesses that
bik is an undeclared variable. This variable is selected and a menu of
optional next actions is displayed (Figure 16.1b). Four of these actions
involve declaring the variable; one tries to fix its spelling.

Figure 16.1a Oio

Figure 16.1b

355
Spelling Correction

nnn •
UUU mm

Hf|fllHil|lii yy QΓ"Κ5P3.QP joJfliilflfifififlflfififlflflBfllffl|

illiiiiii 1 b i c 1
iiiiiii:!:!:!:! I m i *• Ρ Ρ Π TIPW

declare bik as

t e rn ρ
c 1 a. z 5 ν a. r

global 1^
undeclared
correct it

abort

temp

class var

global

undeclared

correct it

abort

Declares the variable to be a temporary. The variable

name will be inserted into the text, delimited by the verti-

cal bars. If the vertical bars do not already exist in the text

view, they are added. (See Figures 16.4a, 16.4b, and 16.4c

in which this declaration is illustrated.)

Declares this variable to be a class variable of the class of

the method in which the error was found. If the error is

found in the text subview of the inspector, then this decla-

ration will make the variable a class variable of the inspec-

tor. At the level of a workspace, the class is assumed to be

UndefinedObject, the class of the object nil. (All class vari-

able names must start with a capital letter.)

Declares this variable to be a global variable, which means

that the variable is included in the system dictionary,

Smalltalk. (All global variable names must start with a cap-

ital letter.)

Leaves this variable undeclared, which means it is includ-

ed in the system dictionary, Undeclared. A message that

states that the variable is undeclared prints in the System

Transcript, if it appears on the screen.

Tries to determine the most likely correction. (This is done

by searching the known symbols in the system for the clos-

est match.)

Forgets the attempted evaluation.

356
Spelling Correction

Choose the command correct it (Figure 16.1c). The system determines
that the most likely correction for bik is bic. A confirmer is displayed
indicating that the proposed correction is bic. Confirm the choice by
choosing the command yes (Figure 16.Id). The correction replaces the
erroneous variable in the text of the workspace (Figure 16.le) and the
expressions are successfully evaluated.

Figure 16.1c 100

•'> 0 Γ" Κ. i D 3 . L- θ ΒΒΒΒΒΒΒΙΠΗΗΗΙΙΗΗΙΗΙΗΗΗΗ

I b i c Ι
ImS *• Pen new

declare bik a.5 | WMtt

temp Ι ΙΠΜΠΠΜΙϋ
class var 1 Wwrt

qlobal Ι ϋϋϋϋϋϋί;
j η declared} ϋϋιίϋϋιΗ!

abort ^j :::::::: j

Figure 16. Id IU0

Workspace ^ ^ ^ ^

^ y *• Pen new

Confirm correct ion to bic WMM

i yes ^ - ί no ::ί|φ!Φ:>

In Figure 16.2a, a statement has been added to the text in the
workspace, but the trailing colon for the keyword go was omitted. The
attempt to evaluate the expressions fails. The erroneous message selec-
tor is selected, and a menu appears indicating that the problem is that
the message go might be a new message (Figure 16.2b).

357
Spelling Correction

Figure 16. le
ooo ι

m

I
:•£:

1
1
I
i

1 bic | \

Figure 16.2a 010
a c c 9 ρ t

c a. π c 91

Figure 16.2b ιοο 11

Mm Workspace | H | |

s i n ι bi° ι ijiiiHiiiiiii
iijiiiiiiiijjii! bic *- Pen new, Wtitt

Q o 5 a n 9 w

proceed
| co rrec

rnessaqe 1 ;i:i;i;iii;i;i

358
Spelling Correction

The menu indicates three optional actions.

proceed as is

Figure 16.2c Bio

correct it

abort

Proceeds on the assumption that this message will eventu-
ally be implemented. This is a likely occurrence if you take
a top-down approach to programming. This option really
only has meaning in the context of compiling a new meth-
od, not in the context of evaluating an expression in a
workspace.

Tries to determine the most likely correction.

Forgets the attempted evaluation.

Choose the command abort.
As shown in Figure 16.2c, the keyword go was corrected to be go:,

and then a third statement was added. The attempt to evaluate these
expressions fails (Figure 16.2d). A menu appears indicating that the
problem is that the message trn: might be a new message. Choose the
action correct it. The system guesses that turn: was intended (Figure
16.2e). Confirm that this is the correct message by choosing the
confirmer menu item yes. The correction is made in the text of the
workspace. The evaluation is restarted, and the new Pen draws a line
on the display screen (Figure 16.2f).

359
Spelling Correction

Figure 16.2d 100

Wor

bic

bic
b i Γ:

*• Pen new,
q ο; 10 0,

| trn:i S d Π 9 W

proceed ·-.
correct

abort

ΓΓι 9 S S d. q 9

.s is|

it ^^^^^^H

Figure 16.2e 100

1 bic |
bic *• Pen new.
bic go: 100.

Confirm correction to turn:

I y« £ j no

Figure 16.2f

360
Spelling Correction

For the next example, edit the statements in the workspace so that
there are four expressions; the second (and new one) changes the form
source (the "brush") of the Pen to be a new Form. Evaluate the state-
ments (Figure 16.3a). The class name Form was misspelled as indicated
by the menu that appears (Figure 16.3b). Choose the command correct it.
The system guesses that an appropriate correction for Fom is Form (Fig-
ure 16.3c). Confirm by choosing the menu item yes. Evaluation is
restarted, but another error is found (Figure 16.3d); a message is not
known. Choose the abort command. Parentheses are needed. Notice also
that the argument to extent: should be an instance of Point. Make both
corrections (Figure 16.3e).

Delete the declaration of bic as a temporary variable; evaluate the
remaining expressions (Figure 16.4a). The system notices that bic is not
declared (Figure 16.4b). Choose the item temp in the correction menu
that appears. The declaration is inserted into the text (Figure 16.4c).

Figure 16.3a

Figure 16.3b ioo

I b i c |

bic *- Ρ9Π new.
bic so υ re 9 Form:
bic go: 100.
bic turn: 89

new extent: 20,

1

361
Spelling Correction

Figure 16.3c 100

i bic |
bic *• Pen new.
bic source Form: [^Q
bic go: 100,
bic turn: 89

new extent: 2u.

Confirm correction to Form
:.·.·.™....-.-.-.·.·.·.·Λ-.-.·.-.......·.-Λ....·^!^^^
! y e ; ^ ; no

Figure 16.3d 100

8888888
8888888

V'/orl·

1 bic
bic

bic

bic
bic

1
«- Pen new,
sourceForm:

go: 100.
turn: 89

Form new extent:

| sourceForm:extent: is

proceed a
| correct

a. new message

s isl
it I
* ? P ^

Figure 16.3e 000

I bic I
bic *- Pen new,

bic source Form: (Form new extent: 20'1'IOj,
bic go: 100. \
bic turn: 89

362
Spelling Correction

Figure 16.4a ΟΙΟ

I Worl·

Ibic

Ibic
Ibic

.space I
*• Pen new.

source Form: (Form new
go: 100.
turn: 89HH|^^HH

extent: U 0 @ 1 U)

β g a ι η
undo
copy
cut

paste

•anagit
prir^ i t |
a c c e ρ t i
r ,=i η r Ρ Ι Ρ

I

Figure 16.4b 100

• Pen new,
bic source Form: (Form new extent: 20@10).
bic go: 100. _
bic turn: 89 declare bic as

c I a. s s ν a. r
global

undeclared
correct it

abort

Figure 16.4c BOO

- Pen new,
bic source Form: (Form new extent: 20@10),
bic go: 100.
bic turn: 89

J

r

Syntax Errors

17.1 Variable Name or Message Selector Errors

17.2 Poorly-Formed Statements or Methods

364
Syntax Errors

17.1

A compiler is used in three places in the Smalltalk-80 system:

1. when you add a method to a class description by choosing the
command accept in a system browser,

2. when you evaluate an expression by choosing either the command
do it or print it, and

3. when you file in a class description from an external file.

This chapter illustrates the kinds of syntax errors you can encounter in
the first two cases; Section 22.2 describes the third case.

Variable Name
or Message
Selector Errors

The spelling corrector is a part of the syntax analysis available when
you compile class methods. To illustrate the kind of syntax errors that
you can encounter, follow an example implementation of the class
FinancialHistory. We will continue to work on this FinancialHistory exam-
ple for several consecutive chapters, so try to save your work between
sessions.

Add the class category Financial Tools and define the class
FinancialHistory. The class definition is shown in Figure 17.1. (If you
have forgotten how to add class categories and classes, review Chapter
9.) Choose the browser menu item class so that you can define a mes-
sage understood by the class FinancialHistory. This message is an in-
stance creation message. Add the class protocol instance creation.

In protocol instance creation, type the method for initialBalance:
shown in Figure 17.2a. Choose the yellow button command accept. The
method for initialBalance: consists of sending the new instance of
FinancialHistory the message setlnitialBalance: so that the instance vari-
ables can be initialized. This message is not implemented as yet, so a
correction menu, like the ones introduced in Chapter 16, appears. The
menu states that setlnitialBalance: is a new message (Figure 17.2b). The
next thing you will do is define this message, so choose the action
proceed as is to complete the compilation of the method initialBalance:
(Figure 17.2c).

365

17.1 Variable Name or Message Selector Errors

Figure 17.1 BOO

b y s t e rn - (J h 3. η q e s
S y s t e rn - C ο m ρ i I e r
S y s t e rn - Fi e I e a s i η g
Files-Streams
Fi les-Abstract
Files-Xerox A l t o

0 b j e c t s υ b c lass: # Fi η a n c i a IH i s t ο r y

i η s t a. π c 9 V a r i a b I e Ν a m e s: ' c a s h 0 η Η a n d e χ ρ e η d i t u r ι

c I a s s V a ri a b I e Ν a rn e s: "

poolDict ionaries: "

c a t e g o r y : 'Financial Tools'

Figure 17.2a Bio

5 » ; t e rn - C h a n g e s
3 y s t e rn - C ο rn ρ i I e r
S y s t e rn - Fl e I e a. s i η q
Fi les-Streams
F i l e s - A b s t r a c t
Files-Xerox A l to

FinancialHistory instance creation

i η i t i a IB a. I a n c e: a rn ο υ Γι t

" C r e a t e a. new FinancialHistory w i t h amount as the current cash

on hand."

s υ ρ e r η e w s e 11 n i t i a IB a. I a n c e: a rn ο υ η t

a. g a ι Γι
undo
c ο ρ ν

c υ t
ρ a s t e
do it

print it

c a n c*
Term at
.-pawn
explain

366

Syntax Errors

Figure 17.2b 100

S y s t e rn - C h a n g 9 s
S y s t e m - C ο rn ρ i I e r
S y s t e ΓΙΊ - Fi e I e a. 3 i η cj
Fi les-Streams
F i l e s - A b s t r a c t
Fi les-Xerox A l to

i ri i t i a. IB a I a n c e: a rn ο u η t

" C r e a t e a new Fin a ncialHist ο ry w i t h a mount as the c u r r e n t cash

on hand,"

t s υ ρ e r η e w jetlnitialBalance: amount

| setlnitialBalance'· is a. new messa gc

correct it
abort

Figure 17.2c BOO

S y s t e m - C h a n g e s
S y s t e rn - C ο rn ρ i I e r
System-Releas ing
Fi les-Streams
F i l e s - A b s t r a c t
Fi les-Xerox A l to

FinancialHistory instance creation initialBalance:

i Γι i t i a IB a. I a n c e: a m ο ι J η t

" C r e a t e a new FinancialHistory w i t h amount as the c u r r e n t cash

on hand,"

t s u p e r ne· setlnitialBalance: amount

J

367
17.1 Variable Name or Message Selector Errors

Now choose the browser menu item instance and add instance proto-
cols transactions, inquiries, and private. Under private, we will categorize
all messages that should only be sent by an instance of FinancialHistory
to itself (self). Define setlnitialBalance: under the protocol private (Figure
17.3a). Notice that for the example, you are to mistype the instance
variable cashOnHand—the 0 should not be capitalized. A correction
menu appears indicating that cashonHand is not declared (Figure
17.3b). Choose the command correct it.

A confirmer appears indicating that the probable correction is
cashOnHand. Confirm by choosing the menu item yes (Figure 17.3c). As
a result of your choosing yes, the corrected variable name is inserted
into the method, the method is successfully compiled, and the message
selector is added to the browser menu (Figure 17.3d).

Figure 17.3a 010

S y s t e m - C h a n g e s
System-Compi ler
S ν s t e m - R e I e a. s i η q
Fi les-Stream 5
F i l e s - A b s t r a c t
Fi les-Xerox A l to

s e 11 n i t i a. IB a I a n c e: a rn ο υ η ΐ

"Initialise the i n s t a n c e var iables of the new F inancia lHistor

cashonHand - amount,

expenditures +- D i c t i o n a r y new

a. g a ι η
υ η d ο
copy
cut

ρ a s t e
do it

print it

c a n ci£ I
f ο rrn a t
spawn
e 'plain

368
Syntax Errors

Figure 17.3b 1DD

S y s t e m - C h a. n g e 5
S y s t e rrι - C ο m ρ i 1 e r
System-Releasing;
File;-Streams
Fi les-Abstract
Files-Xerox Alto

trans a c t i o n ;
inquiries

; e 11 η i t i a. ΙΒ a. I a. η c e: a. m ο u η t

"Initialize the instance variables of the new FinancialHistory

a. rn ο υ η t.

e χ ρ e η d i t u r e s *· D i c t i ο η a r y η e vv

declare cashonHand as

temp
c I a s s ν a. r

global
υ η dec I a. re

abort

Figure 17.3c l o o

y stem-Changes
System-Compiler
S y s t e rrι - Fi e I e a s i η g
Files-Streams
Fi les-Abstract
Files-Xerc : Al to

s e 11 n i t i a IE a. I a n c e: a m ο υ η t

"Initialise the instance variables of the new FinancialHistory,"

a m ο υ η ΐ,

expenditures *• Dict ionary new

confirm correct ion to cashOnHand

369
17.2 Poorly-Formed Statements or Methods

Figure 17.3d 000

.••5 t e r n - C h a n g e ;
,·' i t s rn - C ο m ρ i I e r

S y s t θ rn - Pi e I e a s i η g|
Fi les-Streams
F i l e s - A b s t r a c t
Fi les-Xerox A l t o

transaction
inquiries

s e 11 n i t i a IB a I a n c e: a rn ο υ η ΐ

"Initial ize the i n s t a n c e var iables of the new FinancialHistor

expendi tures *· D i c t i o n a r y new

17.2

Poorly-Formed
Statements or
Methods

Choose the protocol transactions and specify the method for spend:
amount for: reason (Figure 17.4a). Notice that you are to omit an argu-
ment. When you choose the yellow button command accept, a syntactic
error is found (Figure 17.4b). The error message, Argument expected->,
is inserted into the text, preceding the point of the error, so that an ar-
row points to the location of the error or to the location at which the
error can be corrected. Type the correction so that the error message is
replaced by the argument name reason, and choose the yellow button
command accept again (Figure 17.4c).

This time the new message totalSpentOn: is noticed (Figure 17.4d).
We will define this message later so choose the action proceed as is.
The method is compiled successfully and added to the class (Figure
17.4e).

370

Syntax Errors

Figure 17.4a ΟΪ0

b ν stem-Change;
S y s1 e m - C ο rn ρ i I e r
5 y ; t e rn - R e I e a ; i η q
File;-Streams
Files-Abstract
File;-Xerox Alto

inquiries
private

spend: amount for: re a ; o η

"Spend amount for the reason given, decrementing the available

cash on hand,"

expenditures at: put: (self tota lbpentOn: re a. son) + amount,

cashOnΗand - cashOnHand - amount

a g a ι η
υ η d o
copy

c υ ΐ
paste
do it

print it

cartel
format
spawn
e '.plain

Figure 17.4b BOO

b y stem-Changes
S ν s t e rn - C ο rn ρ i I e r
S y s t e m - R e I e a. s i η g
Fi les-Streams
F i l e s - A b s t r a c t
Fi les-Xerox A l t o

FinancialHistorv transactions
inquiries
ρ ri ν a t e

spend: amount for: reason

"Spend amount for the reason given, decrement ing the avai lable

cash on hand,"

Argument expected -;expenditures at:

re a. son) + amount,

cashOnHand - cashOnHand - amount

put: (self totalbpentOn:

371
17.2 Poorly-Formed Statements or Methods

Figure 17.4c Bio

5 y item-Change;
S ν stern-Compiler
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

nnancia History transactions
inquiries
p r i v a t e

spend: a m o u n t for: reason

"Spend a m o u n t f o r t h e reason g iven, d e c r e m e n t i n g

cash on hand,"

e x p e n d i t u r e s a t : reason p u t : (self t o t a l S p e n t O n : re

cashOnHand *- cashOnHand - a m o u n t

a g a. ι η
undo

copy
cut

paste
do it

print it

format
spawn
e χ ρ I a. i η

i lable

Figure 17.4d

S y stem-Releasingl
Fi I e s - S t re a m s
Files-Abstract
Files-Xerox Alto

100

spend: amount for: reason

"Spend amount for t h e reason given, d e c r e m e n t i n g the a v a i l a b l e

cash on hand,"

totalSpentOn: reasonΊ + amount,expenditures at: reason put: (self
cashOnHand - cashOnHand - amountj totalSpentOn: is a new message

correct it I
abort

372

Syntax Errors

Figure 17.4e 000

System Browser

b y s t e rn - υ h a n g e s
Ei y s t e rn - C ο m ρ i I e r
Ei y s t e rn - Fi e I e a.; i η g
Fi le;-Streams
F i l e s - A b s t r a c t
Files-Xerox Al t η

FinancialHistory transactions
inquiries
p r i v a t e

spend: amount for: reason

"Spend amount for the reason given, decrement ing the avai lable

cash on hand,"

expenditures a t : reason put: (self
c a s h Ο η Η a η d - c a s h Ο η Η a η d - a rn ο υ η t

totalSpentOn: reason ϊ + a rn ο υ ΓΙ t.

The syntax errors you might make when you try to evaluate an
expresson or compile a class method fall into three categories:

1. something expected was missing

2. there was a bracketing error

3. you tried to do something you can not do

Expected parts of a method that can be missing are the argument
name, as illustrated by the previous example in Figure 17.2a; an ex-
pression after an assignment symbol («-) or after a return symbol (T); a
vertical bar; and a period or right bracket at the end of the method.
Also nothing more might be expected if the compiler thinks the method
has ended, although something more exists.

Bracketing errors may exist for parentheses, comment quotes ("),
square brackets, and string quotes ('). Another common mistake is
omitting the period at the end of a statement (other than after the last
statement of a method).

Three things you can not do that will be noticed as syntactic errors
are to store into a pseudo-variable (self, super, true, false, or an argu-
ment), to cascade to a constant or to super, and to cascade certain con-
trol messages (ifTrue:ifFalse:, ifFalse:ifTrue:, whileTrue:, and whileFalse:).

373
17.2 Poorly-Formed Statements or Methods

To illustrate another syntactic error, add the method totalSpentFor:
to class FinancialHistory; categorize it under inquiries as shown in Figure
17.5a. (For now, please ignore the fact that the message used in the
method for spend:for: was totalSpentOn:, not totalSpentFor:. You are
making this error so that we can illustrate another kind of error in
Chapter 18.) Choose the yellow button command accept. A syntax error
message is inserted into the text at the end of the method (Figure 17.5b)
because, when you typed the method, you forgot the closing right brack-
et. Replace the error message with the right bracket and choose the
command accept again. The method is added to the class (Figure 17.5c).

Remember to save your work, either by making

1. a snapshot (see Sections 1.4 and 23.1) or

2. a file that describes the class.

In the system browser, choose FinancialHistory and then choose yel-
low button command file out. The file name will be FinancialHistory.st.

Figure 17.5a Bio

y stern-changes
s t e rrι - C ο rn ρ i I e r
s t e rn - Fi e I e a. s i η g

Files-Streams
Fi les-Abstract
Files-Xen: : Alto

t o t a IS ρ e η t Fο r: re a s ο η

"Answer the amount spent for reason; 0 if reason never used for

expenditures."

e ;•: ρ e η d i t υ r e s i η c I u d e s \<. e y: r e a. s ο η)

if True: [t expenditures at : reason]

ifFalse: [t i j

374

Syntax Errors

Figure 17.5b
BOO

lameimnsiuia.il— transactions

ρ ri ν a. t e

System-Changes
System-Compiler
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

t ο t a IS ρ e η t Fο r: re a s ο η

"Answer the amount spent for reason; 0 if reason never used for

expenditures."

(expenditures includes Key: reason)

ifTrue: [t expenditures at : reason]

if False: [tu| iqht bracket

Figure 17.5c
fflo

S y s t e m - C h a n g e s
S y s t e m - C ο m ρ i I e r
S y s t e m - Fi e I e a s i η g
Fi les-Streams
F i l e s - A b s t r a c t
Files-Xerox A l to

[aiilSHMElliUMni transactions

private

t ο t a IS pent Fo r; re a s ο η

"Answer the amount spent for reason; 0 if reason never used for

expenditures."

(e χ ρ e η d i t u r e s include s Κ e y: r e a s ο η)

ifTrue: [τexpenditures at: reason]

ifFalse: [+ 0 ^ ι

J

1 *

Notification of an
Execution Interrupt

18.1 Incorrect Message Selector

18.2 Other Runtime Errors

376
Notification of an Execution Interrupt

A message-send is the activity of sending a message to an object. A noti-
fier is a view that is displayed on an interruption of a message-send.
Since responding to a message involves sending a message, a notifier is
basically a view on a sequence of message-sends. Each of the messages
displayed in the view has been sent, but has not yet received replies.

There are a number of ways to interrupt a message-send, four of
which are described in Chapter 20: the programmer sets a breakpoint,
the user types the "control" and "c" keys at the same time, the system
runs out of space, and recursion occurs in the system error handler.

This chapter explores interrupts that occur whenever a runtime er-
ror is encountered. Most runtime errors occur because a message was
sent to an object that does not understand the message, that is, the
message selector was not specified in the class of the object or in any of
its superclasses. The error could be that the message selector was incor-
rect, or that the receiver of the message was the wrong kind of object.
The other kinds of interrupts are discussed in Chapter 20.

18.1
Incorrect
Message
Selector

The FinancialHistory example in Chapter 17 will be used to illustrate the
way a notifier is used to locate a runtime error. If the class is not al-
ready in your system, we assume you created a file containing the class
description, as discussed at the end of Chapter 17. Evaluate the expres-
sion, (FileStream oldFileNamed: ' FinancialHistory.st') fileln to retrieve
the class.

Open a workspace and type the instance creation message

FinancialHistory initialBalance: 450

This creates a new instance of FinancialHistory with 450 as the cash on
hand. Inspect this new instance by sending it the message inspect. (Re-
member that the instance creation expression must be parenthesized as
shown in Figure 18.1a, otherwise the precedence rules cause the mes-
sage inspect to be sent to the number 450.) Create the inspector and ex-
amine the values of its variables (Figure 18.1b). In the text subview of
the inspector, type an expression to spend some of that cash.

self spend: 100 for: 'rent'

Evaluate the expression by choosing the yellow button command print it
(Figure 18.1c). A notifier appears (Figure 18. Id). It consists of two parts:
a title that states the reason for the execution interrupt, and a list of
the last few interrupted message-sends.

377
18.1 Incorrect Message Selector

Figure 18.1a Dio

S y s t e m Β r o w serf;

b y s tem-Changes
S y s t e rn - C ο rn piler
S y s t e rn - R e I e a s i η g
Fi les-Streams
F i l e s - A b s t r a c t
Fi les-Xerox A l t o

class

inquiries
private

spend: amount for: reason
amount for the reason given, decrementing the available

If totalSpentOn: reason) + amount,
mount

Figure 18.1b

100
000

System Browser

by stem-Changes
System-Compiler
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

spend: amount for: re·:

Workspace

ί F i η a n c i a IH i s t ο r y initial
450) inspect

ilf totalSpentOn: reason) + amount,
m ο u η t

378

Notification of an Execution Interrupt

Figure 18.1c 010

System Browser
FinancialHistory

S y s t e m - (J h a n q e s
5 y s 1e rn - C ο m ρ i I e r
S y s t e rn - Fi e I e a. s i η q
Files-Streams
F i l e s - A b s t r a c t
Files-:: ere, • Al to
financial Tools

spend: amount for: reason

|-J amount for t h i~ » a.mo
W o r k s p a c e !
(Fi Γι a. η c i a ΙΗ i s t ο ry ί η i t i a IB a I a

4 5 0) ins poet

self

e χ ρ e η d ι

self spend: 100 for: 'rent'

a. q a ι η
υ ΓΙ d ο
copy
c υ ΐ

ρ a s t e
do it

c a n c e I

If t ο t a I s ρ e η t Ο η: r e a. s ο η) + a. mount.

ΊΊ O IJ Π t

Figure 18. Id roo

b y stem Browser

S y s t e m - C h a n q e s
S y s t e rn - C ο m pile r
S y s t e rn - Fi e I e a s i η q
Files-Streams
Fi les-Abstract
Files-Xere Al to

FinaricialHistory

self spend: 1OU for: ' r e n t '

Message not understood: totalSpentOn:

spend: amount for: reason

,,, . ϋ amount for the1

Workspace

F i η a η c i a ΙΗ i s t ο r y (Ο b j e c 11 > > d ο e s Ν ο t U η d e r s t a n d:

Fi η a. η c i a ΙΗ i s t ο ry > > spend: f ο r:

Financial Hi s t o r y)) Dolt

C ο m pile r> > e ν a Ι υ a t e: i η: t ̂ η ο t i f y i η q: i f Fa. i I:

Co deCont rol ler) > dolt

ί Fi η a η c i a ΙΗ i s t ο ry i η i t i a IB a I a. ι

4 5 0) i η s ρ e c t
IT t o t a l b p e n t o n : reason) + amount

379
18.1 Incorrect Message Selector

You might decide from this information that you have seen enough
information, that everything is satisfactory, and that you want to pro-
ceed with the evaluation. You can do so by choosing the yellow button
command proceed. Or you might want to stop the evaluation and do
something else. You can do this by selecting the blue button command
close. Of course, the view is non-preemptive; you can just leave it on
the screen and do something else, returning to deal with the
interrupted situation at a later time.

The message shown in the Figure 18. Id says that the message
totalSpentOn: was not understood. Of course, this happened because you
specified the method for totalSpentFor:, not totalSpentOn:, when follow-
ing the example in Chapter 17. The yellow button menu of the notifier
includes the command correct. Choose it (Figure 18. le). The system de-
termines that the message should probably have been totalSpentFor:
(Figure 18.If). Choose the menu item yes in the confirmer to indicate
your agreement. Evaluation proceeds, using the corrected message se-
lector, so that the $100 is spent on rent. The method associated with
spendfor: returns the FinancialHistory as its value (Figure 18.1g).

Figure 18. le

System Browser

b y s t e rn - <J h a n g Θ S

System-Compiler
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

self spend: 1UU for: rent '

5 ρ end: amount for: reason

amount for the1

Fi η a η c i a ΙΗ i s t ο ry ί 0 b j e c t) > > d ο e s Ν ο ΐ U η d erst a n d:

Fin a η c ia ΙΗis t ο ry > > s ρ end: f ο r:

FinancialHistory>>Dolt

C ο rn ρ i I e r > > e ν a Ι υ a t e: i η: t ο: η ο t i f]Pr u u '
, , 1 debuq

υ ο d e <J ο η t r ο 11 e r > > d ο 11 ' —

Workspace f a m o

(Fi η a η c i a ΙΗ i s t ο ry i η i t i a IB a I a ι

450) inspect
If totalSpentOn: reason) + amount,

mount

380
Notification of an Execution Interrupt

Figure 18. If 100

Figure 18.1g Boo

System B r o w s e r !

b y s t e m - C h a η g e s
5 ν s t e rn - C ο m ρ i I e r
£i y s t e rn - R e I e a. s i η q
Fi les-Streams
File s - A b s t r a c t
Files-Xerox Al to

Tooly

sperid: amount for: reason

,, , kj amount for the
•Vorkspa.ce ι

Fin a. ncialHistory

self spend: 100 for: 'rent'

Γνΐ ρ 5 ••, a g « η ο t υ η d erst ο ο d: t o t a. IS ρ e η t Ο η:

F i η a η c i a ΙΗ i s t ο r y (Ο b j e c t) > > d ο e s Ν ο t U η d e r s t a. n d

Fi ri a. η c ί a ΙΗ ί s t ο ry > > spend: to r:

Financ

U ο m ρ i I

C ri d ρ '•"·

(Fi ri a. η c i a. ΙΗ i s t ο ry i η i t i a. IB a I a ι

450) inspect

retry w i t h selector:

totalSpentFor:
ying:ifFai

If t o t a l S ρ e η t Ο η: re a. s ο η ϊ + a m ο υ η t ,

m ο υ η t

ι y stem Browser

S y s t e m - C h a n g e s
S y s t e m - C ο m ρ i I e r
System-Re leasing
Files-Streams
Files-Abstract
Files-Xerox Alto

spend: amount for: reason i
,,, . l W a m ο υ η t f ο r t h e
Workspace [
(Fi η a n c i a IH i s t ο ry ί η i t i a IB a. I a ι

4 5 Ο) i η s ρ e c t

self spend: 1OO for: 'rent

If tota lbpentOn: reason) + amount

J

381
18.1 Incorrect Message Selector

Unlike other uses of the spelling corrector, the correction was only
temporary. You must use a system browser to find the method contain-
ing the error and to correct it (Figure 18.2). Once corrected, you can
spend successfully $50 on food and $75 on a trip by evaluating the ap-
propriate expressions in the inspector text subview (Figure 18.3). You
can also choose cashOnHand and expenditures in the inspector to exam-
ine the instance variables (Figures 18.4 and 18.5).

Keep the inspector for the FinancialHistory so that you can use it in
Chapter 19.

Figure 18.2 010

Fi η a η c i a. ΙΗ i s t ο r ν

" I =: ρ If τη ρ η Η ΙΠ fur: 'rent' *
b y s t e r n - c h a n g e ;
S y 51 e m - C ο rn ρ i I e r
S y s t e rn - Fi e I e a s i η g
Files-Stream;.
F i les-Abstract
Files-Xerox Alto

inquiries
private

spend: amount tor: reason

"Spend amount for the reason given, decrement ι nq the a ·••' a i ι a h ι
- · - aqain

cash on hand."

expenditures at: reason put: is elf totalbpentFor: reason'

cashOnHand *- cashOnHand - amount

c ο ρ y
cut

do It
print it

format
spawn
explain

jnt.

382

Notification of an Execution Interrupt

Figure 18.3 010

3 y s t e rn Β ro w s e r

System-Changes
S y s t e rn - C ο m ρ i I e r
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

self spend: 1uO for: ' rent '

spend: .amount for: reason

"Spend amount for the

cash on hand,"

expenditure? at: reason put: (self totalbpentFor: re·;

cash On Η and *• cashOnHand - amount

Figure 18.4

100
000

••stem B r o w s e r I

S y s t e m - C h a n g e s
S y s t e m - C ο rn ρ i I e r
S y s t e rn - R e I e a s i η g
Fi les-Streams
F i l e s - A b s t r a c t
F i les-"ero • A l to

Tools

spend: amount for: re·:

"Spend amount fo

cash on hand,"

expenditures at: reason put: (self totalbpentFor: reason) + amount,

cashOnHand *• cashOnHand - amount

383
18.2 Other Runtime Errors

Figure 18.5

b ν s t e m Β ro w 5 e r

b y s t e m - C h a n q e s
S y 51 e m - C ο rn ρ i I e r
S y s t e m - Fi e I e a ί i η q
File s-Streams
File s - A b s t r a c t
Files-:.'ero • A l to
Htv&nctal Tools

FinancialHistory

fin*

spend: amount for: re:
"Spend amount to

cash on hand."

self
cashOnHand

D i c t i ο η a ry ('rent'- > 1 υ ι
'food'->50 'trip'-;·75)

expenditures at i«?:on put: ('self totalbpentFor: reason) + amount.
cashOnHand *• cashOnHand - amount

18.2

Other Runtime
Errors

A notifier appears (at the center of the display screen or at the center
of the active view) whenever there is an execution interrupt due to an
error in running a method. These runtime errors occur for a large num-
ber of reasons. As stated earlier, most often you will encounter an error
because an object is sent a message to which it cannot respond. The la-
bel of the notifer is

Message not understood:

followed by the erroneous message selector.
The notifier only displays the last few message-sends of the

interrupted execution. You may determine that this is not enough in-
formation, either because the purpose of the interrupt was to explore
further or because you do not know why the interrupt occurred. In this
case, choose the yellow button command debug. The notifier is closed,
and you are asked to designate a rectangular area in which a debugger
will be created. The system debugger is described in Chapter 19.

384
Notification of an Execution Interrupt

Runtime errors caused by other than an incorrect message selector
include:

• Trying to create an instance of Character or Boolean. All Charac-
ters are defined at the time the system is created, and are immuta-
ble. Boolean is an abstract class with two subclasses, True and
False, each of which has only one instance (true and false, respec-
tively).

• Trying to create instances with incorrect instance-creation mes-
sages (such as sending new to create a MappedCollection).

• Trying to evaluate a BlockContext with the incorrect number of ar-
guments. For example, if the BlockContext is of the form [:i :j | i > j],
then the message needed to evaluate it is of the form value: i value: j .
A message to this BlockContext with any other number of value: key-
words would be an error.

• In numeric computation, attempting to divide by zero, creating a
Fraction with denominator of zero, or taking the square root of a
negative number.

• In Collections, mismatched collection sizes for mapping operations,
attempting to remove an element not in the collection, attempting
to access elements of nonindexable collections using at:put:,
attempting to store into an Interval or to remove elements from an
Interval or an Array, using an object that is not an Integer as an in-
dex, attempting to store an object that is not a Character into a
String, attempting to do a Dictionary lookup with a key or value
that is not in the Dictionary, or using an index that is out of the
bounds of the indexable collection.

• Sending an object an inappropriate message (one to which in-
stances of the superclass respond, but of which the subclass blocks
the use), or sending an object a message that its class should have
implemented but did not (the superclass implementation is proba-
bly self subclassResponsibility).

• Sending control messages to objects that are not Booleans
(ifTrue:ifFalse:, ifFalse:ifTrue:, ifTrue:, ifFalse:) nor BlockContexts
(whileTrue:, whileFalse:).

19
Examining and
Debugging Execution
State

19.1 The Activation Stack

19.2 The Structure of a Debugger

19.3 The Context of a Message Receiver

19.4 The Context of an Interrupted Method

19.5 Evaluation Within the Context of an
Interrupt

386
Examining and Debugging Execution State

19.1

To illustrate the use of the debugger, we will add another method to
the class FinancialHistory which was used as an example in Chapters 17
and 18. The method will have an error in it that we can explore using a
debugger.

The Activation
Stack

Add the method for report, categorized under the instance protocol in-
quiries, as shown in Figure 19.1. Try it. Type the text self report in the
text subview of the inspector for the FinancialHistory created as de-
scribed in Chapter 18. Select the text and then choose the yellow button
command print it (Figure 19.2).

A notifier appears indicating that the message do: was not under-
stood (Figure 19.3). The text displayed in the notifier indicates the last
few messages sent before the interrupt occurred. The methods associat-
ed with these messages have not as yet returned their values. In con-
ventional programming language parlance, this sequence of messages
represents the activation stack that you wish to explore to understand
the source of the error.

Figure 19.1
010

S y 519 m - U h a n g e s
S y 51 e m - C ο m pile r
S ys t e ΓΓΙ - R e I e a s i η g
Files-Streams
Fi les-Abstract
Files-Xerox Al to

Financial History

tota lbpentFor:

report

"Answer a. String t h a t describes the current b a I a n

expenditures,"

| a Stream |

a.Stream - Wri teStream on: String new,

a. Stream next Put AII: 'Financial History ' ; cr,

a. Stream next Put All: 'balance: ',

a. Stream η e χ t Ρ υ t A11: c a. s h Ο η Η a n d; cr.

expenditures ρ r i η t Ο η: a. S t r e a m,

t a S t r e a m contents

ce and

again
υ η d ο

copy
c υ t

ρ a s t e
do it

irint it

can |el
format
spawn

387
19.1 The Activation Stack

Figure 19.2

System Browser

S y s t e m - G h a. n g e s
S y s t e m - C ο m ρ i I e r
S ν s t e m - R e I e a. s i η q
Fi les-Streams
F i l e s - A b s t r a c t
Files-Xerox A l t o

report

"Answer a. String tha.'

expenditures."

BEHOBUL
e χ ρ e η d i

| a ο ΐ re am |

a. Stream *• Wri teStream on: Str ing new,

a. Stream next Put All: 'Financial History' ; cr.

a. Stream next Put All: 'balance: ',

a.Stream nextPutAII: cashOnHand; cr,

e χ ρ e η d i t υ r e s ρ r i η t Ο η: a. S t r e a. m.

•t a Stream contents

a g a ι η
υ η d o
copy

cut
ρ a. s t e
do it

Figure 19.3 000

mmxmmmmwttfmwMmm
System Βrow s e r jjiiiiiiiiiiiiiiiiiiiiiiiiii;
S y s t e m - C h a n g e s
System-Compi ler
S y s t e m - Fi e 1 e a s i η q
Fi les-Streams
F i l e s - A b s t r a c t
Files-Xerox A l t o

-

report

"Answer a. String thai

expenditures."

| a.Stream |
a.Stream *• WriteStrea

a.Stream nextPutAII: 'F

FinancialHistory|ii;jijii!:iii^^

S m a. 111 n t e g e r(0 b j e c t) > > d ο e s Ν ο t U η d erst a n d:

W ri t e S t re a m (S t re a. m) > > η e χ t Pu t A11:

Fi η a n c i a. IH i s t ο ry > > re ρ ο r t

Fi η a η c i a. ΙΗ i s t ο r ν > > D ο 11 k

C ο m ρ i Ι Ρ r> > e ν a 1 u a t e: i η: t ο: η η τ i f y i η g: i f Fa i I •

rr on: Str ing r e w . i;;|

i r a n c i a l H i s t o r y ' ; cr, i!i:

aStream nextPutAII: 'balance: '. iii|

aStream next Put All: c

e χ ρ e η d i t υ re s ρ ri η 10 η:

taStream cor tents

ashOnHand; cr, |iji

aStream, i;!:

f

388
Examining and Debugging Execution State

19.2

The first message-send in the example notifier indicates that the re-
ceiver of the message was a Small Integer. There is a class name
delimited by parentheses after the class name of the receiver. It denotes
the class in which the message definition is specified. The example
shows that the definition of the message doesNotUnderstand: is speci-
fied in Object. The second message-send indicates that the error came
from sending the message nextPutAII: to an instance of WriteStream. The
method associated with nextPutAII: was actually found in the description
of the class Stream (a superclass of WriteStream). And the third mes-
sage-send indicates that the message nextPutAII: was sent from the
method associated with report that was sent to a FinancialHistory. The
remaining message-sends have to do with the compilation and evalua-
tion process, and can be ignored.

The Structure
of a Debugger

Choose the yellow button command debug in the notifier (Figure 19.4).
The notifier disappears and you designate a rectangular area for the
debugger. The debugger is shown in Figure 19.5.

Figure 19.4 ΟΙΟ!

ϋϋϋϋϋ System Browserl;!;
•;•;;;;;;; . - ι : ·

ϋϋϋϋϋ S y s t e m - G ha n ge s
ϋϋϋϋϋ S y s t e m - C o m p i l e r
ϋϋϋϋϋ S y s t e rn -Releasing
ϋϋϋϋϋ F i les-Streams
ϋϋϋϋϋ F i l e s - A b s t r a c t
iiiiuiiii F i les-Xerox A l t o
l:l:;;;;l; iFSft^Jhie^iatli^^OlS:: ::;

ϋϋϋϋϋ report

;!;;;;; • expenditures."

iiiiii! | abtream |
ϋϋϋΐ aStream - WriteStrea

F i n a n c i a l H i s t o r y |;ii|i iiiii iijiiiji ϋϋϋϋϋίϋϋϋϋϋϋϋί ϋϋϋϋίϋϋϋϋϋϋϋϋϋϋϋϋϋ

III.L4J.I,|.|.lJlll.l.l.llJJ.H,«il I
S m a 111 n t e g e r (0 b j e c t) > > d ο e s Ν ο t U η d erst a n d:

W ri t e S t re a rr (S t re a m) > > η e χ t Pu t A11:

Fi η a. η c i a ΙΗ i s t ο ry > > re ρ ο r t |proceed|

Fl η .=, η Γ i .=, ΙΗ i - r η f ...· > •-, Γι r, 11- E S S S U

Γ: η m ρ ί Ι α r :• > Q ·„• .=, 111 .=, f c · i n · r η · Γι,-, 1- Ρ |~ |~Ί, Γ^ 'Μ Ι' Τ· i I •

r" on: String rew.
iiiiiii a Stream next Put All: 'Financial History'; cr.
iiiiiii a Stream next Put All: ' t
iiiiiii a Stream nextPutAII: c
iiiiiii expenditures print On: .

iiiiiii t a Stream cor tents

a. la nee: ',
ash On Η and; cr.

s. Stream.

'

389
19.2 The Structure of a Debugger

Figure 19.5 010

S m a. 111 n t e g θ r (0 b j e c t) > > d ο e s Ν ο ΐ U η d e r 51 a. n d:
W ri t e S t re a. m (S t re a m) > > η e χ t Pu t A11:
Fi η a η c i a IH i s t ο ry > > re ρ ο r t
F inancialHistory>>Dolt

full s tack
proceed

self

The debugger presents some or all of the sequence of message-sends
that occurred prior to the interrupt. It allows you to select each one in
order to see the method and to determine at which point in the method
the interrupt occurred. You can choose any message-send on the stack
and cause evaluation to proceed from this selected point. You can also
single-step through message-sends, checking the state of the variables
in order to determine the source of the error. You can change the value
of variables and proceed. If you evaluate expressions within the
debugger view, evaluation will be carried out in the context of the cur-
rently selected message. You can also edit and recompile (accept) a
method.

A debugger view is made up of six subviews. You are already famil-
iar with each of these subviews. The top two subviews are similar to the
two subviews of a message-set browser; one is a menu of classes and
messages, and the other is a text view in which the method associated
with a selected message is displayed. The items in the class/message
menu are the message-sends of the interrupted execution, identical in
format to the message-sends displayed in a notifier. Each message-send
displays the class of the receiver and the message selector of the mes-
sage sent to the receiver. It also shows, in parentheses, the class in
which the interpreter found the method for this message selector, if the
implementation class is different from the class of the receiver. Selec-
tions in the first subview cause the corresponding methods to be

390
Examining and Debugging Execution State

displayed in the second subview. The methods can be edited, compiled,
and installed (accepted), just as you are able to do in a browser.

The bottom four subviews provide two inspectors. Information ap-
pears in these inspectors only if a class/message is selected in the top
view. The first inspector allows you to explore the object that was sent
the interrupted message; the second inspector allows you to explore the
context of the selected message-send, that is, the temporary variables of
the interrupted method.

The debugger shown in Figure 19.5 illustrates the yellow button
menu available when no class/message item is selected in the top
subview. You can choose to ignore the problem and proceed, just as you
could have done from the notifier. Or you can expand the number of
class/message items in the menu.

full Stack When a debugger is first created, at most only the top nine
message-sends appear. This command displays the com-
plete stack of all the message-sends of the interrupted mes-
sage-sending activity.

proceed The debugger closes and evaluation continues just after the
point of interruption. The point of interruption is a mes-
sage-send that is completed with a reply that is assumed to
be the value of the last expression evaluated in the method
subview, or nil if no expression has been evaluated.

In order to follow the example in this chapter, do not choose a com-
mand from this menu. Instead, choose the second message-send in the
top subview of the debugger (Figure 19.6a).

Three things of interest happen. First, the method associated with
the selected message is displayed. In the display of this method, the
message that was last sent is selected in order to focus your attention at
the point at which the interrupt occurred. Second, information is
displayed in the menu parts of the two inspectors at the bottom of the
debugger. And third, the yellow button menu in the top subview is
changed. It now contains eight commands (Figure 19.6b).

391
19.2 The Structure of a Debugger

Figure 19.6a ooo

S rn a 111 η ΐ e q e r(Ο b j e c t) > > d ο Θ S Ν Ο t U η d e r s t a n d:

WnteStreamfStream^nextPutAII
Financia lHist ο r y > > re ρ ο r t
Fi η a η c i a ΙΗ i s t ο r y > > D ο 11

nextPutAII: aCollection

"Append the elements of aCollection onto the reci

aCollection."
•er, Ά nswer

a. C ο 11 e c 11 ο η

t a C ο 11 e c t i ο η

self nextPut:

self
c ο 11 e c t i ο η
ρ Ο 5 i t i Ο Γι
read Limit

a (J ο 11 e c t i ο ι

Figure 19.6b
Bio

3 m a. 111 η 19 q θ r(Ο b j 9 c t) > > d ο Θ S f'J ο t U η d e r s t a n d:

a m ί S t re a m Ί > > η e χ t Pu t AII:
F inancia lHistory>>report
F i η a η c i a ΙΗ i s t ο r y > > D ο 11

nextPutAII: aCollection

"Append the elements of aCol lect ion ontc

a C ο 11 e c t ί ο η,"

full stacl·
proceed
restart
senders

implement or:
m e s s a q e s

s t e p
s e η d

a C ο 11 e c r ι η η

τ a C o 11 e c t i ο η

self next Put;

self
c ο 11 e c t i ο η
ρ ο s i t i ο η
re ad Limit

a c o l l e c t i o i

392
Examining and Debugging Execution State

Senders As in a class browser, creates a message-set browser on all

methods that include an expression in which the currently

selected message is sent. If no such methods exist, prints

Nobody in the System Transcript (if the System Transcript

is open on the screen).

implementors As in a class browser, creates a message-set browser on all

methods that implement the currently selected message. If

no such methods exist, prints Nobody in the System Tran-

script (if the System Transcript is open on the screen).

messages As in a class browser, creates a menu of all messages sent

in the method associated with the currently selected mes-

sage. Choosing one of these menu items creates a message-

set browser on all of its implementors.

Step Evaluates the next message to be sent in the selected

method (see the full explanation of step in Chapter 21).

Send This command is a refinement of the command Step. If the

next message to be sent were evaluated, it would consist of

a sequence of messages. The command send is a request to

enter that next message at the top of the activation stack

and be ready to evaluate the next message in its method

(see the full explanation of send in Chapter 21).

full Stack When a debugger is first created, at most only the top nine

message-sends appear. This command displays the com-

plete stack of all the message-sends of the interrupted mes-

sage-sending activity.

restart The debugger closes and evaluation starts from the begin-

ning of the currently selected method.

proceed The debugger closes and evaluation continues just after the

point of interruption, assuming that the value of the ex-

pression forced to completion is the value of the last ex-

pression evaluated in the method text subview, or nil if no

expression has been evaluated.

As described, when you make a choice in the debugger top subview, the corre-
sponding method displays in the adjacent subview. A part of the method text is se-
lected. This is the place at which evaluation will proceed next. Because some
implementations of the Smalltalk-80 system might be too slow to allow for this se-
lection determination, you can consider removing this selection capability from
your system.

Q Viewing and Editing Methods You can edit and recompile (accept)
a method that is displayed in the debugger. You do this in the same
way as you edit and recompile in a class browser or in a message-set
browser. All the functonality accessible from the text view of these

393
19.2 The Structure of a Debugger

kinds of browsers is available from the text view of the debugger, in-
cluding the ability to explain tokens. The yellow button menu of the
debugger text view, identical to that of the browser text view, is shown
in Figure 19.7. If you recompile a method, that method becomes the top
of the stack of message-sends. It is not necessary to return to the class
browser, retrieve the method, and make the change. In the
Smalltalk-80 system, wherever you can access a method (in any of the
class browsers, message-set browsers, or the debugger), you can edit and
recompile it.

Note: suppose that the method you edit is inside a block, that is, the message-send
item in the top view begins with []. When you recompile, then the method contain-
ing the block becomes the top of the stack of message-sends.

If the stack of message-sends contains multiple instances of a message-send, that is,
a recursion exists, then you ought to make any edits to the method reference that
is closest to the bottom of the stack. Suppose instead that you edit a method higher
in the stack. All instances of that method lower in the stack will still refer to the
old version of the method. The items in the top view change to reflect this fact;
specifically, the message name changes to Dolt.

Figure 19.7
010

b m a. 111 η t e g 9 r(Ο b j e c t) > > d ο e s Ν ο t U η d erst a n d:

Fi η a η c i a ΙΗ i s t ο r y > > r e ρ ο r t
Fi η a. n c i a IH i s t ο r y > > Dolt

nextPutAII: aCollection
"Append the elements of aCol lect ion onto the

aCollection."

aCol lect ion

ι a C ο II e c t i ο η

self nextPut:

a g a ι η
undo
copy
cut

ρ a s t e
d o i t

print it

accept
c a n c e1
format
spawn
explain

r, Answer

self
c ο 11 e c t i ο η
position
re ad Limit

a C ο 11 e c ΐ ι ο ι

394
Examining and Debugging Execution State

19.3

The Context of
a Message
Receiver

The left inspector of the debugger (bottom left pair of subviews) gives
you access to the message receiver of the message selected in the top
view of the debugger. The context of this message receiver is its state at
the time the message was sent. In Figure 19.8a, WriteStream(Stream) >
> nextPutAII: is selected; in the inspector, self refers to the instance of
WriteStream. A WriteStream has four instance variables; collection refers
to the String in which the description of the Financial History is being col-
lected. As shown in Figure 19.8b, collection was

' FinancialHistory Balance:'

at the point of interruption. This indicates that the next information,
the cash on hand, failed to enter the WriteStream.

Inspecting the variables can give you information about the state of
information in the system at the moment the method was run. You can
change the values of the variables, either by

1. evaluating expressions in the text part of the inspector that con-
sist of messages to the object self;

Figure 19.8a

b m a 111 n t e q e r ί Ο b ι e c t Ϊ > > d ο e S Ν Ο t υ η d e r s t a. n d

100
000

Fi η a η c ι a. ΙΗ ι s t ο r y > > re ρ ο f t
Fir iar icialHistory>>Dult

nextPutAII: aCollection

" A p p e n d t h e e lement ί of a.Col l e c t i o n o n t o t h e receiver . A n s w e r

a C o l l e c t i o r i . "

a. u ο 11 e c 11 ο η

t a. C ο 11 e c ΐ i ο η

do: [:v I self nextPut: v]

ρ O 5111 η Γι

read Limit

Write Stream
a U ο 11 e c ΐ ι ο ι

395
19.4 The Context of an Interrupted Method

Figure 19.8b

100
000

bmall lnteger(Object)>>doesP'Jot Understand;

FinancialHisto r y > > re ρ ο r t
Fi η a η c i a ΙΗ i s t ο r y > > D ο 11

nextPutAII: aCollection

"Append the elements of a.Collection onto the receiver. Answer
aCollection."

'Financial History

balance: ' a C ο 11 e c 11 ο ι

19.4

2. evaluating assignments to the instance variables; or

3. selecting a variable, typing a new value in the text part, and then
choosing the yellow button command accept.

Then you can continue evaluation from the point of the selected mes-
sage, having changed these values.

The Context of
an Interrupted
Method

The right inspector of the debugger gives you access to the state of the
method associated with the selected message, when that method was
first invoked. The currently selected method shown in Figure 19.9 has
one message argument, aCollection, and a block argument, v. These two
names are shown in the inspector. Choose one to see its current value.
Notice that aCollection is 225, which is a Smalllnteger, not a Collection;
hence the error.

396

Examining and Debugging Execution State

Figure 19.9

100
000

a 111 n t e q e r ί Ο b ι e c t ϊ > > d ο e s Ν ο t U η d e r s t a n d:

Fi η a n c i a IH i s t ο r y > > re ρ ο r t
F i η a η c i a ΙΗ i 51 ο r y > > D ο 11

nextPutAII: aCollection

"Append the element.-, of aCol lect ion onto the receiver, A n s w e r

aCol lect ion,"

a. C ο 11 e c t i ο η

t a Col lect ion

self

p Ο 31110 Γι

re ad Limit

'Financial Η is tor ;

ba lance: '

19.5

Evaluation
Within the
Context of an
Interrupt

Choose the next message-send, the message report to a Financial History.
The method text selected indicates that the error occurred when
cashOnHand was to be appended to the WriteStream, aStream (Figure
19.10a). Select the text cashOnHand in the method, and choose the yel-
low button command print it (Figure 19.10b). The value is 225, as we
expected given the result in Figure 19.9 (Figure 19.10c).

When you evaluate an expression that appears in the debugger
method text, the evaluation takes place in the context of the interrupt,
i.e., using the values of the receiver and the method at the time the se-
lected method was interrupted. If you choose to proceed at this point by
choosing the yellow button command proceed in the debugger top view,
execution would proceed as though the value of the interrupted mes-
sage send in the current method were the value of the last expression
you evaluated, in this case, 225 (rather than the contents of the
WriteStream as desired). If you proceed from a method without evaluat-
ing expressions, the assumed value of the method is nil.

A String representation for cashOnHand should be the argument to
nextPutAII:. This representation is obtained by sending cashOnHand the
message printString. (Note that the result of sending the message
printString to any object is a String that describes the object.)

397

19.5 Evaluation Within the Context of an Interrupt

Figure 19.10a 000

nancia lHistory li;

S m a 111 η ΐ e q e r (0 b j e c t) > > d ο e s Ν ο t U η d e r st a n d:
W ri t e S t re a rn ί S t re a rn Ϊ > > η e χ t Pu t A11:

Fi η a ή c i a ΙΗ i 51 ο r ν > > D ο 11

report

"Answer a. String that describes the current balance and

expenditures."

| a Stream |

a. Stream *- Writes t re am on: String new,

aStream next Put All: 'Financial History'; cr,

a Stream next Put All: 'balance: '.

a S t r e a rn Ι^^^ΜΜΗΙΠΞΠΙ^ΕΕΗΜΟΗΪΚΙ^ΒΙ, ιΐ: Γ ,

e χ ρ e η d i t u r e s ρ r i η t Ο η: a S t r e a rn,

τ a S t re a m c ο η t e η t s

self
c a s h Ο η Η a
expert ditur

Figure 19.10b 010

inancialHi s tory

S rn a 111 η t e g e r(Ο b j e c t) > > d ο e s Ν ο t U η d e rs t a n d:
W ή t e S t re a m (S t re a rn) > > η e χ t Pu t A11:

Fi η a η c i a ΙΗ i s t ο ry > > D ο 11

report

"Answer a String t h a t describes the current balance and

expenditures,"

| a.btrearn |

a Stream *- Wr i teStream on: Str ing new,

aStrea.m next Put All: 'Financial H istory ' ; cr,

aStream nextPutAII: 'balance: ',

expenditures pr int On: aStream.

t aStream c o n t e n t s

a g a ι η
undo
copy

cut
ρ a s t e
do it

accapt
c a n c e I

ο rm a t
s ρ a w η
e χ ρ I a i η

self
cashOnHa
expendi tur

a s t r earn

398
Kxamining and Debugging Execution State

Figure 19.10c 000

b rn a 111 n t e g e r (0 b j e c t) ••• > d ο e s Ν ο t U η d e r s t a n d:
,'V ri ΐ e S t re a. m ί S ΐ re a rn Ϊ > > η e χ t Pu t A11:

FinancialHistory>>report
F inane i a I H i s t o r y >>Dolt

report

"Answer a String that describes the current balan

expenditures."

| a. Stream |

a Stream *· WriteStream on: String new.

a.S tream next Put All: 'Financial History'; cr.

a Stream next Put All: 'balance: ',

expenditures ρ r i η 10 η: a S t r e a m.

ta. Stream contents

ce and

elf
a s h 0 η Η a

ι · ρ e η ι J i 11 J r

a a t re am

Figure 19.11 010

b m a 111 η t e q e r (Ο b j e c t) > > d ο e s Ν ο ΐ U η d e r s t a n d:
W ri ΐ e S t re a m ί S t re a m ϊ > > η e χ t Pu t A11:

F i η a n c i a. IH i s ΐ ο r y > > D ο 11

report

"Answer a. Str ing t h a t describes the current balance

e χ ρ e η d i t υ re s,"

| a.S t ream |

a Stream *• W r i t e s t ream on: Str ing new,

a Stream next Put All: 'Financial H is tory ' ; cr,

a.S t ream next Put All: 'balance: ',

a. S ΐ r e a m η e χ ΐ Ρ υ ΐ Α11: c a s h Ο η Η a η d ρ r i η t S t r i η g; cr,

expenditures print On: a.S t ream.

t a S t r e a rn c ο η t e η t s

a g a ι η
υ η d o
copy

cut
ρ 3. s t e
do it

print it

carfltei
format
s ρ a w η
e χ ρ I a. i η

self
cashC
ex per

η Η a
di tur

399
19.5 Evaluation Within the Context of an Interrupt

Make the correction and choose the yellow button command accept
(Figure 19.11). Notice that the method is now changed. It is placed at
the top of the stack and selected in the debugger top view (Figure
19.12). Messages that had been initiated from the original form of this
method have been terminated on the assumption that the change in the
method may have changed the desired sequence of message sends.

Choose the yellow button command restart in the top view. The
FinancialHistory is re-sent the message report, and the successful result
appears in the workspace (Figure 19.13). The result could be prettier in
that the Dictionary expenditures needs better formatting. We will return
to this problem in Chapter 20. (Note that your browser probably had re-
port selected at the time you were using the debugger to change the
method. The updated version of the method for report is obtained by
reselecting report in the browser message-selector subview.)

Figure 19.12 010

Firi3.ncia.lHistory>:>Dolt
C ο m pile r> > e ν a Ι υ a t e: i η: t ο: η ο t ί f y i η g: i f Fa. i I:
C ο d e C ο η t r ο 11 e r > > d ο 11
C ο d e C ο η t ro 11 Θ r> > ρ ri n 111

report
"Answer a. String t h a t describes the

expenditure."."

senders
implement or

m e s s a q«

step
s e η d :e and

| a. S t r e a m |

a S t r e a m n e x t Put AII: 'F inancial H i s t o r y ' ; cr,

a. S t r e a m n e x t P u t AII: ' b a l a n c e : ',

a S t r e a . m η e χ t Ρ u ΐ A11: cash Ο η Η a n d ρ r i η ΐ S t r i η q; c r,

e x p e n d i t u r e s ρ r i η t Ο η: a. Ξ t r e a m.

τ a S t r e a. rn c ο η t e η t s

self
ca.sl-
expe

On Η a
η d i 11 J r

400
Examining and Debugging Execution State

Figure 19.13 000

self

expendi

!

i1
self report^^^^^^^^^^M^B^

•y9nBBEH5nnEJumraBSK9|

J

Kinds of Execution
Interrupts

20.1 Breakpoints

20.2 User Interrupts

20.3 Running Out of Space

20.4 Recursion in the System Error Handler

402
Kinds of Execution Interrupts

20.1

In Chapters 18 and 19, you have seen that execution interrupts can oc-
cur because of unanticipated runtime errors. It is possible to interrupt
the execution of a message-send in order to examine the state of an ob-
ject at the time it receives a message. There are three ways in which an
interrupt can occur.

1. You set a breakpoint in a method.

2. You type the "control" and "c" keys (Ctrl c) at the same time.

3. An anticipated error condition occurs while a method is running.

In the third case, the method includes a test for a possible error condi-
tion and, if found, evaluates an expression of the form

self error: messageString

A notifier appears whose label is messageString. The label should be
sufficient information to explain to the user why the error occurred.

You can evaluate the expression Smalltalk browseAIICallsOn: #error: to see exam-
ples in the system where these tests occur.

Breakpoints A breakpoint is set in a method by including an expression that creates

a notifier. The two possible messages you can use are

self halt

and

self halt: messageString
In each case, a notifier appears so that you can choose to proceed or
choose to create a debugger. In the first case, the label of the notifier is

Halt encountered

In the second case, the label is the argument messageString.
An example of inserting a breakpoint is presented next. The example

uses the description of class FinancialHistory presented in previous chap-
ters.

In the method associated with report in the class FinancialHistory, in-
sert the expression self halt just before the point at which the Dictionary
expenditures is added to the WriteStream (Figure 20.1). Choose the yel-
low button command accept.

403
20.1 Breakpoints

Figure 20.1 010

FinancialHistor

System-Changes I -
S y s t e m - C ο m ρ i I e r lljiiismJMKiKMWM

y s t e m - Fi e I e a s i η g
Files-Streams
Fi les-Abstract

totalbpentFor:

Files-Xerox Alto

report
"Answer a String that describes the current bale ηc

expenditures,"

| aStream |

aStream «- VVriteStream on: String new.

aStream next Put AII: 'Financial History'; cr.

aStream next Put A, II: 'balance: ',

aStream next Put All: cashOnHand printString; cr,

self h a l t x

e χ ρ e η d i t u r e s ρ r ί η t Ο η: a S t r e a m,

ta.Stream contents

a g a ι η
υ η d ο
copy
cut

paste
doit

print it

cancel
format
s ρ a w η
e χ ρ I a i η

In the inspector for the FinancialHistory, type and select the expres-
sion self report (Figure 20.2). Choose the yellow button command print it.

Figure 20.2
010

System Browser!

S y s t e m - C h a n g e s
System-Compiler
System-Releasing
Files-Streams
Files-Abstract
Files-Xerox Alto

report

"Answer a String thai

expenditures."

| aStream |

aStream •*- WriteStream on: String new.

aStream nextPut.AII: 'Financial History'; cr.

β Stream next Put All: 'balance: '.

aStream next Put AII: cashOnHand printString; cr,

self halt.

e χ penditures ρ r i η t Ο η: a S ΐ r e a. m,

t a S t re a m c ο η t e η t s

404

Kinds of Execution Interrupts

A notifier appears (Figure 20.3). Choose the yellow button command
debug. Designate the rectangular area for the debugger and then
choose the second message-send (FinancialHistory> > report) (Figure
20.4). The message halt is selected in the method text in the debugger.
In the inspector for the message receiver, select the instance variable
name expenditures and choose the yellow button command inspect (Fig-
ure 20.5).

Figure 20.3 000

iijilijii;

•:'-':'·':'':'•':'•':'• :'•:'•':

System Browser!:::

S y 51 e m - C h a. n q e s
bvstprn Compiler
S y s t e rn - Fi e 1 e a. s i η q
FIIP 5- Streams

Files-Abstract
Files-.Her ox Alto

\mmm&

report

"Answer a String tha

expenditures,"

| a.Stream |

hna.ncia.lHistoryj||||||||||i||||i||||;|
=:olf ronnrt

* J Fin a n c i a IHi s t οry (0b j Q c t) >>h a.11

Fi η a η c i a ΙΗi s t ο ry > > rep ο rt

Fi η a. n c i a. IH i s t ο ry > > D ο Ι ΐ

Γ: η rn ρ i Ι Ρ r > > e ν a Ι υ a t e :l^i: t ο; η ο t i f ν i η q: i f F.=t i 1:

C ο d e C ο η t ro 11 e r) > d ο 11

a Stream *• VVriteStream on: String new,

a.Stream nextPutAII: 'Financial History'; cr.

a Stream nextPutAII: Ί

a.Stream nextPutAII: c

self halt,

e χ ρ e η d i t υ r e s ρ r i η 10 η:

t a. S t r e a rn c ο r t e η t s

a.lance: ',

ashOnHand print String; cr,

=i Sf fpa rn,

1

405
20.1 Breakpoints

Figure 20.4

|00
000

report
"Answer a. String t h a t describes the current balance and

e χ ρ e η d i t υ re s,"

| a. Stream |

a.Stream *• WriteStream on: String new,

a.Stream nextPutAII: 'Financial History'; cr.

a Stream nextPutAII: 'balance: '.

a Stream next Put All; cashOnHand print Str ing; cr.

expenditure s ρ r i η t Ο η: a S t r e a m,

t a. S t r e a m c ο η ΐ e η t s

self
cashOnHar
e χ ρ e η d i t υ r

abtream

Figure 20.5 Oio

Fi r. a n •-• i a I M i ••- 1- η

FinancialHistory(Object)>>halt

FinancialHistory>>Dolt

report
"Answer a String that describes the current balance and

expenditures."

| a Stream |
a.Stream *• WriteStrearn on: String new.
a Stream nextPutAII: 'Financial History'; cr,
a.Stream nextPutAII: 'balance: '.
a Stream next Put All: cashOnHand print String; cr.
self J2Q.
e χ ρ e η d i t υ r e s ρ r i η t Ο η: a S t r e a m.

t a S t r e a m c ο η t e η t s

icΐ ionary (' rent '-) 100

food'->5O 'trip'-;·75) a S ΐ re a m

406
Kinds of Execution Interrupts

Designate the rectangular area for the inspector for the Dictionary ex-
penditures. You can use this inspector to explore ways in which to print
the keys and values of the Dictionary. In the text subview of the inspec-
tor, type, select, and evaluate the expression self keys (do the evalua-
tion by choosing the yellow button command print it). The result is a Set
of three elements, each of which is a String (Figure 20.6).

Figure 20.6 000

Halt encountered.! I i Γ Ρ Ι η a r. •-!.=• i M i - r •-.>-••••

Fi η a n c i a IH i s ΐ ο ry (0 b j e c t i > > hi a 11

Fi η a n c i a IH i 510 r ν > > D 011

report
"Answer a String that describes the current balance and

expenditure;·,"

I a stream |
a.Stream *- WriteStn

a S t r e a m η e χ t Ρ υ t A11:

a S t r e am η extΡυ t A11:

a S t re a rn η e χ t Pu t All:

self halt.

e χ ρ e η d i t u r e s ρ r i η t Ο r

t a S t r e a m contents

lf
a s h Ο η Η a r

Dictionary

'food'->50

You can then try different methods for printing. An example method
is shown in the inspector text subview in Figure 20.7a. The expressions
format the keys and values in two columns using messages cr and tab;
the text is printed in the System Transcript (Transcript) as shown in
Figure 20.7b. (For this example to work, you should make certain that
the System Transcript is visible on the display screen.)

Close the inspector for expenditures. In the method for report, replace
the printing expression for expenditures with a version of the "practice"
print expressions. Make the change shown in Figure 20.8, and choose
the yellow button command accept. If you then retry evaluating self re-
port in the inspector for the FinancialHistory, a better formatted result is
displayed (remember to choose the yellow button command print it so
that you can see the result) (Figure 20.9). Close the debugger.

407
20.1 Breakpoints

Figure 20.7a
DiO

Halt encountered

stem Transcript

that describes the current balance and

aStrearn *• WnteStn

aStrearn next Put AII:

aStream next Put All:

aStream next Put All:

self halt,

e χ ρ e η d i t u r e s ρ r ί η 10 r

taStrearn contents

Dictionary Γ

' f o o d ' -) 5 0 'rself
cashOnHan

Halt encountered,

System Transcript

'rent' 10U
'food' 50
'trip' 75

Figure 20.7b Rio

a Stream *• WriteStr
aStream next Put All:
aStrearn next Put.·
a. Stream next Put,·
self halt,
e 'ipenditures print Or
taStream contents

self
c a s h Ο η Η a r

Dictionary (
"food'->50 Ί

that describes the current balance and

408
Kinds of Execution Interrupts

Figure 20.8
010

Fi η a η c i a. ΙΗ i s t ο ry (Ο b j e c t) > > h a 11

Fi η a η c i a ΙΗ i s t ο r y >) D ο 11

"Answer a Str ing t h a t describes the current balance and

expenditures."

| a Stream |

aStrearn *• WriteStreann on: Str ing new.

aStrearn next Put All: 'Financial H is tory ' ; cr.

aStream next Put All: 'balance: '.

aStream next Put A11: cashOnHand print Str ing; cr,

expenditures keys do: [:eachKey |

a S t r e a m next Put All: each Key; t a b .

aStream next Put All: (expenditures a t : each Key) pr int Str ing; c

*a Stream c o n t e n t s

self
cashOnHar

dictionary ('rent'-) 100

'food'->50 'trip'->75) aStream

Figure 20.9
000

Halt encountered,

Fi η a η c i a ΙΗ i s t ο r y > > D ο 11
C ο rn ρ i I e r > > e ν a I u a t e: i η: t ο: η ο t
Co d eC on t roller);· dolt

"Answer a String t h a t

expenditures."

| aStream |

a Stream *- WriteStrearr

aStream next Put All: 'Fii

aStream nextPutAII: 'be

aStream nextPutAII: ca

expenditures keys do: [:eachKey

aStream nextPutAII: each Key; t a b ,

aStream nextPutAII: (expenditures a t : eachKey) p r i n t S t r i n g ; c r] ,

t a S t re a rn c ο η t e η t s

self
cashOnHar

D i c t i ο η a ry (' r e n t ' - > 10 Ο

'food'-)5O 'trip'-)75) aStream
eachKey

409
20.3 R u n n i n g O u t of Space

Be careful in inserting breakpoints in the system classes. Unless you understand
the flow of message-sends, you might find yourself recursively creating notifiers if
the code that creates the notifier, or that creates any of the views on the screen
that you might select, uses the method you are interrupting.

20.2

User Interrupts You can press the "control" key and the "c" key (Ctrl c) at the same
time in order to interrupt immediately the execution of any code. A no-
tifier appears whose label is

User Interrupt

Choose the yellow button command proceed to continue the process.
Typing Ctrl c is a way to interrupt a successfully running process that

you wish to explore, to find out about and to possibly change the part of
the system that supports the running process.

Try an example. Open a workspace as the active view. With the
cursor inside the workspace, type Ctrl c (Figure 20.10a). A notifier ap-
pears (Figure 20.10b). (The sequence you see in your notifier might be
different than the one in the example figures due to the somewhat arbi-
trary timing of your typing Ctrl c.)

The sequence of message-sends indicates that a SharedQueue was
interrupted in its evaluation of peek. This message was sent from the
method keyboard Peek to an InputState, which in turn was sent from
primKbdPeek to an InputSensor. The message keyboardPressed tests to
see if the user is pressing a key on the keyboard. It was sent from a
StringHolderController; a StringHolderController provides the user inter-
face to a StringHolder which is the implementation class for a
workspace. Hence this is a way for you to find out which classes are in-
volved in the implementation of the user interface. If you now open a
debugger you can explore the StringHolderController and examine its in-
stance variables and methods to learn more about the user interface ob-
jects.

20.3
Running Out of
Space

A notifier appears on the screen if the system starts running out of
memory space, either because you have created more objects than the
system can handle, or because the objects you have created take up
more space than is available. The label of this notifier is

Space is Low

You should close the low space notification (it might be hanging onto a
very large activation stack if the cause of the low space was infinite re-

410

Kinds of Execution Interrupts

Figure 20.10a 000

're ι
7f0<

' t r i

System B r o w s e r

S y s t e rn - < J h a. n g e s
S y s t e rn - C ο m ρ i I e r
S >• s t e rn - R e I e a ; i η g
Fi les-Streams
File s-,Abst ran t
F i l e s - - e r o · A l to

ial Tods

F in a no ialHi story

I -•-|<: >••-•>-••- >-f ' F i r , =.!-..- I a I Ui.r ».-..·,. j

transaction;

private
totalSpentFor:

report
\'<kr a. S t r i n g t h a t d e s c r i b e s t h e c u r r e n t b a l a n c e a n d

ng new,

listory'; cr,

d printString; cr,

Figure 20.10b 000

'fOl

'tri

S y s t e m Β ro w s e r j

S y s t e

t e rn - C h a n g e s
t e rn - C ο rn ρ i I e r
t e rn - Fi e I e a. s i η g

s-Streams

re

Wor

Financia IHistory

_ _] ..,.,„ ..,.,_,., ? c ;

transaction

private
totalSpentFor:

b h a. r e d Q. u e υ e > > ρ e e k

Ι η ρ u t S t a. t e > > k e y b ο a r d Ρ e e k

Ι η ρ υ t S e η s ο r > > ρ r i rn Κ b d Ρ e e \ • ^

Ι η ρ u t S e ri s ο r > > k e y b ο a r d Ρ r e s s e d *

S t r i η g Η ο I cJ e r C ο η t r ο 11 e r (Ρ a. r a. g r a. ρ h Ε d i t ο r) > > ρ r ο c e s s Κ e y b ο a. r d

ng n e w ,

l i s t o r y ' j cr,

d printString; cr,

J

411
20.3 Running Out of Space

cursion). The low space might be due to an error in your code, such as
infinite recursion, gobbling up space. Otherwise, the problem might be
harder to trace, such as cyclic pointers; or the problem could be that
your application needs more than the available space. In any case, pro-
tect yourself by filing out your work (as explained in Chapters 22 or 23)
so that your work can be filed back into a new system image. Making a
snapshot will not help you since you will simply be saving a system im-
age that has insufficient space. If your application needs more than the
space available in the initial system image, you might consider deleting
other applications (sets of classes) that you do not require. You can use
the system tracer to create a "clean image" (as described in Section
23.4).

At the time that the low storage notification appears, you ought to
have enough time (space) in which to save your work before the system
crashes. A second warning will appear if you ignore the first and con-
tinue to use the system. At this point, you will probably not have time
to save your work before the system crashes.

If you want to monitor your space utilization, the System Workspace
includes three expressions that you can evaluate to check on the actual
space used, and to check on the number of object pointers used.

Smalltalk oopsLeft

Smalltalk coreLeft

Smalltalk core

Amount of remaining space for object.

Number of words of memory remaining.

Number of words of memory currently being used. (This
computation typically takes a long time.)

The result of Smalltalk core plus the result of Smalltalk coreLeft is less
than the total amount of memory available to the system. The differ-
ence is the amount of space taken up by the Smalltalk-80 interpreter
and resident tables of data for the interpreter.

20.4

Recursion in
the System
Error Handler

When the system error handling mechanism results in a recursion call-
ing on the messages error: or halt or halt:, then the system is not able to
handle the usual user interface control. Instead, a message appears in
the System Transcript (if it is open on the screen):

*'System Error Handling Failed**

followed by the error message followed by the last three message-sends
indicating the recursive call that caused the failure, and then followed
by

type <s> for more stack; anything else restarts the scheduler

412
Kinds of Execution Interrupts

You have two choices. You can type the letter s on the keyboard to see
some more of the activation stack (typically more indication of the re-
cursive call), or you can type anything else in order to try to return to
the usual user interface, notably to a browser to correct the problem.
An example showing the appearance of the System Transcript is given
in Figure 20.11.

You can test this facility by evaluating the expression

ErrorRecursion «- true

and then creating an error. ErrorRecursion is a class variable of Object and is
therefore globally accessible. It is used to test for recursive calls on the primitive
routines for the error handler. For example, evaluate

nil+ 3

If you type any key, other than s, to get the system to respond again (reschedule
the ControlManager), the value of ErrorRecursion is automatically set to false.

If the System Transcript is not open on the screen, the problem still exists but you
can not see the comment about the failure. Your system will appear to be "dead."
In such cases, type any key other than s and see if you can get the system to re-
spond again. Whenever the System Transcript is not open, you take a chance on
losing feedback about an error.

Figure 20.11

System Transccript||

System Error Handling Failed
Message not understood: +
U η d e f i η e d Ο b j e c t > > D ο 11

C ο m pi le r> > e ν a I u a t e : i η : t ο: η ο t i f y i η g: i f F a i

I:

S t ri η g Η ο I d e rC ο η t ro 11 e r> > d ο 11

* * t y p e <s> for more s t a c k j a n y t h i n g

else r e s t a r t s scheduler**

413
20.4 Recursion in the System Error Handler

It is most likely that the reason the error handler failed is that you
have modified incorrectly some critical part of the user interface. Your
system is probably dead. One last resort that you can try is to type Ctrl
shift c (all three keys at the same time, but you should press the Ctrl
and shift keys first and then, while holding them down, press c). This
puts you into a preemptive, teletypewriter-like interface in which you
can type one expression and then evaluate it by typing the "escape"
key. An image of this interface is shown in Figure 20.12. Editing in this
interface is done using the "backspace" key. Only two lines are avail-
able, so if you type an expression on the second line, then the result
will appear on the first line. If your user interface changes were condi-
tional on some global flag, you can reset the flag and hope for the best.
(If you are knowledgeable enough about the system, you can try to re-
define the method causing the problem by evaluating the appropriate
compile message to the class.) If Ctrl shift c does not work, then most
likely the input/output handler is locked up. There is nothing you can
do except start over with a new image, and turn to Chapter 23's section
on crash recovery.

Figure 20.12 [000

WorKspacel

ErrorRecursion *• t r u e .

* * S y s t e m Error Handling Fai led**

Message not understood: +

Undefined Ο b j e c t > > D ο 11

C ο rn pile r> > e ν a I u a t e: i η: t ο: η ο t i f y i η g: i f Fa i

I:

S t ri η g Η ο I d e rC ο η t ro 11 e r> > d ο 11

* * t y p e <s> for more s t a c k ; a n y t h i n g

else r e s t a r t s scheduler**

I Single-stepping Through
an Execution

416
Single-stepping Through an Execution

Two commands in the yellow button menu of the debugger top view,
step and send, make it possible to step through the execution of a
method, one message-send at a time, and observe the behavior of the
message receivers.

The method associated with the example for the system class Pen
provides a sequence of messages that create graphical feedback so that
you can observe the results as you step through the execution. In a sys-
tem browser, find the method for example in the class protocol of Pen.
Insert a breakpoint, self halt, at the beginning of the method, after the
temporary variable declaration. Choose the yellow button command ac-
cept. The browser selections and the change to the method are shown
in Figure 21.1.

Figure 21.1

Col lect ions-Streal
Collect ions-Supp

G r a ρ h ι c s - D15 ρ I a y I Q.u a d re. η q I e
Graphics-Paths
Graphics-Views
Graphics-Editor;
Graphics-Suppcir t| j n 5 t

example
"Draws a. spiral in qray with a pen that \i

bic
self halt.
bic - Pen new,
bic mask: Form gray,
bic defaultNib: 4.
bic combinationFiule: Form under,

to: 50 do: [:i | bic go: i:+:4. bic turn: 89]
'Pen example"

Now select the text Pen example at the end of the method and choose
the yellow button command do it. A notifier appears. In it, select the
yellow button command debug (Figure 21.2). Designate a fairly large
rectangular area for the debugger. Then choose the second message-
send; the first one is just an indicator for the message halt (Figure 21.3).
Notice that the message halt is shown as the text selection in the second
subview of the debugger. This selection is the next message that will be
completed if you proceed (choose the yellow button command proceed),
or if you choose the yellow button command step in the debugger top
view.

417
Single-stepping Through an Execution

Figure 21.2
BIO

System Browser I

C ο 11 e c t i ο η s - S t re a.
Col lect ions-Suppc

G r a. ρ h i c s - D i s ρ I a y
Graphics-Paths
G r a p h i c s - v i e w s
Graphic s-Edi toH
Graphic s-Suppoi

Point
O.uadrangle
Rectangle

ι η s t a n c e c re a 11 ο η

example
"Draws a s|

Pe η c lass (Ο bj e c t) > > halt

Pen class>>example

U η d e f i η e d Ο b j e c t > > D ο 11

C ο m pile r> > e ν a. I u a t e: i η; t ο: η ο Iproceedf* ί' •'

Co deCont roller >>doltself ha l t

bic - Pen n*

bic mask: Form gray,

bic defaul tNib: 4,

bic combine.tionRule; Form under,

1 t o : 50 do: [:i | bic go: i*4, bic t u r n : 8 9]

"Pen example"

,v i d e,

Figure 21.3

100
000

i Pen class(Object)>>halt

UndefinedObject>>Dolt ^

example
"Draws a. spiral in gray w i t h a. pen t h a t is 4 pixels wide,"

1 bic |
self QQQ.
bic *- Pen new.

bic mask: Form gray,

bic defaul tNib: 4,

bic combinat ion Rule: Form under,

1 to: 50 do: [:i | bic go: i:+:4. bic t u r n : 8 9]

"Pen example"

self
superclass
m e t h ο d D i c

A bic
I

A

418
Single-stepping Through an Execution

If you choose the yellow button command send, nothing will happen.
Generally, when you have not selected the method at the top of the ac-
tivation stack, then the first thing to do is to choose the yellow button
command step. This will complete all the message-sends above the cur-
rent selection. Choose the yellow button command step (Figure 21.4).

Figure 21.4 010

Halt QncountQrQd.

Pen c I a. 5 s (Ο b j e c t) > > h a. 11

Undef inedObiect>>Dolt

example
"Draws

full 5tack
proceed
re i t art
senders

imp lament or
m e s 5 a. g e s

s e n d !

a spiral in g r a y w i t h a pen t h a t is 4 pixels wide.

| b l C

self

bic *- Pen new,

bic mask: Form gray,

bic defaultNib: 4.

bic combinationRule: Form under,

1 to: 50 do: [;j | bic go: i+4, bic turn: 8 9]

"Pen example"

self
superclass
methodDic

bic

The selected message-send goes to the top of the stack and the text
selection is now new (Figure 21.5). That is, the message halt was com-
pleted and execution advanced to the next message. The text selection
visually shows you what send or step will do if one of them is chosen.

1. The command step does a complete message-send. If you now
choose step, new will be sent to Pen and the entire method associ-
ated with new to Pen will be evaluated. Assignments are quickly
passed over, so in this case, the assignment to the temporary vari-
able bic will also take place.

2. The command send will invoke the method for the message select-
ed, in this case, new. The message-send new to Pen will become
the first message-send in the top subview of the debugger. The
text selection should indicate the next message-send, the first mes-
sage that is not an assignment. All assignments of the form vari-
able <- variable or variable <- constant, up to the point indicated
by the text selection, will be carried out immediately.

419
Single-stepping Through an Execution

Figure 21.5

100
000

UndefinedObject>>unboundMethod
Compiler>>evaluate:in:to:notifying:ifFail:
CodeController»dolt

example
"Draws a spiral in gray with a pon that is 4 pixels wide.

| bic |
self halt.

bic rna.sk: Form gray.
bic defaultNib: 4.
bic com bin a. tionRule: Form under,
1 to: 50 do; [:i j bic go: i*4, bic turn: 8 9]
"Pen example"

self
s u ρ e re I a s s
method Die

bic

Assuming your situation is as shown in Figure 21.5, choose the yellow
button command send. The message-send Pen class > > new is entered
at the top of the activation stack and displayed in the debugger (Figure
21.6).

Figure 21.6

100
000

Malt encDuntered. ^ ^ ^ ^ ^ ^ ^

Pen class • -e · ample
U η d e f i η e d 0 b j e c t > > u η b ο υ η d Μ e t h ο d k
C ο m ρ i 1 e r > > e ν a Ι υ a t e: i η: t d: η ot i f y i η q: i f Fa ί 1: »

new

| quill

quill *• super ^ ^ Q .

quill destForrn: Display.

quill frame: Display bound ing Box.

quill sourceOriqin: Ο(>ΙίΟ,

quill mask: Form black,

quill defaultNib: 1.

quill combine.tionRule: Form paint.

quill down,

nnill mrfh.

self

method Die

A quill A

420

Single-stepping Through an Execution

The first message-send, new to super, is selected. The method that is
displayed is a sequence of initialization messages to the variable quill.
The right inspector of the debugger shows the temporary variable name
quill in its menu; choose quill (Figure 21.7).

You can now observe the initial change in the value of quill from nil
to a Pen. In the top view, choose the yellow button command step and
notice that the value of quill is now an instance of Pen (Figure 21.8). If
you wish to see subsequent changes in the instance variables of quill,
you will have to inspect quill and rechoose each variable as you step
through the method.

If you just use the command step several times, you will eventually
reach a point where the return expression, Τ quill, is selected (Figure
21.9). If you choose send now, nothing will happen. This last message is
an action that completes the method; you must choose step in order to
complete a method.

Figure 21.7

F'Q η c I a s s > > e χ a m ρ I e
U η d Θ f ί η e d Ο b j Θ C t > > u η b ο υ η d Γνΐ e t h ο d
C ο m pile r> > e ν a luate: in:to: η ο t if y i ng: i fFa.il

quill d e s t F ο r rn; D ί s ρ I a y.

quill f rame: Display boundingBox,

quill sourceOrigin: 0@0,

quill mask: Form black.

quill d e f a u l t N i b : 1.

quill cornbinationRule: Form paint ,

quill d o w n ,

quill home.

iinill north.

self
superclass
me thod Did

nil

121
Single-stepping Through an Execution

Figure 21.8

Pen class>>example
U η d e f i η e d 0 b j e c t > > u η b ο u η d Μ e t h ο d
C ο m pile r> > e ν a I u a t e: i η: t ο: η ο t i f y i η g: i f Fa i I:

I quiii ι

quill *- super new,

quill frame: Display boundingBox.

quill sourceOrigin: CKS'ij,

quill mask: Form black,

quill defaultNib: 1,

quill combine.tionFiule: Form paint.

quill down,

quill home,

Figure 21.9

U η d e f i η e d Ο b j e c t > > υ η b ο υ η d Μ e t h ο c

Compiler»evaluate: in:to:notifying:ifFai l

quill *• super new,

quill destForm; Display,

quill frame: Display boundinqBox,

quill sourceOrigin: O@O,

quill mask: Form black,

quill defaultNib: 1,

quill com bin a tionFiule: Form paint

quill down.

quill home,

quill north.

422

Single-stepping Through an Execution

Choose the yellow button command step. The method is completed
and is removed from the activation stack. The action is reflected in the
debugger (Figure 21.10). The message new has now been sent success-
fully to Pen. The assignment to bic is carried out immediately, and the
next message selected is gray to Form. This is precisely the state the
debugger would have reached if, at the point shown in Figure 21.5
when new to Pen was the text selection, you had chosen yellow button
command step instead of send.

In the inspector for temporary variables, choose the name bic in the
menu; bic is an instance of Pen. In the menu of the inspector, choose
the yellow button command inspect and create an inspector for bic (Fig-
ure 21.11). In the text subview of the inspector for bic, type

halftoneForm displayAt: Sensor waitButton

Select the text and choose the yellow button command do it (Figure
21.12a). Click any button somewhere on the screen where the area is
clear and you will be able to see the result. A black, 16 χ 16 square is
displayed; this is the default mask for a Pen (Figure 21.12b).

Figure 21.10

U η define d Ο b j e c t > > υ η b ο υ η d Μ e t h o d
C ο m ρ i Ι Θ r > > e ν a I u a. t e: i η: t ο: η ο t i f y ί η q: ί f F a i I:
C odeCont rol ler) >do It

example
"Draw5 a spiral in g r a y w i t h a pen t h a t is 4 pixels wide.

self hair,

bic *- Pen new,

bic d e f a u l t N i b : 4,

bic combinationFiule: Form under.

1 to: 5 0 do: [:i | bic go: i + 4, bic t u r n : 8 9]

"Pen example"

self
super
rn e t h c

: lass
dDic

bic

423
Single-stepping Through an Execution

Figure 21.11 Bio

U η d Θ fi η e d 0 b j e c t > > υ η b ο υ η d Μ e t h o d
C ο m pile r> > e ν a. I u a. t e: i η: t ο: η ο r i f y i η q: i f Fa i I:
C ο d e C ο η t ro 11 e r> > d ο 11

example
"Dra·. s ρ i r a. I in q r a. y w i t h a. pen t h a t is 4 ρ i :•; e I s ν ν i d e.

I bic |
self halt ,
bic *- Pen new,

bic defaul tNib: 4.

bic combina.tionFiule: Form under,

1 t o : 50 do: [:i | bic go: i*4, bic t u r n : 8 9]

"Pen example"

self
superclass
rn e t h ο d D i c

a Pen

Figure 21.12a Bio

Halt encountered.

U η d e f i η e d 0 b j e c t > > υ η b ο υ η d Γνΐ e t h c
C ο rn ρ i I e r > > e ν a. I u a t e: i η: t ο: η ο t i f y i η
C ο d e C ο η t ro l ls r > > dolt

example
"Draws a spiral in qray ν

I bic |

self halt.

bic *· Pen new,

bic mask: Form qray.

bic defaultNib: 4.

bic cornbina.tionRule: Form under,

1 to: 50 do: [:i | bic go: i*4. bic turn.:

"Pen example"

8 9]

self
superclass
method Die

Pen

424
Single-stepping Through an Execution

Figure 21.12b

Halt en c ο υ η t e re d,

U η d e f i η e d Ο b j e c t > > υ η b ο υ η d M e t h c
C ο rn ρ i I e r > > e ν a I u a t e: i η: t ο: η ο t i f y i η
C ο d e G ο η t r ο 11 e r > > dolt

example
"Draws a spiral in gra;

I bic |
self halt.
bic - Pen new.
bic mask: Form gray,
bic defaultNib: 4.

self
destForrn
sourceForm
half ton eForr
combination
destX
destY
width
height
sourceX
sourceΥ
clipX
clip Υ

bic combinationRule: Form under.
1 to: 50 do: [:i | bic go: i:+:4. bic turn: 89]

"Pen example"

self
superclass
methodDic

btc
a Pen

Now return to the debugger and choose the yellow button command
step in the top subview. The message gray is sent to Form. The next
message is mask: to bic. Choose the command step again. Return to the
inspector for bic and reevaluate the expression

halftoneForm displayAt: Sensor waitButton

Click any button somewhere on the screen where the area is clear and
you will be able to see the result. A gray, 16 χ 16 square is displayed;
this is the new mask for bic (Figure 21.13).

Returning to the debugger, keep stepping through the method (choos-
ing the command step); examine the variables of the Pen, bic, by choos-
ing variable names in the inspector menu or evaluating expressions as
already illustrated. You will change the size of the nib, the source Form,
and the combination rule for bic.

These evaluations will go very slowly since a simulator for the Smalltalk-80 inter-
preter is used. Sending defaultNib: will be especially slow, perhaps one-half minute
on some machines.

Eventually, the text selection will be the message to: 50 do: [:i | bic
go: i*4. bic turn: 89] (Figure 21.14). If you were now to choose the com-
mand step, you would watch the Pen draw the 50 lines that make up
the spiral design; the drawing would be carried out in an excrutiatingly
slow manner. Rather than choosing the command step at this point,

425
Single-stepping Through an Execution

Figure 21.13

Halt e n c o u n t e r e d .

U η d e f i η e d 0 b j e c t > > υ η b ο υ η d M e t h c
C ο rn pile r> > e ν a I u a t e: i η: t ο: η ο t i f y i η
C ο d e G ο η t r ο 11 e r > > d ο 11

example

"Draws a spiral in gra;

I bic |

self halt.

bic *- Pen new.

bic mask: Form gray.

bic defaultNib: 4.

Pen

self
destForm
sourceForm
halftone For r
combination
destX
destY
width
height
sourceX
sourceΥ
clipX
clip Υ

h a I f t ο η e Fo rm d i s ρ I a y A t:

5 e η s ο r w a i t Β υ 11 ο η

bic combine.tionFiule: Form under.

1 to: 50 do: [:i | bic go: i*4. bic turn: 8 9]

"Pen example"

self
superclass
method Die

bic
a Pen

Figure 21.14
010

U η d e f i η e d Ο b j e c t > > u η b ο υ η d Μ e t h ο d
G ο rn pile r> > e ν a. I u a t e: i η: t ο: η ο t i f y i η g: i f Fa i I
Code C ο η t ro 11 e r> > dolt

example

"Draws a spiral in gray with a. pen t h a t is 4 pixels vvidi

I bic |

self halt.

bic - Pen new,

bic mask: Form gray,

bic defaultNib: 4,

bic combination Rule: Form under.

to: 5U do: [:i I bic qo: i*4. bic turn: 89]

I"Pen example"

self-
superclass
rnethodDic

a Pen

426
Single-stepping Through an Execution

choose the command send so that you can see, more quickly, the Pen
design.

Assuming you choose the yellow button command send in the top
subview of the debugger (Figure 21.14), the message to:do: to a
Smalllnteger is placed at the top of the activation stack (Figure 21.15).
The first expression in the method associated with to:do: is an assign-
ment, and it is carried out immediately. The text selection is at the sec-
ond expression, a comparison of the temporary variable nextValue with
the argument stop.

In the right inspector of the debugger, choose the temporary variable
name nextValue so that you can watch the value change as the iteration
proceeds; nextValue is initially 1 (Figure 21.16). Choose the yellow but-
ton command step to evaluate the test for the iteration; the next mes-
sage is value:.

Choose step again. A small line is drawn, and the selection goes to +.
Choose step again. The value of nextValue is now 2; the display of the
change in value for nextValue is automatically updated (Figure 21.17).

Continue to choose step for awhile, say until the value of nextValue is
4, and you can see the drawing of 3 lines of the spiral design (Figure
21.18). You can now complete the example by choosing the yellow but-
ton command proceed in the top subview (Figure 21.19). Or you can
close the debugger by choosing the blue button command close, and
thereby abort the execution of the example.

Figure 21.15

100
000

Halt encountered,
Pen

Srna nteaerfNumben>>to:do:
Pen c la Ji>>ex ample
U η d e f i η e d Ο b j e c t > > u η b ο υ η d Μ e t h ο d
C ο m pile r> > e ν a. Ι υ a t e: i η: t ο: η ο t if ν i η q: i f Fa. i I:

to: stop do: aBlock
"Create an Interval from the receiver up to the argument, 5top,
incrementing by 1. For each element of the interval, evaluate th·
block, aBlock."

| nextValue |
nextValue - salf.
[nextValue QQQQ]

while Τ rue:
[aBlock value: nextValue,
η e χ t V a Ι υ e *- η e χ t V a I u e + 1]

self 5 tup
aBlock

427
Single-stepping Through an Execution

Figure 21.16

100
000

Pen class>>example
U η d e f i η e d 0 b j e c t > > υ η b ο υ η d M Q t h o d
C o m pile r > > e ν a I u a t e: ί η: t ο: η ο t i f y i η g: i f Fa. i I:

to: stop do: aBlock
"GreatΘ an Interval from the receiver up to the argument, stop,
incrementing by 1. For each element of the interval, evaluate the
block, aBlock."

| next Value |
next Value «- self,
[nextValue Q j j ^ ^]

while Τ rue:
[aBlock value: next Value,
next Value *• next Value + 1]

self stop
aBlock

Μ Μ Μ
fiua

Figure 21.17 roo

Pen cla.5S>>example
U η d e f i η e d Ο b j e c t > > D ο 11
C ο rn pile r> > e ν a I u a t e: i η: t ο: η ο t ί f y i η g: i f Fa i I:

to: stop do: aBlock
"Create an Interval from the receiver up to the argument, stop,
incrementing by 1. For each element of the interval, evaluate the
block, aBlock," k

| nextValue | |
next Value *- self.
[nextValue g^g]^Q]

whileTrue:
[aBlock value: nextValue,
nextValue *• nextValue + 1]

self
s t ο ρ
aBlock

•naamauia

428

Single-stepping Through an Execution

Figure 21.18 000

Halt encountered.
Pen

Ι Κ ^. 11= 1- •-• >-..-.[Γ.-..-Γ.-. .-•!! -r >-.I z. •• .• A

jiTia. InteaeriNurnberι;·;·ΐο:αο:
Pen class>>example
Undef inedObject>>Dolt
C ο m ρ i I e r > > e ν a I u a. t e: i η: t ο: η ο t i f y i η c\; i f F a. i

t o : stop do: aBlock

" C r e a t e an I n t e r v a l from t h e receiver up to t h e a r g u m e n t , s t o p ,

increment ing by 1. For each element of the i n t e r v a l , e v a l u a t e th>

block, aBlock."

| n e x t va lue | f |

next'v'aluQ *- self, <f *

[nextValue ''..= stop]

while Τ rue:

[aBlock QQj^^^QQQ
η e χ t V a I u e - η e χ t V a I u e + 1]

self
stop
aBlocI

Figure 21.19 Ooo

System Browser

'Jollec t i o n s - b t r e a
C ο 11 e c t i ο ri s - S υ ρ ρ ο

«reiiiiiregaiiinMi«i
Graphics-Display
Graphics-Paths
Graphics-View s
Graphics-Editors
Graphics-Support

Pen

example

" D r a v v s ^ ^ ^

self h ai;t:, * ;/'

bic - P^^^&

b i c m a s [•.: F ο ί

bic defau l t Ν i b: %^S0S

b i c c ο m b i ΓΙ a t i ο ri Fi υ ίϋι;;;;-|^|ρ

1 to; 50 do: [:i | bic §^$: 89]

PART F I V E
External Files

Your work in developing Smalltalk-80 code can be saved in a variety of
ways, all of which will be described in Part Five.

• Make a file on which new class definitions and descriptions, or
parts of class descriptions are stored. This kind of a file is useful in
sharing information among different users of Smalltalk-80 system
images.

• Make a file on which any changes to existing class descriptions are
stored. This involves filing out with respect to the system change
set.

• Make a "snapshot," a file containing an executable image of the
current state of the system. The system can be started up from this
file.

• Make an audit trail. As you are working, a log of the changes you
make to class descriptions is automatically kept on a special file. It
is part of the mechanism for storing source code. This file also con-
tains each evaluation action. It can be used for recovering from
major disasters that occur before you have saved your work (with
the exception, perhaps, of disk crashes).

The File System

22.1 Writing Code onto a File
File Formats

22.2 Accessing the Contents of a File
File List Browser

22.3 Retrieving the Contents of a File
Syntax Error View

22.4 Getting Started Revisited
Sources and Changes Files
Decompilation

432
The File System

The purpose of this chapter is to describe the mechanisms available in
the Smalltalk-80 system for filing code in and out. In using the pro-
gramming system, you should be aware of how access to the source code
is handled, and how the system supports you in remembering changes
you make to the system. Source code and changes are stored in files
that exist on either your local disk or on a network-based file server. If
the file of source code is not available to you, you can still browse the
system methods by using a decompiler. The end of this chapter reviews
the use of the sources and changes files and the decompiler; further de-
tails about sources and changes are given in Chapter 23.

At Xerox PARC, work in progress on an application is typically stored in personal-
ly managed snapshots. The purpose of maintaining snapshots is that they represent
a collection of objects, whereas files are needed because we do not understand, as
yet, how to transfer external objects, and we do understand how to transfer de-
scriptions of objects. Files, therefore, are our primary communication medium. Pe-
riodically, files containing class descriptions and changes to system classes are
made, especially when the programmer wishes to work in a new release of the sys-
tem. The programmer accesses a new release and then files in the new class defini-
tions and methods. To share additions to the system, either bug fixes or new
functionality, files (rather than snapshots) are made and then stored on a shared
network-based file server; an announcement of the availability of the files is made
using a form of electronic mail. Throughout this chapter's discussion, it should be
understood that the system makes no distinction between local disks for storing
files and remote files stored on network-based file servers, other than in naming
the file. (The name of a remote file includes the name of the file server and directo-
ry, and the system must request any log in identification. Smalltalk-80 systems
that provide access to file servers must implement the network protocols and pro-
vide prompters for obtaining log in identification.) Because most of the computers
used by the Smalltalk-80 developers are shared, files are rarely stored on local
disks, with the exception of the latest system release image and changes files. All
users are expected to back up their work, snapshots, or files of class descriptions,
on a file server.

22.1
Writing Code
onto a File

There are two ways to write code onto a file. The usual way is to select
the yellow button commands in the system browsers that provide gen-
eral access to class descriptions. Four layers of information can be se-
lected for filing out from the various subviews of a system browser.

• The code that describes all the classes within a class category.
Choose the yellow button command file out in the class-categories
subview of the browser. The file name is the class category
followed by an extension.

• The code that describes an individual class. Choose the yellow but-
ton command file out in the class-names subview of the browser.
The file name is the class name followed by an extension.

433
22.1 Writing Code onto a File

• The code that describes the methods associated with a category of
messages in an individual class. Choose the yellow button com-
mand file out in the message-category subview of the browser. The
file name is the class name or metaclass name followed by a hy-
phen followed by the category name followed by an extension.

• The code associated with one method of an individual class. Choose
the yellow button command file out in the message-selectors
subview of the browser. The file name is the class name or
metaclass name followed by a hyphen followed by the message se-
lector followed by an extension.

In each case, the "extension" for the file name is a period followed by
the characters St. The class name is inserted in front of the message-
category and message-selector when creating the file name for the third
and fourth subview. Any invalid file character in the selection is re-
placed by hyphens; invalid file characters include space, <, >, = , > =,
and < = . Examples of file names associated with various selections is
given in Figures 22.1a, 22.1b, 22.1c, and 22. Id, in which the command
file out is chosen in each of the four menu subviews of a system browser.

The information written onto the files using the command file out is
in the form of expressions that can be evaluated to reconstruct the class
descriptions.

Figure 22.1a ΟΙΟ Ϊ

Μ Collec
Colled
Collec
Graph
Graph

ι:;:;:!:;1 aslnte

i l l ! "A

: ions-Array Str ing
c i ο η 5 - S t re a S y m b ο 1
j i o n s - S u p p j T e χ t

printout e w r - ~
--pvTi EUSa c l

add category
rename je of the
remove
update
edit all

| ^ B | accessing
1 testing
I copying
1 printing

ass |

1 asCharacter jijiiijii

asLowercase !|!ijj!;|
asSymbol jjjjjjijj

| asUppercase i|!|!|iji

receiver." |||ΜΠΠ

Collections -Text .st Βιβϋϋιϋΐ!!

: : i : : : : : : : : o : : ;:·:· • :·':'·:'·: : : : : : • : · : ·:•:::: : : : : : • : • : • : • : • : : : • : • :•:·

434

The File System

Figure 22.1b
010

Collections -
C ο 11 e c t i ο η s -
C ο 11 e c t i ο η s -
Graphic 5-Pr
Graphics-C

Τ Θ :

is*
^aslnteger

"Answer the

•t ν a I u e

/alu

ρ π η
s ρ a w η

s p a w n hierarchy

a c c e s s ι η g
t e s t i n g

ying
•iting

hierarchy
d e f i η i t i ο η
comment
protocols

ι rut var refs
class var refs

class refs

rename
remove

Character.st

asCharacter

asLowercase
a s S y rn b ο I
asUpperca.se

Figure 22.1c Oio

C ο 11 e c t i ο η s - A rr a ;·! S t π η g
C ο 11 e c t i ο η s - S t r e a S y rn b ο I
C ο 11 e c t i ο η s - S υ ρ ρ j Τ e χ t
G ra ρ h i c s - Pri rn i t i ν I
G r a p h i c s - D i s p l a y

comparing

pnntir

asciiValue

"Answer the value of the receiver."

t value

s ρ a w η
add protocol!

re η a rn e
remove

Character-accessing .st

435
22.1 Writing Code onto a File

Figure 22. Id 010

C ο 11 e c t i ο η s - A rra i S t ri η g
G ο 11e c t i ο η .-· - S t r e a S y m b ο I
C ο 11 e c t i ο η s - S υ ρ ρ J Τ e χ t
G r a p h i c s - Pri rn i t i ν I
Graphic 5-Display!

comparing

" m t a l w 3 '

test ing
copying
print ing
convert inq

digit V a I u e

asciiValue
"Answer the value of the receiver."

τ value

s p a w n
senders

implementors
rn e s s a. g e s

ΠΊ ο ν e
remove

Character-ascii Value.st

File Formats

Alternatively, choose the yellow button command print out in each of
the subviews of the browser in order to obtain a "pretty printed" ver-
sion of the descriptions. The file name extension is a period followed by
some sequence of characters indicating the format of the contents (at
Xerox PARC, the characters are press). Typically, the contents of a file
created using the command print out cannot be evaluated as
Smalltalk-80 expressions. The command print out is reserved as a sys-
tem dependent message for creating the best possible pretty-printed
version. Because printing formats differ among hardware systems, the
pretty-printed version defaults to being the same as file out in the basic
version of the Smalltalk-80 system.

The format for a file created using the command file out is described in
the paper by Glenn Krasner entitled "The Smalltalk-80 File Code For-
mat" in the book he edited, Smalltalk-80: Bits of History, Words of Ad-
vice. A summary of that paper is given here.

The file format contains exclamation marks as special delimiters.
Text up to, but not including an exclamation mark, is treated as an ex-
pression that can be evaluated. If an exclamation mark is the first
character in the next chunk of text to be read, then all but this first
character are treated as an expression and evaluated. The result of the
evaluation is an object. This object then takes over the task of reading

436
The File System

the file, stopping when the object determines that its task is completed.
In this way, a class can read and install new methods.

Figure 22.2 shows a file out of part of the class description for Collec-
tion. The file starts with a String that indicates the date and time at
which the file was created, and the version number of the system from
which it was made. The exclamation mark delimits the String from the
next chunk of text, which is a message to Object to create a new sub-
class, Collection, with no variable declarations and categorized under
Co I lections-Abstract. The exclamation mark delimits this message from
the next, which is a message to the new class Collection to store a com-
ment about itself. The next exclamation mark is followed immediately
by another. The chunk of text is a message to Collection to create a new
category, accessing, and to start reading the methods for that category.
The class Collection, then, becomes the file "reader." It installs a meth-
od for size. The exclamation mark after the method is followed immedi-
ately by an exclamation mark, indicating the Collection can stop
reading the file. The next text chunk creates the message category test-
ing for Collection, and the methods follow.

The "pretty printed" version for printing part of the class Collection
is shown in Figure 22.3. This format can not be read by the system, but
is somewhat easier for a human being to read.

22.2

Accessing the Instances of external files can be created by evaluating an expression of
Contents of a the form
File

FileStream fileNamed: ' fileName'

I,
The response to this expression is an instance of FileStream that can be
sent messages for reading and writing information onto the file it
accesses. Note that FileStream also responds to messages with selectors
oldFileNamed: and newFileNamed: in order to open access to external
files that already exist (oldFileNamed:) or do not already exist
(newFileNamed:).

I

437
22.2 Accessing the Contents of a File

'From Smalltalk-80 of March 9, 1983 [v29] on 15 March 1983 at
9:35:22 p m ' !
Object subclass: #Collection

instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: ' Collections-Abstract'!

Collection comment: ' I am the abstract class of all collection classes.'!

.'Collection methodsFor: ' accessing'!

size
"Answer how many elements the receiver contains."

I tally |
tally - 0.
self do: [:each | tally - tally + 1].
Τ tally! !

'.Collection methodsFor: ' testing'!

includes: anObject
"Answer whether anObject is one of the receiver's elements. "

self do: [:each | anObject = each ifTrue: [ftrue]].
tfalse!

isEmpty

"Answer whether the receiver contains any elements. "

Tself size = 0!

occurrencesOf: anObject

"Answer how many of the receiver's elements are equal to
anObject."
I tally |
tally - 0.
self do: [:each | anObject = each ifTrue: [tally - tally + 1]].

Figure 22.2 Τ tally! !

438
The File System

From Smalltalk-80 of March 9, 1983 [v29] on 15 March 1983 at
9:35:22 pm

Object subclass: #Collection
instanceVariableNames: "
classVariableNames: "
poolDictionaries: "
category: ' Collections-Abstract'

Collection comment: ' I am the abstract class of all collection classes.'

Collection methodsFor: ' accessing'
size

"Answer how many elements the receiver contains."

I tally I
tally - 0.
self do: [:each | tally - tally + 1].
Ttally

Collection methodsFor: ' testing'
includes: anObject

"Answer whether anObject is one of the receiver's elements."

self do: [:each | anObject = each ifTrue: [ttrue]].
τ false

isEmpty
"Answer whether the receiver contains any elements."

τ self size = 0
occurrencesOf: anObject

"Answer how many of the receiver's elements are equal to
anObject."

I tally |
tally - 0.
self do: [:each | anObject = each ifTrue: [tally <- tally 4- 1]].

Figure 22.3 Ttally

439
22.2 Accessing the Contents of a File

For example, create the file whose name is testFile, and practice
writing text into it, by evaluating the following sequence of expressions.

I aFile |
aFile «- FileStream fileNamed: ' testFile'.
aFile nextPutAII: ' The beginning of the fi le. ' .
aFile cr.
1 to: 50 by: 10 do:

[:each |
aFile nextPutAII: each printString.
aFile cr].

aFile nextPutAII: ' The end of the fi le.'.
aFile close

FileStream is a subclass of ReadWriteStream; the messages for writing
into the file are like those of any ReadWriteStream. Using a system
browser, you can explore the messages available for writing text into a
file.

Note that instead of using the expression

aFile nextPutAII: each printString

in the statements for writing on the file, you could have used

each printOn: aFile

and the result would have been the same.

The simplest way to open a file and access its contents is to choose the
File List Browser System Menu command file list. You are asked to designate a rectangu-

lar area in which the file list view is displayed. This standard system
view consists of three subviews. You type text in the top subview to
specify file names or patterns for file names (of either existing or new
files). A pattern is a sequence of characters that can contain the special
characters * or # ; * matches any sequence of no, one, or more charac-
ters, and # matches any one character. When you choose the yellow
button command accept in the top subview, the next subview, the file-
names subview, displays a list menu containing all the names of the
files in the local disk that match the names you specified in the pattern
subview. When you choose a file name from the menu, the contents of
the selected file is displayed in the bottom text subview.

If the file system you are using allows the characters * and # in a file name, then
you will want to choose other characters for pattern matching purposes, and it will
be necessary to change the String matching routines. The method to be changed is
String match:.

440
The File System

The form of the pattern subview is a sequence of file names
delimited by "carriage returns," that is, each file name or pattern is
placed on a separate line. Suppose you type

story

and then choose the yellow button command accept in the top view
(Figure 22.4a). We are assuming that the file story did not exist before.
The file-names menu displays one item (Figure 22.4b).

story

Choose it. The item is selected. Nothing else happens. The yellow but-
ton menu offers five commands (Figure 22.4c).

get contents

file in

copy name

Retrieve the contents of the selected file, and display the

contents in the text subview.

Retrieve the entire contents of the selected file, reading

and evaluating the text according to the file format for

class descriptions and expressions.

Copy the text of the file name into the text editor buffer so

that it can be "pasted" into other text views.

Figure 22.4a
Rio

FilQ List

51 o r v.

a q a ι π
undo

c ο ρ y
cut

ρ a. 51 Q

44J_
22.2 Accessing the Contents of a File

Figure 22.4b

Figure 22.4c 010

File L i r ^ ^ ^ ^ H
5toryA

qet con tent s ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ _
file in ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^

copy η am Q 1 .
rename | Λ
re m o v e j

442
The File System

rename Change the name of the selected file. A prompter appears,
with the name of the selected file. Edit it with the new file

name. Type the "carriage return" key or choose the yellow

button command accept to indicate that you have complet-

ed the file name. The menu of file names will be updated.

If you type an improper file name, or no file name at all, a

confirmer will appear to determine whether you want to

try again to specify a file name. Examples of this command

are given later in this chapter.

remove Delete the selected file from the file directory. A confirmer
appears to determine whether you really want to remove

the selected file. Choose yes if you do, no if you do not.

Whenever you retrieve the contents of a file, information is presented
in the System Transcript (if it is visible on the display screen). This in-
formation tells you which class and which method is currently being
read and compiled. In this way, you can monitor the progress of the file
retrieval.

Choose the yellow button command get contents (Figure 22.5a). The
file contents is empty. The text subview displays

- new file -

Figure 22.5a ΟΪ0

ι

i

\

File L i s t l | i i l | l l l l
5toryA

copy name 1
rename |
remove 1

443
22.2 Accessing the Contents of a File

to indicate that a new file will be created if you edit and store the con-
tents of the text subview. Keep in mind that the new file will be creat-
ed only if the contents are saved onto the file. Edit the text subview as
though you were working in a regular workspace. The yellow button
menu contains the text editing commands plus three additional com-
mands, file it in, put, and get (Figure 22.5b).

file it in

put

get

Read and evaluate the text selection. This selection should
be in the file-out format, which includes the exclamation
mark.

Save the edited information onto the file. One level of back
up on the file is maintained. The original version is
renamed to the given file name with a trailing $ appended;
the new version is stored as the currently selected file
name.

Retrieve all the information currently in the file.

Figure 22.5b [Din

File List

-{\e w
again
undo
copy
cut

pastQ
do it

print it
file it in

put
get

444
The File System

Figure 22.5c 010

File List

story.

One9 upon the
again
undo
copy
cut

paste
do it

print it
file it in

Edit the contents and then choose the yellow button command put (Fig-
ure 22.5c).

The cursor changes to a writing pen when a file is being written; it looks like
eyeglasses when a file is being read. During the time it takes for the system to ac-
cess the file, the cursor looks like an hourglass, meaning "wait" because it may
take noticeable time to find the file you requested.

The commands put and get are the external file counterparts to
accept and cancel. Although the contents of the file are retrieved when
you select a file name, you might make changes that you later wish to
throw away. In a workspace, you would choose the command cancel; in
the file browser text subview, you choose the command get.

In the top subview, replace story by storage and choose the yellow
button command accept. The file-names subview changes again (Figure
22.6a). Choose the single item, storage. Choose the yellow button com-
mand get contents (Figure 22.6b). Again, we are assuming that you re-
quested a new file. Edit the text subview and then choose the yellow
button command put (Figure 22.6c).

445
22.2 Accessing the Contents of a File

Figure 22.6a ίοϊο

Once upon the time.,^

storage

Figure 22.6b ioio

c ο ρ y π a m e
rename
remove

446
The File System

Figure 22.6c 010

File List

51 orageA

The foil owing if. documentation about the memory
storage system, a. g a. ι η

undo
copy
cut

ρ a s t e
do it

print it
file it in

put

KE3L1

Now in the top subview, replace all the text with the pattern

stor*

As stated earlier, the top part of the file list view can contain explicit
file names or patterns for the names. String-matching provides two spe-
cial notations for matching an arbitrary substring.

* match any number of characters, including none
match exactly one character

Note that s*y matches story, as does #t*y and story*. If you type stor*
in the pattern subview and then choose the yellow button command
accept, then the list menu will contain (at least)

storage
story

Choosing each item and then choosing get opens the previously created
file. Rename story to be tale. Choose the yellow button command
rename (Figure 22.7a). A prompter appears (Figure 22.7b).

447
22.2 Accessing the Contents of a File

Figure 22.7a Oio

File List

stor

storage
story

get contents
file in

copy name

remw/e

Figure 22.7b

File List

stor*.

storage New name for file
again
undo
copy
cut

ρ a s t e
do it

print it

ΕΞΧΕ
a net I

' Τ '

448
The File System

Replace the text in the prompter with the file name tale, and then
choose the yellow button command accept. The file name tale is select-
ed automatically (Figure 22.8).

If you created the file testFile suggested earlier in this section, you
might use the file list view now to see its contents. Since any number of
file names or patterns, separated by a "carriage return," can be typed
in the top view, you can simply add this file name to the pattern al-
ready in the view.

In addition to creating a file list view as just described, instances of
external files can be accessed for editing by evaluating an expression of
the form

(FileStream fileNamed: 'fileName') edit

The text subview part of the file list view, only, is created. The label of
the view is the name of the file. In Figure 22.9a, the expression
(FileStream fileNamed: 'tale') edit is typed, selected, and evaluated in a
workspace. In Figure 22.9b, a simple view of the contents of the file is
shown. The yellow button menu is like that available in the file list
view.

Figure 22.8

449
22.2 Accessing the Contents of a File

Figure 22.9a

Figure 22.9b

(F i I 9 ο t r Q a m fi laMa rnΘd: ' t a l e 7 ' 1

Qdit

450
The File System

22.3
Retrieving the
Contents of a
File

Syntax Error View

Class descriptions that were stored on a file whose name is fileName,
using the browser command file out, can be retrieved by evaluating an
expression of the form

(FileStream oldFileNamed: 'fileName') fileln

This expression is provided in the System Workspace for your conven-
ience.

Whenever you read class descriptions from a file that create a new
class category, any open system browsers will have to be informed of
the new category. In the class-categories subview of the system browser,
choose the yellow button command update.

Since files are created by choosing the file out command in a browser
subview, there are three reasons why an error can exist in a file you
try to read.

1. Variables or messages that had been a part of your image at the
time you created the file are not in the version into which you are
now filing.

2. You used a file list view and edited the text directly, creating a
syntax error (which is why you should not edit class descriptions
this way!).

3. You selected the text of a file and chose the yellow button com-
mand file it in, but did not select the correct sequence of charac-
ters.

As you are filing in information from a file, a status report is printed in
the System Transcript (if it is open on the display screen). If, when fil-
ing in, undeclared variables are encountered, a statement showing the
variable name and the fact that it is undeclared prints in the System
Transcript. The system will store the method anyway, as though compi-
lation had been successful, and you will have to use the browser to find
and correct the error.

Similarly, if an unknown message selector is encountered in a meth-
od, the process of filing in will be interrupted. A notifier will appear on
the screen. You can ask the spelling corrector to determine a possible
new selector. If the determination is acceptable, you choose the menu
item yes. This will store the right information in the system and con-
tinue reading the file. Or you can use the debugger, find and correct
the error, and then proceed (choose the yellow button command

451
22.3 Retrieving the Contents of a File

proceed) to continue reading the file. Or you can simply proceed to con-
tinue reading the file, without correcting the error and, therefore, with-
out storing the information in the system. In each case, the text in the
file will not be changed.

If a syntax error exists in the expressions that are filed in from an
external file, a special view will be created on the screen. It is the Syn-
tax Error View. Its purpose is to report the error and give you an op-
portunity to edit the expression. A syntax error view consists of one
text view that displays the expression to be evaluated, or the method to
be compiled and stored in a class description.

To create an example of a syntax error, file out the class
FinancialHistory that you had created as an example in Part Four. You do
this by choosing the class name FinancialHistory in a system browser, and
then choosing the yellow button command file out in the class-names
subview. Use the file list view to retrieve the contents of the file you cre-
ated; the file name is FinancialHistory.st (Figure 22.10).

Figure 22.10
000

System Browser

Systern-Releasin
Files-Streams
Files- A b s t r a c t
Files-Xerox Alto

f inancialhistory.st

Object subclass: # Fin a n

i η s t a n c e V a ή a b I e Ν a

c I a s s V a r i a b I e Γ0 a m e s

poolDictionaries: "

category: 'Financial

'From Small t a l k - 8 0 , version 2, of April 1,

19 8 3 ο η 2 5 Μ a y 19 8 3 a t 10: 17: 12 a m'!

Ο b j e c t s υ b c I a s s; # Fi η a n c i a IH i s t ο r y

i η s t a η c e V a ή a b I e Ν a m e s: ' c a s h Ο η Η a n d

expenditures '

c I a s s V a r i a b I e Ν a m e s: ''

poolDictionaries: "

category: 'Financial Tools'!

IFinancialHistory methodsFor: 'transaction.1:'!

spend: amount for: reason

452
The File System

Next, create some syntax errors in this file. Find the first occurrence
of an assignment expression and insert an extra left arrow, or find a
keyword in a message pattern and add an extra colon. Choose the yel-
low button command put to store the syntax error into the file (Figure
22.11). While the text is being written on the file, the cursor changes to
the shape of a pen.

Figure 22.11
010

by stem Browser!

Systern-Releasin
Files-Streams
Files-Abstract
Files-Xerox Alto

ftttaii

bject subclass:
instance'v'ariafc
class Varia bleW
poolDictionarie
cat «gory; 'Fin a

expenditures at: reason
total Spent For: reason) + ar

cashOnHand cash':

again
undo
copy
cur.

ρ a s t e
do it

IFmancialHistory methodsFolprint it |es'!
[file it inl

report
"Answer a String that hrfm^. the

current balance and expenditures."

| a Stream |
a Stream *• WriteStream on: String ne
a. S t· r e a m η e χ t Ρu t A11: 'Fin a. n c i a I H i s t ο r

In the menu subview of the file list view, choose the yellow button
command file in (Figure 22.12a). A syntax error view appears indicating
that an expression is expected after the first left arrow (Figure 22.12b).
Text describing the syntax error is inserted into the method at the
point of the error; the text is selected. You edit the method to correct it,
just as you would in a browser text subview. Choose the yellow button
command accept to recompile the method (Figure 22.12c). Now choose
yellow button command proceed (Figure 22.12d).

The correction you made is known to the system, but no change has
been made to the text on the file itself. You either have to file out
again to create a corrected file, or you have to use the file list view to
access the contents of the file and make the correction.

During filing in, expressions can be evaluated. For example, an ex-
pression that creates a new class description might appear in the text
in the file. If evaluating the expression generates a runtime error dur-
ing the file in, then a syntax error view will appear. The poorly-formed
expression will be displayed in the view. For example, suppose you

453
22.3 Retrieving the Contents of a File

Figure 22.12a
ΟΪ0

System Browser

S y s t e ΓΙΊ - Fi e I e a. s i η
Fi les-Streems
File.-.-Abstract
Files-Xerox A l to

Object subclass: # Fin a. n

i η s t a. n c e V a. r i a. b I e Ν a.

c I a. s s V a ri a. b I e Ν a m e s

poolDict ionar ies:

catequry: 'Financial

! Fi η a ri c ί a. ΙΗ ί s t ο r y m e t h ο d s For: ' t r a. n s a c t i ο η s'!

spend; amount for: reason

"Spend amount for the reason given,

decrementing the available cash on hand,"

expenditures at: reason put: (self

totalSpentFor: reason) + amount,

cashOnHa.nd *• *• cashunHa.nd - amount!

! Fi η a η c i a. ΙΗ i s t ο ry rn e t h ο d s Fo r: ' ί η q u i ri e s'!

Figure 22.12b

S y s t e m - Fi e I e a. s ι
F i les-Streams
F i l e s - A b s t r a c t
Files-Xerox A l to

spend: amount for: reason

"Spend amount for the reason given,

decrement ing the avai lable cash on hand,"

expenditures a t : reason put: (self

t o t a l Spent For: reason) + amount,

c a s h Ο η Η a. n d *•

C3.sh0nH3.nd - amount

: ra.ns a c t ions'!

son given,

;h on hand,"

t: (self

nt,
?.nd - amount! !

nquiries"!

454
The File System

Figure 22.12c 010

Svstern Browser finaricialhistorv.st
S y s t e m - Fi e I e a s 11
Fi les-Streams
Files-Abstract
Files-Xerox Alto

spend: amount for: re as or
"Spend amount for the re a. so ρ niwar

decrementing the available cash

son given,
?h on hand,"

sxpenditures at: reason put:
totalbpentFor: reason) + amount,

rashunHand *• cashunHand
t: (selr
nt.
nd - amount

Figure 22.12d 010

S y s t e m B r o w s e r

S ν s t e nri - R e I e a s i η
Fi les-Streams
F i l e s - A b s t r a c t
Files-:: ero • A l to

Toots

fifwinc

File List

f inancial hist or v.st

spend: amount for: reason

"Spend amount for the re

decrementing the available a

expenditures at : reason ρ

totalSpentFor: reason) + a mo

c a shun Hand *- cashOnHai

a q a ι η
undo

copy
c υ t

paste
do it

print it
a. c c e ρ t
c a. n c e I

nvgeaw

in,
s.nd,

unt

:rans act ions'!

son given,

r.h on hand."

t: (self

nt,

*nd - amount! !

nquiries'!

455
22.3 Retrieving the Contents of a File

modify the file Financial Η istory.st so that instead of trying to create
Financial History as a subclass of Object, the expression contains the
name Oject (i.e., there is a typo) (Figure 22.13a). Choose the yellow but-
ton command put to store the change. Now choose the yellow button
command file in in the menu sub view of the file list. A notifier will ap-
pear (Figure 22.13b).

Open a debugger and select the message-send Dolt to see the errone-
ous expression. You can edit the expression and then select the yellow
button command accept (Figure 22.13c). The expression is stored so that
the information is now known to the debugger; the file is not corrected.
To continue the process of filing in, you must choose the yellow button
command proceed in the top subview (Figure 22.13d).

If, instead of correcting the error in the syntax error view, the notifi-
er, or the debugger, you close the view by choosing the blue button
command close, the process of filing in is discontinued and the file is
closed.

Figure 22.13a 000 iS

iilililiii; by stem Browser];

;•;•:;;;;:; bystem-fieleasin
ilillililii; Files-Streams
;;i|ilil|;i Files-Abstract
illlliliili Files-Xerox Alto

financialhistory.st i|l;

1 Iii:

Si
liiil|||i;l Object subclass: #
l|l|i|:|lil instanceVariat
illllili; class Variable Ν

:|l|;|l|;|;; poolDictionarie
Ι|Ι|Ι|Ι|Ι|ί category: 'Fine

I:;:;:::::;:;:;:;:;:;:;:;:;:;:;:;:;:-:;:;:::;:;:;::;;:;:;:;:::;:;:

'•':•': ''•':'•':'•':'•': ''•':'·':'•]'·': ''•':''•':'•':'•': :^ i ; * j I i ^ j i ; i ; : ; ^ j : ; - ' ;:; f ; -: .r r j i ; -" j -:: -::

I:;:::;:::::;:;:::::;:::;:·:;:;:::;:::;:;:;:::;:;:;:::::;:::::::::
:;:;:;·::;:;:;:;:|:;:;:;:::;:;:;:;:|:;:;:;·::;:|:;:::;:;:;:;·::|:;

n1
m

'From Smalltalk-80, version 2, of April 1, l;l|
1983 on 25 May 1983 at 10:17:12 am'! ;l;i

Ol'ect subclass: #FinancialHistory |;|l
^ instanceVariableNames: 'cashOnHand ill;

expenditures ' |l|l
class Variable Names: " |i|l
poolDictionaries: " ill;
category: 'Financial Tools'! ;|ii

IFinancialHistory methodsFor: 'transactions'! ;|;;

SDend: amount for: reason iiil

456

The File System

Figure 22.13b
000

U η d e f i η e d 0 b j e c t (Ο b j e c t) > > d ο e s Ν ο t U nderstand:

U η d e f ί η e d Ο b j e c t > > D ο 1t

Gompiler>>evaluate:in:to:notifyinq:ifFail:

G ο m ρ i I e r c I a s s > > e ν a I u a t e: f ο r: η ο t i f y i η g: I o g g e d:

C ο rn ρ i I e r c I a s s > > e ν a. I u a\ e: f ο r: I o g g e d:

pooiuict ionanes: "

c a t e g o r y : 'Financial

Ik-80, version 2, of April 1,

VIay 1983 a t 10:17:12 am'!

> s: # Fi η a n c i a IH i s t ο r y

i η s t a η c e V a r i a b I e Ν a m e s: ' c a s h Ο η Η a n d

expenditure!. ?

c I a s s V a. r i a b I e Ν a m e s: "

poolDictionaries: "

c a t e g o r y : 'Financial Tool;.'!

! Fi η a η c ί a ΙΗ i s t ο ry m e t h ο d s Fo r: ' t ra. η s a c t ί ο η s'!

ι a end: amount for: reason

Figure 22.13c
010

•
UndefinedObject(Object)>>doesNot Understand:

Compiler) >evalu a te:in:to:not if ying:if Fail:
Compiler class>>evaluate:for:notifying:logged:

Dolt

t Object

s υ b c I a s s: # Fi η a n c i a IH i s t ο r y

i η s t a. η c e V a ri a b I e Ν a m e s: ' c a s h Ο η Η a n d e χ ρ e η d i t u r e;

c I a s s V a ri a b I e Ν a m e s: "

poolDictionaries: "

c a t e g o r y : 'Financial Tools'

self

a g a ι η
undo
copy
cut

paste
do it

print it

format
spawn
explain

457
22.4 Getting Started Revisited

Figure 22.13d
010

Compiler>>evaluatQ:in:to:notifyinq:ifFail:
C ο m ρ i I e r c I a. s s > > e ν a. I u a. t e: f ο r: η ο tifyincj:
C ο m ρ i I e r c I a s 5 > > Θ ν a I u a t e: f ο r: I o q g e d:
C ο m ρ i I e r c I a 5 s > > e ν a I u a t e: I o g g e d:

full s tack

Dolt
t Object

senders
implementors

messages

self

22.4

Getting Started
Revisited

Sources and
Changes Files

Recall that in Section 1.3 you were introduced to the names of the ex-
ternal files needed to run the Smalltalk-80 system—the image, sources,
and changes files. The sources and changes files contain text for meth-
ods stored in the format shown in Figure 22.2.

When you use a browser to access a method, the system has to retrieve
the source code for that method. Initially all the source code is found in
the file we refer to as the sources file. This file might be stored on your
local disk or it might be on a network-based file server, shared among
several Smalltalk-80 system users.

As you are evaluating expressions or making changes to class de-
scriptions, your actions are logged onto an external file that we refer to
as the changes file. If you change a method, the new source code is
stored on the changes file, not back into the sources file. Thus the
sources file is treated as shared and immutable; a private changes file
must exist for each user.

The executable form of methods is compiled code (an instance of class
CompiledMethod). The location of the source code corresponding to the
compiled code is stored as part of the representation of a compiled
method.

i.

y

458
The File Sys tem

The sources, changes, and image files must be used in a coordinated way because of
this retrieval reference in the image to one of the the two external files.

The two external files for sources and changes are referenced as ele-
ments of a global variable, the array named SourceFiles. The first ele-
ment of the array is the sources file, the second is the changes file. The
System Workspace contains the following expressions for changing the
reference to the sources file.

SourceFiles
at: 1
put: (FileStream oldFileNamed: 'filename.sources').

(SourceFiles at: 1) readonly.

If you rename the sources files, you can inform the system by evaluat-
ing this expression. You can change the reference to the changes file
(SourceFiles at: 2) in a similar way. Extensive access to the changes file,
either to merge the work represented on two or more such files or to
create a new one, is available in the Smalltalk-80 system. This access,
the change manager, is presented in Chapter 23.

When you do not have access to the sources file, because it is not avail-
Decompilation able on your local disk (perhaps there was not enough space) or you do

not have access to a remote file server where it is stored, then it is not
possible to browse methods in the way described in Chapter 9. Your sys-
tem, however, contains the compiled version of the methods, and the
system includes a decompiler. If you use the decompiler, you can obtain
the text for methods, even though you can not obtain comments or the
names of arguments and temporary variables.

There are two ways to inform the system to decompile, rather than
to try to access the sources file.

if1'
1. Hold down the left "shift" key on the keyboard at the same time

that you choose a message selector in the message-selector
subview of a system browser.

2. In the System Workspace, evaluate the expression

SourceFiles «- nil
The system will notice that the global variable SourceFiles is not
an array referencing two files, as expected, and will decompile
methods when you try to access them in a browser. In addition,
the changes file will not be maintained.

Ϋ"

..' ft.

System Backup, Crash
Recovery, and Cleanup

23.1 Saving Your System State

23.2 The System Change Set
Change-Set Browser

23.3 The System Audit Trail
Crash Recovery
Change-Management Browser
Conflict Resolution

23.4 Creating a "Clean" System
Creating a New System Image
Static Checks
Condensing Sources and Changes

23.5 Version Management

460
System Backup, Crash Recovery, and Cleanup

This chapter covers four aspects of the system that fall in the category
of housecleaning support. Once again, we review the use of a snapshot
as a way to save your work. We discuss the availability of the change
set for monitoring the changes you make to classes and for supporting
your ability to create files for sharing your work. While you are using
the system, each addition or change to the system and each evaluation
that you make is stored on an external file. This "audit trail" can be
used by you to recover from a system crash and to merge the work of
several programmers. After you work for awhile in a system image,
housecleaning is needed to create new versions of the system image,
changes, and sources files. This chapter includes an explanation of how
to create "clean" system files. Version management is a general prob-
lem that is not directly supported by the standard system views. Re-
search has been conducted in this area, and an experimental form of
version management is used by the Smalltalk research team at Xerox
PARC. A brief review of this research is provided in the last section of
this chapter.

23.1
Saving Your Periodically you might wish to save the current state of your work in
System State the form of a system image. This is especially appropriate if you are go-

ing to make changes whose behavior you are not clear about, and which
might, therefore, crash the system. Creating a snapshot is also appro-
priate if you feel that the amount of space for object storage is very low
and you do not want to take a chance on losing your work. And it is im-
portant to save your work periodically if you feel that your hardware is
not sufficiently reliable.

The System Menu contains the command save. Choose this command
(Figure 23.1a). When you choose the command save, a prompter ap-
pears. It contains the name of the image file currently being used (Fig-
ure 23.1b). Note that the extension for the file name is not included.
(Note also that this is the first part of the name found as the first ele-
ment of the global array, SourceFiles.)

If you want to use this same file name, then choose the yellow button
command accept, or simply type the "carriage return" key (Figure
23.1c).

For some systems, to gain performance, part of the display screen turns white
while the snapshot is being created on the file. It restores as soon as the file is
completely written.

461
23.1 Saving Your System State

Figure 23.1a Οίο

restore display
e • it project

projec t
file" list

browser
worf space

s y s t e m t ra π s c ri ρ t
s y s t e m w ο c\ s ρ a c e

Figure 23.1b

Figure 23.1c ΟΙΟ
Enter name for

snapshot

again
undo

462
System Backup, Crash Recovery, and Cleanup

23.2

If you want to use a different name than the one that appears in the
prompter, then edit the text in the prompter. To terminate, choose the
yellow button command accept, or type the "carriage return" key.

A new file for the image is created; the name is the name you gave
in the prompter followed by a period followed by the characters im (an
abbreviation for "image"). The image file must be coordinated with the
file containing the changes made in this image of the system. Thus an-
other new file is created; the name is the name you gave in the prompt-
er followed by a period followed by the characters changes.

If you request a snapshot and then change your mind while the
prompter is visible, delete all the text from the prompter. Choose the
yellow button command accept, or type the "carriage return" key.

When you back up your work on another personal disk or on a net-
work-based file server, you should save both the image file and the
changes file. When you want to use these files again, you should use
them with the same interpreter you used when the files were created.

Access to snapshot is also available when you choose System Menu
quit. You are given the choice, then, to save, then quit.

The System Within each project, a set of changes you make to class descriptions is
Change Set maintained. (Projects are described in Chapter 4.) Using a browser view

of this set of changes, you can find out what you have been doing. Also,
you can use the set of changes to create an external file containing de-
scriptions of the modifications you have made to the system so that you
can share your work with other users. Sharing work, such as an appli-
cation, involves sharing files of new class descriptions and sharing files
of any changes you have to make to existing system classes.

Information is added to the set of changes whenever you

• change an existing method

• add a new method

• remove a method

• change the category of a message

• change an existing class definition

• change a class comment

• add a new class

• rename an existing class

463
23.2 The System Change Set

• remove a class

• change the category of a class

These changes occur either by your system interactions (expression
evaluations or method compilations), or by your retrieving information
from a file (filing in). That is, the file contains class definitions or meth-
od definitions, and these are modifications to the system noted in the
change set. If you change a method several times, there will be only one
entry for that method in the change set.

Keep in mind that an independent set of changes is maintained by
each project. If you want to maintain a set of changes for each activity
in which you participate, you can create a project for each. The changes
you make to class descriptions, and the addition of classes to the sys-
tem, however, are shared among all the projects that you create.

Q Accessing the Set of Changes The set of changes can be accessed in
the system by sending the single instance of SystemDictionary, Smalltalk,
the message

Smalltalk changes

Smalltalk is a global variable that is a dictionary whose keys are the names of all
the other global variables in the system, notably the names of existing classes. The
set of changes is an instance of class ChangeSet and is bound to a class variable of
SystemDictionary named SystemChanges.

The expression

Smalltalk changes asSortedCollection

may be found in the System Workspace. If you evaluate this expression
by selecting the text and then choosing the yellow button command
print it, you see a description of the changes you have made so far. Try
this when you first start using the system, and try it again after you
have compiled some methods and/or have defined some classes. An ex-
ample result of evaluating the expression is shown in Figure 23.2. The
changes displayed are the ones that existed in the system after

• the class FinancialHistory was added to the system (as described in
Chapter 13)

• an instance of FinancialHistory was created and inspected

• several messages were sent to the instance

• a new method was added to class Dictionary to modify printOn:

• the method for report was changed to use printOn:

464
System Backup, Crash Recovery, and Cleanup

Figure 23.2 000

Files
(File S t re a. m oldFile Ν a rn e d: T i n a. η c i a ΙΗ i s t ο r y. s t ') fi 191 n.

(Fi I e S t re a m file Ν a. rn e d: ' f i le Ν a. m e. s t ') file Ο u t C h a. n g e s.

(Fi leStream fileNa.med: ' f i leNarne.st ') edit.

Changes
S m a. 11t a I k η ο C h a. n g e 5.

(Fi I e S t re a m file Ν a m e d: 'f i le Ν a. rn e. s t ')

file Ο υ t C h a. n g e 5 F 0 r: S t r e a m.

S t r e a. m r e m ο ·.,.· e F r ο rn C h a n g e 5.

"vtew the currenr changes'
S rn a. 111 a. Ik b r 0 w 3 e C h a. n g e d Γνΐ e s 5 age s

S rn 3.111 a I k c h a. n q e s a. s S 0 r t e d C ο 11 e c t i ο η I

('Dictionary printOn: - change' 'FinancialHistory - add')

Inquiry
S rn a 111 a. I k b r ο w

S rn a. 111 a I k. b r ο w

Col lect i ο η b r 0

5 rn a. 111 a. I k b r 0 w

; e A111 rn ρ I e rn e η t ο r s Ο f: # rn e s s a g e S e I e c t ο r

; e A11C a 113 Ο η: # rn e s s a. g e S e I e c t ο r
13 e A11C a. 11 ί Ο η: # t i rn e 3 Fi e ρ e a. t :

ieAIICa.llsQn: # a t : and: # a t : p i j t :

The changes show only that class FinancialHistory was added, and
that a method in class Dictionary was added. The fact that expression
evaluations were carried out is not stored in the set of changes.

Q Removing Entries From the Set of Changes There are three ways
to remove entries from the set of changes for the current project.

1. Remove all the entries from the set of changes by evaluating the
expression Smalltalk noChanges.

2. Remove all the entries that have already been saved on a file.
This is automatically done whenever you file out from a system
browser. For example, if you file out a class description, all entries
about the class are removed from the set of changes; if you file out
a particular method, any reference to the method is removed.

3. Remove all entries that refer to a particular class, ClassName, by
evaluating an expression of the form

ClassName removeFromChanges

Whenever you start with a new system image and you want to make
certain that the change set contains only subsequent changes, you

465
23.2 The System Change Set

should evaluate the expression Smalltalk noChanges; the expression ap-
pears in the System Workspace.

If you create a new class definition, the set of changes indicates that
the class was added to the system. Henceforth, any changes to this class
are not entered into the change set. This is because it is understood
that the class is new and, therefore, everything about the class is new.
If you file in a new class definition and then wish to maintain informa-
tion about subsequent changes to the class, you should remove the class
from changes using the message removeFromChanges or, if appropriate,
sending Smalltalk the message noChanges.

A typical way in which several people can work together on a project
is to maintain independent changes files. A file created by one person is
filed into the system, the change set is emptied, and then all new
changes logged. Then a file of the changes is created. The next person
retrieves the original file and then retrieves the file of changes.

• Storing the Set of Changes on a File Changes to class descriptions
(class definitions, comments, and methods) can be saved on an external
file by evaluating an expression of the form

(FileStream fileNamed: ' fileName') fileOutChanges

Alternatively, changes pertaining only to a specific class, ClassName,
can be filed out by evaluating an expression of the form

(FileStream fileNamed: ' fileName') fileOutChangesFor: ClassName

The process of filing out the changes does not modify the set of changes,
so that the changes can be filed out again, especially if additional
changes are made later in the working session. Rather than keeping a
snapshot of your work, you might prefer to back up periodically by cre-
ating files of changes.

As noted earlier, the process of filing out a class by choosing the yel-
low button command file out in a system browser causes references to
that class to be removed from the set of changes. One strategy to use in
creating external files for sharing your work is, first, to file out any
classes that you added to the system, and second, to file out the remain-
ing contents of the set of changes. The set of changes should then con-
tain only changes to system classes.

You can create a view of the set of changes that is like a message-set
Change-Set browser. This is done by evaluating the expression
Browser

Smalltalk browseChangedMessages

that appears in the System Workspace. Try it (Figure 23.3).

466

System Backup, Crash Recovery, and Cleanup

Figure 23.3 010

Files

(F i I e 51 r e a. m ο I d F i I e Ν a m e d: T ina Γι c i a IH i s ΐ ο r y. 51 " ι f i I e I n

(F i I e S t r e a. m file Ν a . m e d: ' f i I e Ν a m e,; t'') f i I e Ο u t C h a n q e 5,

i'FileStream f i leNamed: 'fileName,5t''' i edit.

Changes

S rn a 111 a. I \ η ο C hi a. n g e ;,

(Fi I e S t re a m file Ν a m e d: ' f i I e Ν a. rn e, s t '

file Ο ι j t C h a n g e ; For: S t r e a m,

S t r e a m re mo ν eFrο rn C h a nge.-..
1V ι1 e '.· '.·' f Μ € c u rre η f c ft s π α e s'

Smalltalk browseChanggdMessagei

S m a 11 ΐ a I k c h a. η g e s a. s S ο r ΐ e d C ο 11 e c t i ο η b ο r t

(' D i c t i o n a r y pr int On: - c h a n g e ' 'F inancialHistory - a d d ')

inquiry

S m a. 111 a I k b r ο w 5 e A111 m ρ I e m e η t ο r s Ο f: # m e 5 5 a g e S e I e c t ο r

S rn a 111 a I k b r ο w 3 e A11C a. 115 Ο η: # rn e s s a g e S e I e c ΐ ο r

C ο 11 e ο ΐ i ο ri b r ο w :• e A11C a 11." Ο η: # ΐ i rn e •; Fi e ρ e a t:

Smal l ta lk brovvseAIICall^On: ̂ a t : and: ,»at :put :

If there are no changes, then no browser is created and the word No-
body appears in the System Transcript (if it is visible on the display
screen).

The change-set browser shown in Figure 23.4 is a view of the same
information that was printed in the workspace of Figure 23.2. The two
parts of the change-set browser are identical to a message-selector
browser as described in Chapter 10. The top subview is a list menu; the
yellow button menu associated with it is the same as the yellow button
menu associated with a message-selector subview of a browser. If you
choose one of the class/ message pairs, the method associated with the
message appears in the text subview of the change-set browser.

You can file out or print out the method, and spawn a message-selec-
tor browser for the currently selected message. You can inquire about
senders, implementors, and messages in the method. And you can move
the message to a new message category, or you can remove the method
from the system. You can not modify the change set using commands in
the change-set browser.

Notice that the fact that a new class was added to the system does
not appear in the change-set browser; only changed methods are
accessed using this browser.

467
23.3 The System Audit Trail

100
Figure 23.4 000

System VvOrkjpa.ee

File Ν a m e d: ' Fi η a. n c i a. IH i s t ο ry. s t ') f i I e Ι η,

ef'Jamed: 'file Ν a me, s t ') file Ο υ t C h a. n q e s.

printOn: aStream
| tooΜany |

t ο ο [·Λ a n y *• β. Stream position + self ma. x. Print,

aStream next Put All: self class name, ' ('.

aStream cr,

self a. s s ο c i a. t i ο η s D ο:

[:element |

aStream position > tooMany if True: [aStream next Put.'

',,.etc.,,)'. t s e i f] ,

element print On: aStream.

aStream c r] ,

a. Stream next Put: $)

23.3

The System
Audit Trail

The storage of changes in the Smalltalk-80 system takes two forms: an
internal form as a set of changes (actually a set of objects describing
changes), and an external form as a file on which your actions are
logged while you are working (in the form of executable expressions or
expressions that can be filed into a system). The previous section de-
scribed a browser to access the internal form; this section describes a
browser to access the external one.

All the information stored in the internal change set is also written
onto the changes file. In addition, when you make a snapshot, the
changes file is marked with the notation

" —-SNAPSHOT-— "

so that you can use a change-management browser (described later) to
request a view only of the information stored in the changes file since
your last snapshot. You can also look at the file and see what changes
occurred between snapshots.

The changes file serves two important uses: to provide information
for recovery from a crash, and to support a way of sharing code

468
System Backup, Crash Recovery, and Cleanup

Crash Recovery

Change-
Management
Browser

implemented by a group of programmers, including finding and resolv-
ing conflicting changes.

Because the changes file maintains a log of each of your actions, you
can use it to recover from a system crash, that is, any situation in
which you find that you can no longer communicate with the system
and therefore can not safely save your work. Recovery can be done in
two ways. After a crash, start up a previous system image that you can
run (presumably the last snapshot that you successfully made and
saved). Evaluate a message such as

Smalltalk recover: 5000

The argument, 5000, represents the number of characters from the end
of the changes file that you wish to copy. The characters are copied
onto a file named st80.recent. A view of this new file will be created on
the screen. Explore it. Find the last place in the file containing the text
" -—SNAPSHOT-— " . This is the point at which you wrote the last
snapshot. If you can not find this text on the file, you will have to re-
evaluate the message recover: again, this time with a larger number.

Now that you found the point at which you had previously saved
your work, you can use the yellow button command file it in in the view
of the file st80.recent to selectively evaluate and file in the changes you
had made up to the time of the crash.

Alternatively, you can use a browser that we refer to as the Change-
management Browser. This browser lets you access your do it or print it
evaluations, as Well as method definitions, whereas the change-set
browser described in Section 23.2 does not. Moreover, the order in
which you made changes is retained in the changes file and presented
in the change-management browser. The order of changes is not re-
tained in the internal change set. You can use this ordering informa-
tion to back up to a previous version of a method.

The change-management browser lets you

• examine the contents of one or more changes files

• examine the method changes stored in the change set

• configure a new changes file

• redo any of the changes or evaluations

• determine whether there is any conflicting implementations of a
method in two or more changes files

To open a change-management browser that has no initial change con-
tent, evaluate the expression

469

23.3 The System Audit Trail

ChangeListView open

To open a change-management browser that initially displays all the
actions stored in the current changes file since your last snapshot, eval-
uate the expression

ChangeListView recover

Or you can specify a changes file (fileName) whose content should be
displayed initially in the change-management browser. Evaluate the ex-
pression

ChangeListView openOn:
(ChangeList new recoverFile: (FileStream oldFileNamed: ' fileName'))

All of these expressions are provided in the System Workspace. Select
and evaluate the first one (Figure 23.5).

Figure 23.5 010

Τ i rrι e m i II i s e c ο η d s Τ ο Fi u η:

[S y s t e m Ο rg a n i ζ a. t ί ο η ρ π η t S t ri n g]

Message Ta l ly spy Οτι: [B e h a v i o r compile AII],

(File S t r e a m ο I d F i I e Ν a rn e d: ' s ρ y, r e s u 11 s') edit

Change Management and Crash recovery ,. Γ ι_,

"•Create a. blank v<ew tor change recovery

ChangeListView open.

"Create a. view for change recovery from a given file'

ChanqeL is t View op en Οτι: (ChangeList new recoverFile:

(Fi I e S t re a. m ο I d Fi I e Ν a m e d: 'file Ν a m e. s t ')),

"After a crash, create a view to browse changes since the

last snapshot:'

C h a. n g e Lί s t V i e w r^c ο ν e r,

Smalltalk recover: 5000.

The empty change-management browser is shown in Figure 23.6. It
consists of three major parts: the top part containing a list menu, the
middle part containing several browser menu items that control the
kind of information that will display in the menu, and the bottom part
in which text is displayed and can be edited. With the cursor in the top
subview, press the yellow button to observe the menu (Figure 23.7). The

470
System Backup, Crash Recovery, and Cleanup

Figure 23.6 000

show file

file

5how category

category I selector same

Figure 23.7

show file

file | type

••' category
elector I same

check conflicts
:heck with system

471
23.3 The System Audit Trail

menu commands allow you to specify changes files to read or to write,
and allow you to operate on a single item or on a group of items in the
list menu. Two commands invoke conflict analysis on the items in the
list menu.

Q Commands that specify changes files

file in A prompter appears in which you type the name of a

changes file. When you choose the yellow button command

accept, references to the contents of this file are added to

the browser menu. If you change your mind and want to

abort this command, type nothing in the prompter and

choose the yellow button command accept or type the "car-

riage return" key.

ίίΐθ OUt A prompter appears in which you type the name of a

changes file. When you choose the yellow button command

accept, the items in the browser menu that are not

marked for removal are stored in the file. If you change

your mind and want to abort this command, type nothing

in the prompter and choose the yellow button command

accept or type the "carriage return" key.

ΓΘΟΟνΘΓ last Changes Adds to the browser menu references to the contents of the

current changes file since the last snapshot.

display System Adds to the browser menu references to the methods in the

Changes internal change set.

Q Commands that operate on a group of items

do all Evaluates each expression or new definition that is refer-

enced in the browser menu and is not marked for removal.

remove all Marks every item in the browser menu for removal.

restore all Unmarks every item in the browser menu that is currently

marked for removal.
Spawn all Creates another change-management browser whose menu

is identical to the currently displayed menu.

forget Deletes every item in the browser menu that is currently

marked for removal.

Q Commands that operate on a single item

do it Evaluates the item that is currently selected, whether or

not it is marked for removal. The item is either an expres-

sion, or a class or method definition.

472
System Backup, Crash Recovery, and Cleanup

remove it

restore it

spawn it

Marks the item that is currently selected for removal.

Unmarks the item that is currently selected and that is
marked for removal.

Creates a message-selector browser for the current defini-
tion in the system of the item that is selected. You can
then visually compare to see if the changes file specifies a
different definition, and then you can decide which one you
prefer to use.

Commands that check for conflicts

check conflicts

check with system

A prompter appears in which you type the name of a
changes file. When you choose the yellow button command
accept, an analysis is done of all the items in the change-
management browser menu to see if any of them refer to
the same message selector, but specify different definitions.
Any conflicts found are written on the file.

A prompter appears in which you type the name of a
changes file. When you choose the yellow button command
accept, an analysis is done of all the items in the change-
management browser menu to see if any of them refer to
the same message selector, but specify different definitions.
Also checks to see if any item specifies a different defini-
tion than is currently in the system. Any conflicts found
are written on the file.

If you start with an empty change-management browser, and choose
the yellow button command display system changes, you access the
same information that is shown in the change-set browser. If you start
with an empty change-management browser, and choose the yellow
button command recover last changes, you access the same information
that is shown if you evaluate the expression ChangeListView recover.

Assume that the internal change set is the one displayed in Figure
23.2, and that you have not made a snapshot since you made these
changes. Choose the yellow button command recover last changes in the
top subview of the change-management browser. The information
shown exceeds that available from the change-set browser (Figures
23.8a and 23.8b). In addition to method definitions (such as
FinancialHistory spend:for:), the change-management menu contains

• class defines (for example, define FinancialHistory)

• expression executions (for example, dolt self spend: 100 for: ' rent')

• category changes

473
23.3 The System Audit Trail

Figure 23.8a ODD

Small talk-SO.change5.j||

dolt 'From Smal i ta ik-80, version 2, of ...
define Fi η a n c i a IH i s t ο ry

Fi η a η c i a ΙΗ i s t ο ry s ρ end: f ο r:
Fi η a η c ia ΙΗ i s t ο ry rep ο rt
Fi η a η c i a ΙΗ i s t ο ry t ο t a IS pent Fo r:
Fi η a η c i a ΙΗ i s t ο ry s e 11 n i t i a IB a I a n c e:

show file

file t y ρ e class

show cateqor;·,

category I selector same

Figure 23.8b rao

FI

Β

Sma II talk-

Die tio
dolt
dolt
dolt
dolt
dolt

nan.
self
self
self
self
sma

file

iO.chanqes.liiiii;!;

print C
spend:
spend:
spend:
report
IItalk c

shov

t v

n:
100 for
75 for:
50 for:

h a n g e s

• file

P . |

: 'rent'
'food'
'trips'

asSortedC

class

; : ; : ; : ; : ; : ; : ; : > ; : ; : ; : : : ; : : : ; : ; : : : ; : ; : : : ; : ; : : : ; : ; : : : ; : • : : : : : : : ; : ; : • : : : : : : : ; : • : : : : : : : : : ; : : : : : ; : : : : : • : • : ; : • ; : : ; : •

I:-:::;:·:;:;::;;:;:;:::;:;:;:;:::;:;:::;:;:::;:;:::;:-:::;:::::;:::::;:·:::::::::;:•:::;:::;:;:::::;:;:•:;:;::
;:;:::;:;:::;:;:|:;:;:::;:;:::;:::::;:::::;:::;i;:::::i:·:;:::::;:::::;:::::;:·:::;:::::::::;::::::::::::::::::

:.llect ...

show category

category 1 selector 1 same

474
System Backup, Crash Recovery, and Cleanup

These "special" changes are shown indented from the left margin of the
list menu.

Π Display Options and Filters The menu items in the second part of
the change-management browser let you obtain more information. Click
the red button while the cursor is in the rectangle labeled show file
(Figure 23.9). This "turns on" the option to see which changes file the
list items came from, useful if you have accessed multiple files. Click
again to "turn off" this option.

Figure 23.9

100
000

smal l talk-SO.changes, I;!

Ό rn a 1113.1 k - ο υ, c h a n g e s,)
;' 8 m a 11t a I k- 8 0, c h a n g e;

dolt 'From s m a l l t a l k - u u , version id, of
d «fine Fi η a n c i a IH i s t ο ry

' S m a 111 a I k - ο U, c h a η g e s,' ΐ F i η a η c i a ΙΗ i s t o r y s ρ e η d: f ο r:
' S m a 111 a I k - 8 0 .change;,) F i η a n c i a IH is t ο r y r e ρ ο r t
' S rn a 111 a I k - 8 0. c h a η g e s,) F i η a no i a ΙΗ i s t ο r y t ο t a. IS ρ e η t F ο r:
(S rn a 111 a. Ik.- 8 0. c h a η g e s,) Fin a η c i a ΙΗ i s t ο r y s e 11 n i t i a. IB a Ian c e:

show c a t e g o r y

file 1 *yPQ 1 ^ category select ο r

Now click the red button while the cursor is in the rectangle labeled
show category (Figure 23.10). This "turns on" the option to see the cate-
gory of the methods referenced in the list menu.

The remaining menu items provide a filter on what information
should be shown in the list menu. Choosing one of the items "turns on"
the filter indicated.

The filters only have meaning if an item in the top subview is select-
ed. The basic idea is to remove any items from the menu that do not
match exactly the filtered part of the selected item. An item is made up
of at most five parts: file name, type (dolt, define, method, and so on),
class, message category, and message selector. Thus the possible attri-
butes for filtering items are

I
475

23.3 The System Audit Trail

100
Figure 23.10 000

Small ta lk- SO, c ha rig es.

() dolt 'From Small talk- 80, version 2, of
() define FinancialHistory
(t r'a η 5 a c t ί ο η s) Fi η a η c ί a IH i s t ο ry s ρ end: f ο r:
(ί η q u i r i e 5) F i η a n c i a IH i s t ο r y report
(i η q υ i ri e s ί Fi η a n c i a ΙΗ ί ί t ο ry t ο t a IS pent Fo r:
(ρ r i ν ate') F i η a. η c i a ΙΗ i s t ο r y ζ e ΐ Ι η i t ί a IB a I a n c e:

show file

f i le type

file

type

class

category

selector

same

The changes file for all items should be the same as that of

the selected item.

The type (evaluation, class definition, method definition) of

all items should be the same as that of the selected item.

The class to which the items refer should be the same as

that of the selected item.

The class category for each item should be the same as

that of the selected item.

The message selector of each item should be the same as

that of the selected item.

All items should be precisely the same (this makes it possi-

ble to see multiple entries that are possibly conflicting defi-

nitions).

Suppose the menu item selected is a method definition and you choose
the filter labeled type (Figure 23.11). Then the only items displayed in
the menu are method definitions. Choose the filter type again, that is,
"turn off" this filter. Suppose the menu item class is FinancialHistory
and you choose the filter labeled class (Figure 23.12). Then the only
items displayed in the menu are method definitions for FinancialHistory.

You can explore the change-management browser further by mark-
ing and unmarking items for removal, and spawning related browsers
using the appropriate commands in the yellow button menu.

476 _ _
System Backup, Crash Recovery, and Cleanup

Figure 23.11

100
000

b m 31113.1 k- ο υ, c hi a. n g e s.

'transactions) FinancialHistory spend:for:
i η q u i ri e s) Fi η a. n c i a IH i 5t ο ry re ρ ο r t
i η q u i ri e s) Fi η a. n c i a IH i s ΐ ο ry ΐ ο ΐ a IS pent Fo r:
ρ ri ν a. t e) Fin a η c i a ΙΗ i s ΐ ο ry s e 11 n i t i a IΒ a I a n c e:
in." l a n c e creat ion) Financial History class i nit ia IB a lance:
inquiries) FinancialHistory report

show file

file i a t e q o r y I selector I same

spend: amount f ο r :Ύ e a s ο η

"Spend amount for the reason given, decrementing the available

cash on hand,"

expenditures at : reason put: (self totalSpentFor: reason) +

amount.

cashOnHa.nd *- cashOnHand - amount

Figure 23.12

100
000

brnal l ta lk-bU.changes.

d e f i η e Fin a η c i a ΙΗ ί s t ο r v1

transactions) FinancialHistory spendifor:
inquiries) F inancialHistory report
i η q υ i r i e s) Fin a η c i a ΙΗ i s t ο r ν t ο t a 15 ρ e η t F ο r:
ρ ri ν a. t e) Fi η 3. η c i a ΙΗ i s t ο ry s e 11 n i t i a IB a. I a n c e:
inquiries) Financie.IHistory report

show file

file

spend: amount for": r e a s ο η

"Spend amount for the reason given, decrement ing the avai lable

cash on hand,"

expenditures a t : reason put: (ssif t o t a l S p e n t F o r : reason) +

a m ο u η t.

cashOnHand - ca shunΗand - amount

Conflict
Resolution

477
23.4 Creating a "Clean" System

Detecting conflicts between method definitions is described in the paper
"Managing the Evolution of a Smalltalk-80 System" by Steve Putz in
the Smalltalk-80 implementation considerations book, Smalltalk-80:
Bits of History, Words of Advice. The main reason conflict checking is
needed is that work done by different people can affect the same meth-
ods. When work is done in parallel by several programmers, each pro-
grammer submits a changes file. It is not possible to file-in each
changes file, one at a time, since one file may undo (redo improperly)
the definition provided in another file.

A conflict analysis routine is available in the system to examine code
files and report the ways in which they conflict. Whenever two or more
submissions define the same method, all conflicting definitions are
appended to a "conflict report" file. It is then up to the programmers
involved to determine how to resolve the conflicts, often by writing a
new method that merges the needed functionalities.

Conflict checking is requested by choosing one of two commands in
the yellow button menu of the top subview of the change-management
browser, conflicts among the menu items (check conflicts) or conflicts
among the menu items and the system methods (check with system).
For each command, you must type a file name in a prompter and
choose the yellow button command accept. The file is then created.
When the analysis is completed, you can use the file list view to exam-
ine the file.

Missing from the audit trail (changes file) is date stamping on each entry, back
linking to alternative definitions, and "person" stamping (that is, associating the
name of the person who made the change), all of which can be useful when multi-
ple persons participate in a project and share the use of an image and its changes
file.

23.4

Creating a
"Clean" System

If you use an image long enough, modifying system methods and adding
new methods, you will eventually create a very large audit trail on your
changes file. Most methods will be referenced in this changes file rather
than in the sources file. When you then want to create a new system
release, you will want to clean up your system so that it has the follow-
ing characteristics.

1. All up-to-date definitions and methods are on the sources file.

2. The changes file is empty (except for the date and version com-
ment).

3. You are assured that there are no unreferenced objects in the sys-
tem image.

478
System Backup, Crash Recovery, and Cleanup

Even when you are not releasing a new system, you may want to keep
your changes file as short as possible. The changes file grows to include
definitions for methods that override one another. That is, in the pro-
cess of programming, you might try several versions of a method before
settling on a definition. Each version will appear in the changes file,
even though the system compiled method only refers to the last one.
The most common "clean up" needed, then, is to condense your person-
al copy of the changes file, leaving the shared sources file untouched.

A new system image is created by a process we call "doing a VMem-
Creating a New write," that is, writing a new file that contains an image of the virtual
System Image system. The idea of a VMem-write is to trace every accessible object,

and write a copy of each object onto a disk image. This determines
which objects are actually being used and which are occupying space
unnecessarily. The end result is to release any possible free space.
Moreover, the resulting clone can pe started up and run, just like a
snapshot.

Some care is taken so that objects appear in the same order in the data space as
they do in the system object table. This aspect of the implementation is covered in
Part Four of the book Smalltalk-80: The Language and its Implementation.

The second purpose of a VMem-write is to allow any transformation
of the system, such as changing the bytecode set or the structure of a
class of objects (for example, the representation of floating-point num-
bers), which can not be done while you are interacting with the system.

To initiate the VMem-write, evaluate the expression

SystemTracer writeClone

In this case, no special transformations will be carried out. The result is
a new image written on a file named

clone.im

which you rename according to whatever system version naming con-
ventions you have.

One of the common transformations done with the VMem-write is to
clamp out (remove) classes. You might want to do this because your sys-
tem includes some applications that you wish to remove in order to
have a version of the system that takes up less space. Or you might
want to do this because you have developed an alternative implementa-
tion of an application and had been using both versions until the new
one was stable; now you are ready to eliminate the original version. For
the most part, you do not need a VMem-write to eliminate classes from

479
23.4 Creating a "Clean" System

your system since you can use the command remove in the class-names
subview of a system browser.

To clamp out classes, use a different message to SystemTracer.

SystemTracer writeCloneWithout: aSetOfClasses

where the argument is an instance of Set whose elements are the clas-
ses that you do want to clamp out. The method associated with
SystemTracer writeCloneWithout: will do two things.

1. Remove the class references from the system dictionary, Smalltalk.

2. Remove any class categories that become empty as a result of re-
moving the classes.

This means that the running image (the image from which you create
the VMem-write) will be irreparably modified, so make sure that you
have backed up your system image appropriately.

Before doing any VMem-write, you might want to clamp out some
message protocols for various classes. You do this directly by using the
system browser to remove the protocols from the class. Again, this
means that you are irreparably modifying the source image, so make
sure that you have backed up your system image.

Included in the description of class SystemTracer is a clamping mechanism called
winnowing. Its purpose is to cull out all unreferenced messages, with the exception
of ones you specifically name. Then, based on these deletions, cull out more, and so
on. This is basically a first attempt to understand how to drop out major parts of
the system. You can explore this feature by examining the comment and the meth-
od associated with the message winnow: in class SystemTracer.

Before creating a new image, you will want to check for things that
Static Checks might be wrong with the current image. The system includes class

Checker that contains many messages that support your doing static
checks of the system. You can check for messages implemented but not
sent by any method (this situation might be acceptable if the message is
there for semantic completeness of a protocol), and messages sent but
not implemented (this suggests a possible runtime error). An important
thing to check for is the existence of obsolete classes. Send Checker the
message obsoleteClasses. The response is an OrderedCollection of the
classes in the system that have been made obsolete. A class becomes ob-
solete when it is removed from the system, but one or more instances
exist. To remove the obsolete class, all instances must be deleted. You
remove the instances by finding all references to them and setting the
references to nil.

480
System Backup, Crash Recovery, and Cleanup

Condensing
Sources and
Changes

The purpose of condensing changes is to remove all redundancies from
the changes file. Condensing also removes all logged information other
than one copy of the changed method definitions. To condense your
changes file, evaluate the expression

Smalltalk condenseChanges

In the System Transcript, you can observe the name of each class and
message category as the source code for each is written onto the new
changes file. The final name of the changes file is the name of the cur-
rent one.

If you want to merge your changes file into a sources file, evaluate
an expression of the form

Smalltalk newSourceFile: prefixName without: aCollectionOfClasses

where prefixName is a String representing the file name. Evaluating this
expression creates two files whose names are

prefixName.sources

and

prefixName.changes

The second file is empty except for the date and version comment. Be-
sides writing the method definitions, all class definitions are written
and everything is alphabetically ordered, by class name, on the sources
file.

An example of using this expression is

Smalltalk
newSourceFile: Smalltalk versionName
without: Array new

in which the prefix file name is the current system version name and
no classes are omitted.

23.5
Version
Management

In his paper, Steve Putz also describes a special application he devel-
oped for managing the evolution of the Smalltalk-80 system. The sys-
tem he describes supports users in reporting bugs and bug fixes, and in

481
23.5 Version Management

suggesting or announcing new applications (we call these "goodies").
The central feature of this development support system is a network-
based database containing information about the past and proposed
changes to the system, as well as bug reports and application announce-
ments. The database also contains documentation about system changes
and released system versions. This version management system is con-
sidered experimental and was not provided as a part of the standard
Smalltalk-80 system. A summary of the version handler is provided
here; if you are interested in more details about this area you should
examine the Putz paper.

The interface to the system version handler is done using a special
browser. There are actually three different browsers that filter informa-
tion from the database of system changes and system release documen-
tation: a version browser, a new feature browser, and a bug report
browser.

The version browser supports you in examining the changes intro-
duced in the currently selected version of the system, the changes sub-
mitted that were not included in the version release, remaining known
bugs, and the known bugs for which fixes can be retrieved but are not
as yet incorporated into the system. Figure 23.13a shows an example of
a version browser. It consists of two subviews, one is a list menu and
the other displays text. Each of the four kinds of information that you

Figure 23.13a

1001
0001

V28 Small talk-80 Irnaqe Version:
ρ V'29 Smalltalk-80 Imaqe Version:
| V3O Smalltalk-80 Image Version:

|

I l l l Date: 18 Apr 83 15:57:26 PST
Ijiiiililiiij From-Version: V30

ST80V28
ST80V29
ST80V30

Τ

ΠΙΐΗΐϊϋίΙΪ changes: C409, C4 10, C4 11, C4 12, C4 14, C4
;||! Subject: Smalltalk-80 Image Vers
ΠΗΐΠΜπΠ F r o m : P u t z
|!!|| image-file: ST80V3 1
| ; | | sources-file: ST80V30
;i|iijijii;ii virtual-macine: EB
|||!| know η-bugs: 6 1, Β 16, B27, 852,
Il l l l l l 8 129, Β 137, Β 166, Β 169, Β 170,

liiiiiiiii;:; Β 188, Β 193, Β 195, Β 196, Β 197,
Ι|Ι|!ΐί;||!ί| Β203, Β204, Β205, Β206, Β207,

i;i;;:i::ji;i changes:
;;!;:|;;Η!|; -- Double-clicking now works

on: ST80V3

656, B59, B6
Β 172, Β 176,

Β 198, Β 199,
Β208

better when

15, C4
1

2, Β72
Β 182,

Β 2 00,

quotes

;:;:!:::!::Η:ί:::!ΗΗ:!:!:!:!:·:ί:;:!:!:;:!:ί:;:|:ί:!:!:
;r;r-:;j;:;j;:;:;;:;r;if::;;F:;:;;::;:;:;:;:;:;:;::;;F::;:

16, C4 17 HI;

Β 100, Β 1 15, υ
Β 183, Β 184, |||

Β20 1, Β202, iiiiiji!:;

are involved, lijiiiiiij

482

System Backup, Crash Recovery, and Cleanup

can access is presented in a menu associated with the top subview of
the version browser (Figure 23.13b). Choosing a menu item creates a
browser that presents the requested information.

Figure 23.13b 010

Recent Smalltalk-80 Versions

m V29 :
V 3 0 :

Smalltalk-:
Smalltalk-:
Smalltalk-;

30 Irn
30 Irn
30 Irn

Ξι.

a

V31 Srnallta!k-80 Ima

0 a t Ρ

Frorn-

c h a n

Subje

From:

i rn a g e

so υ re

v i r t u .

V-. η ο ν·/

Β 129

Β Ibb

BvijL-

Ohan

-

1 R Δ η r F

version: '•·,

J\QS: C:4U9

et: Smallt

P u t ;

- f i le: STS

es-f i le: ST

-ι I - rn seine:

η-bugs: Β

, Β 137, Β

, Β 193, Β

, B2U4, Β

^es:

- Double-

:": 15

3 0

04 1

3lk-F

J •·..·• 3

8 0 V"

Ε Β

, Β 1

166,

195,
- U -•,

- l ickir

c
j

31

Ε;

b

qe V

He ν

_^e V

Qt'z-

ers
ers

ο ri:
ο η:
ο Γι:

qe version:

Irn a

j

B2"

1 6 9

1 9 6

d U n.

no·

p:=

1 1,

\ Ε

Ε:

b

Τ

0 4

/infz·

£/"'

7 0 ,

y 7,

U 7,

orks

S T

S T

ST

Kfel

12,

o ri:

Β 5

EM

b 1

b 2

be

8
8
8
S1

r

7 "

- i ; -

J i ;

t t

J V 2
J V 2

•H
b

4 14

3 Τ 8

3

browse

brow
browse
"owse r

re trie1·,·

, C4 15

JV3 1

B59, Β62,

', Β

i, Β

•

er ν

176, EM

199, Ει

• h e ri q υ

c h c

se b
buq

e ν·,·'

e v e

0 4

B72

32,

J U,

j t e s

η q e s

j g s
fixes

qoodie.
rsion

16, 04

, Β 100

EM 83,

B20 1,

•brid in

1
^^^^^
1 ^J
17

, EM 15,

Β 184,

B202,

•/dived,

Figure 23.14 shows a browser that was created by asking to see all
the known bugs in the currently selected version of the system. It was
obtained by choosing yellow button command browse bugs in the top
view of the version browser. The numbers in the menu subview of the
"bugs" browser correspond to those cross-referenced in the version han-
dler.

Browsers are available that are used for submitting bug reports or
fixes or goodies, and for composing a new system version. The bug re-
port and bug fix browser is a modification of an electronic mail retriev-
al browser. The user can browse for a reported bug and then fill out a
form that documents the proposed fix (Figure 23.15). The bug fix is then
added to the database when the user selects the command accept in the
yellow button menu of the browser. If a bug fix is selected in the report
browser, a cross reference from the bug fix to the bug report is stored
so that someone browsing bug reports will be told about the proposed
bug fix.

483
23.5 Version Management

Figure 23.14 Oio

B59 Bug Report: Defining new class causes search of system

B72 Bug Report: scrolling due to output into system transcript
Β 10 0 Β υ g R e ρ ο r t: Τ e χ t 5 e I e c t i ο η Β υ g
Β 115 Β υ g R e ρ ο r ΐ : dependent s ma y c ο η t a ί η d u ρ I i c a t
Β 12 9 Β u q R e ρ ο r t: Β r ο vv s e r D i s ρ I a y G litches

browse fixes'
submit fb

A Date: 16 July 1982 9:09:07 am

From-Version: V 19

Subject; Bug Report: Inspectors on large objects

From: hag me. η η

I inspected a fair ly large object. It was a sequencer! collection of

about 120 entries. Around 60 of the entries in the collection were

not selectable from the inspector, This is very bad since it is natural

to assume t h a t w h a t you see in an inspector is all there is to an

object, Smalltalk is very good about not having special rules for

different cases (also called "yeah, but ,,," in most systems), I think

t h a t this ' feature ' should be changed to either: (I) do the right thing,

(2) put 3 dots in the left pane (..,) or (3) have a yellow button select

to get to see the full object. I think t h a t (1) is the correct solution

and is in keeping w i t h the rest of the system,

Figure 23.15 000

^ c t : Bug Fix: c t r l - c and browser scrollbars

From: Υ our Μ a me

S ο u re e-File: [File η e] < S m all t a I k£; 0 S u ρ ρ ο r"t > f i I e Ν a. m e, s t

bugs-fixed: Β 1

DescriptionOfF/x

484
System Backup, Crash Recovery, and Cleanup

Figure 23.16 is a browser for "goodies" that was obtained by choosing
the yellow button command browse new goodies in the top view of the
version browser. "Goodies" are new ideas for the system, new applica-
tions or user interface changes or performance improvements, that
have been contributed by any user who has access to the network-based
database for the Smalltalk-80 system. If you are interested in using a
goodie, you choose a command from the yellow button menu of the
goodie browser so that class descriptions for the goodie are filed into
your system. Each goodie description is associated with a file of class
descriptions that implement the goodie.

Figure 23.16 010

C334 Goodie: Even Better Move and Collapse
C 3 4 3 G ο ο d i e: f i ν e - ρ a. η e d b r ο w s e r
C 3 5 2 Goodie: Icon;, for col lapsed v iews
C 3 6 7 Goodie: Faster recompil ing of el as·;
C 4 13 Gi ο ο die: Pre 11 i e r c I o c k

b r o w s e source file si
browse bugs f ixed

file in changes

d a t e : 16 February 19bL-i 6:04:4c prn

from-vers ion: V 2 8

subject : Goodie: Even B e t t e r Move and Collapse

from: F'utz

s ο u re e - f i I e: < S rn a 111 a \ k'3 0 S u ρ ρ ο r t > Ε ν e η Β e 11 e r M ο ν e - s ρ, s t

In a n s w e r to Glenn's last t w o goodies, here is a version w h i c h makes

a Form out of the w i n d o w and lets the user drag around the w i n d o w

w i t h the mouse.

N o t e t h a t this is w h a t Laura, does in the Rehearsal World, Also note

t h a t on memory-poor machines (e.g. Dolphin) this ma.y excercise the

c o m p a c t o r or run the system out of memory, I suppose a t e s t could

be put in w h i c h checks core Left f i r s t , but v i r t u a l memory w o u l d be a.

much nicer solut ion.

New system versions are created by choosing items from a menu of
submitted bug fixes and goodies in order to compose a list of changes
that should be checked for conflicts and then incorporated into a run-
ning system. Bug fixes might conflict with one another in the sense
that they change the same methods. The system conflict analyzer can
be used to check for any such conflicts, leaving it up to you to resolve
the differences.

This approach to version management was successfully used in man-
aging the refinement of the Smalltalk-80 system.

Appendix 1

Financial History Views
and Controllers

This appendix contains a complete listing of three class descriptions:
FinancialHistory, FinancialHistoryView, and FinancialHistoryController.
These three classes implement a simple model for monitoring income
and expenditures (FinancialHistory), viewing that model as two bar
charts (BarChartView and FinancialHistoryView), and interacting with
that model in order to increase income or expenditures. A sample
screen image of the bar charts is shown in Figure A.I in which the yel-
low button menu is showing. The menu has two items: spend and
receive. Choosing either one of these brings up a prompter in which the
user specifies the reason why money is being spent or received (Figure
A.2). Once a reason is specified, a prompter appears in which to specify
the amount of money (Figure A.3). The appropriate bar chart is then
updated (Figure A.4). If the reason given is new (Figures A.5, A.6, and
A. 7), the bar chart is reorganized to display the new bar. The view is
created as a standard system view so that the blue button menu is
available (Figure A.8).

This example is given to you as another sample of how to use the
classes View and Controller that are provided in the Smalltalk-80 system
as basic building blocks with which to construct interactive graphical
interfaces. It is unlike the examples in Chapter 15 in that a different
approach to creating the yellow button menu is used. The format for
presentation is that of a class implementation description as introduced
in the book Smalltalk-80: The Language and its Implementation. The
example makes use of prompters (instances of the class FilllnTheBlank).

The first class, FinancialHistory, was described in Chapters 17, 18, and
19. This version of the class adds access to the instance variable
incomes as well as expenditures. Note the addition of the changed mes-

485

486
Financial History Views and Controllers

-inancial Historv

Figure A.I 010

pend
receive

rent food utilities pay interest

Figure A.2

Receive from what'

487
Financial History Views and Controllers

financial History

Figure A.3

Figure A.4

488
Financial History Views and Controllers

Figure A.5 000

ReceivQ from what?

rent food utilities pay interest

Figure A.6 BOO

1300

6 0 0

400

200

rent

How much from qift ?

500

:iav interest

489
Financial History Views and Controllers

"inancial History

Figure A.7

Figure A.8

under
move
frame

collapse
close

rent food utilities

490
Financial History Views and Controllers

sages to receive:from: and spend:for: to notify any objects dependent on
these variables that there was a change.

class name FinancialHistory

superclass Object

instance variable names ' cashOnHand incomes expenditures '

category ' Financial Tools '

class methods

instance creation

initialBalance: amount
" Create a FinancialHistory with amount as the initial balance. "

Tsuper new setlnitialBalance: amount

new

" Create a FinancialHistory with 0 as the initial balance."

Tsuper new setlnitialBalance: 0

instance methods

transactions

receive: amount from: source
" Receive amount of money from source, and increment cash on hand

by this amount."

incomes at: source

put: (self totalReceivedFrom: source) + amount.

cashOnHand «- cashOnHand + amount,

incomes changed

spend: amount for: reason
" Spend amount of money for reason and decrement cash on hand by

this amount."

expenditures at: reason

put: (self totalSpentFor: reason) + amount.

cashOnHand «- cashOnHand - amount,

expenditures changed

inquiries

cashOnHand
" Answer the current balance? "

τ cashOnHand

expenditures
" Answer the Dictionary of expenditures."

t expenditures

491
Financial History Views and Controllers

incomes
" Answer the Dictionary of incomes. "

τ incomes

totalReceivedFrom: source
" Answer the total amount of money received from source. "

(incomes includesKey: source)

ifTrue: [Τ incomes at: source]

ifFalse: [TO]

totalSpentFor: reason
" Answer the total amount of money spent for reason."

(expenditures includesKey: reason)

ifTrue: [texpenditures at: reason]

ifFalse: [TO]

private

setlnitialBalance: amount
" Initialize the instance variables. "

cashOnHand «- amount,

incomes — Dictionary new.

expenditures «- Dictionary new

You can create an instance of Financial History, and spend and receive
money, by evaluating the following expressions.

Smalltalk at: #HouseholdFinances put: nil.
HouseholdFinances «- Financial History initialBalance: 1560.
HouseholdFinances spend: 700 for: ' rent'.
HouseholdFinances spend: 78.53 for: ' food' .
HouseholdFinances receive: 820 from: ' pay'.
HouseholdFinances receive: 22.15 from: ' interest'.
HouseholdFinances spend: 135.65 for: ' utilities'.
HouseholdFinances spend: 146.14 for: ' f o o d ' .

In the above expressions, HouseholdFinances is created as a global vari-
able. Then the instance of the class FinancialHistory is created and sev-
eral messages are sent to it. At this point, if we were to view the
incomes and expenditures of HouseholdFinances as two bar charts, we
would see the image shown in Figure A.I.

The next step is to create a special bar-chart viewing mechanism for
a Dictionary. Class BarChartView has no variables declared.

492
Financial History Views and Controllers

class name BarChartView

superclass View

category ' Financial Tools '

instance methods

accessing

barFrame
" Answer the area available for the bars. The response to insetDisplayBox

is implemented in the superclass View."

tself insetDisplayBox insetBy: (50 @ 10 corner: 10 @ 50)
labelCount

"Answer the number of labels needed. Although this is specified as a

constant, it should probably be an instance variable. "

T5

maximumValue
"Answer the maximum value on the y-axis. The message model, whose

response must be a kind of Dictionary, is implemented in the superclass

View. "

| total |

total -

self model values

inject: 0

into: [:sum :value |sum + value].

t(total / self labelCount roundTo: self units) * self labelCount

numberOfColumns
" Answer the number of bars needed in the chart. "

Tself model size

positionFor: value
"Answer the relative position within the chart for value. "

tself barFrame height * value / self maximumValue

units
"Answer the unit increment of values used to compute the ticks on the

y-axis. Although this is a constant, it probably should be an instance vari-

able.. "

Π 00

displaying

displayView

" Display the x- and y-axis labels and then the bars. This message is

493
Financial History Views and Controllers

sent from View's implementation of the message display, in which the
View requests display of each of its subparts. "

self displayXLabels.
self displayYLabels.
self displayBars

displayXLabels
| corner|
corner <- self barFrame bottomLeft.
self model keys do:

[:key |
key displayAt:

corner + (self barFrame width - 20 /
(self numberOfColumns * 2) @20)

- (key asDisplayText boundingBox extent / 2).
corner <-

corner + ((self barFrame width / self numberOfColumns) @ 0)]
displayYLabels

| count label increment |
count <- self labelCount.
increment <- self maximumValue / count.
label - 0.
count timesRepeat:

[label printString displayAt:
(self barFrame bottomLeft

- (35 @ ((self positionFor: label)+ 7))).
label <- label + increment]

displayBars
| height bar corner |
corner <- self barFrame bottomLeft.
self model keys do:

[-key |
height - self positionFor: (self model at: key),
bar <-

corner - (0 @ height) extent:
(self barFrame width / self numberOfColumns - 10)

@ height.
Display black: bar.
Display fill: (bar insetBy: 2@2) mask: Form darkGray.
corner *-

corner + ((self barFrame width / self numberOfColumns) @ 0)]
update: aParameter

" Some values have changed, so update the view. "

self display

494
Financial History Views and Controllers

You can try out the bar chart viewing mechanism on any Dictionary
with numeric values whose keys are instances of String or Text. In par-
ticular, try the following expressions in order to see the bar chart for
the HouseholdFinances expenditures.

| aBarChartView |
aBarChartView «- BarChartView new.
aBarChartView model: HouseholdFinances expenditures.
aBarChartView window: Rectangle fromUser.
aBarChartView insideColor: Form white.
aBarChartView borderWidth: 2.
aBarChartView display

The third statement asks you to specify the screen area in which the
bar chart will be displayed. The expression Rectangle fromUser means
that you are to designate a rectangular area. Make it large enough to
accommodate the text for all the keys in the Dictionary, HouseHold-
Finances expenditures.

The definition of a BarChart is faulty in several ways. First, the units
are designated as 100. If all the values of the Dictionary are less than
100, then an error (division by zero) will occur when you try to display
the bar chart. Second, the number of labels (labelCount) is specified as 5,
true in our example, but probably not all the time. You can improve
the class description by parameterizing these values. To see the prob-
lem, try the following expressions.

| aDict aBarChartView |
aDict «- Dictionary new.
aDict at: ' 1 'put: 10.
aDict at: ' 2 ' put: 20.
aDict at: ' 3 ' put: 30.
aDict at: ' 4 ' put: 40.
aDict at: ' 5 ' put: 50.
aDict at: ' 6 ' put: 60.
aBarChartView «- BarChartView new.
aBarChartView model: aDict.
aBarChartView window: Rectangle fromUser.
aBarChartView insideColor: Form white.
aBarChartView borderWidth: 2.
aBarChartView display

The next step is to create a viewing mechanism for FinancialHistory that
groups together the bar charts for incomes and expenditures within a
single view. Class Financial History View specifies a view that consists of

495
Financial History Views and Controllers

two views, the bar charts. It is a subclass of View, and adds no new vari-
ables.

class name FinancialHistoryView
superclass View
category ' Financial Tools'
class methods

instance creation

open: aFHModel
" Create a standard system view of the FinancialHistory, aFHModel, that
consists of two bar charts, one for expenditures and one for income. "

| aFHView aBCView topView |
" First create the top view that is a standard system view and provides
the blue button menu for moving, framing, collapsing, and closing the
view."

topView <- StandardSystemView new.
topView model: aFHModel.
topView borderWidth: 2.
topView insideColor: Form lightGray.
topView label: ' Financial History'.

" Create the FinancialHistoryView and make it fill the top view. "
aFHView «- self new model: aFHModel.
topView addSubView: aFHView.

" Create the bar chart of expenditures and place it inside the
FinancialHistoryView. Its interior should be white, its border 2 pixels wide,
and it should have no user interaction independent of the one provided
for FinancialHistoryView."

aBCView — BarChartView new model: aFHModel expenditures.
aBCView window: (10® 10 extent: 35@35).
aBCView insideColor: Form white.
aBCView borderWidth: 2.
aBCView controller: NoController new.
aFHView addSubView: aBCView.

" Create the bar chart of incomes similar to that of the one for expendi-
tures. "

aBCView <- BarChartView new model: aFHModel incomes.
aBCView window: (55@10 extent: 35®35).
aBCView insideColor: Form white.
aBCView borderWidth: 2.
aBCView controller: NoController new.
aFHView addSubView: aBCView.

496
Financial History Views and Controllers

" Standard system views have standard system controllers that respond

to the message open by asking the user to designate the rectangular

area in which the view will be displayed."

topView controller open

instance methods

controller access

defaultControllerClass
" Answer the name of the class that provides the usual user interaction

for this class."

τ FinancialHistoryController

Note that the last method, defaultControllerClass, specifies that the user
interaction for a FinancialHistoryView is handled by a FinancialHistory-
Controller. You will not be able to add this method to the system until
you declare the class FinancialHistoryController, as follows. A Mouse-
MenuController is a system controller that provides the mechanisms for
storing and retrieving pop-up menus. FinancialHistoryController is like
this class except it provides a particular yellow button menu for items
spend and receive. When these items are chosen, the corresponding
messages, spend and receive, will be sent to the FinancialHistory-
Controller.

class name FinancialHistoryController

superclass MouseMenuController

class variable names ' FHYellowButtonMenu

FHYellowButtonMessages'

category ' Financial Tools '

class methods

class initialization

initialize
" Specify the yellow button menu items and actions. "

FHYellowButtonMessages - #(spend receive).

FHYellowButtonMenu «-

PopUpMenu

labels:

'spend

receive'

497
Financial History Views and Controllers

instance methods

initialize-release

initialize
" Make certain that the instance knows about the menu items. "

super initialize.
self initializeYellowButtonMenu

menu messages

receive
" Ask what amount is being received for what reason, and then update
the FinancialHistory accordingly. Use the prompter, a FillinTheBlank, to
obtain the needed information. (Note that comma is the String concatena-
tion operator. Also note that no special care is being taken to make sure
that the number is a positive one—perhaps you might want to add this
condition.)"

| spendOn amount |
spendOn *- FillinTheBlank request: ' Receive from what?'.
spendOn isEmpty ifTrue: [Tself].
amount «- FillinTheBlank request: ' How much from ' , spendOn,' ? ' .
amount isEmpty ifTrue: [Tself].
amount — Number readFrom: (ReadStream on: amount).
model receive: amount from: spendOn

spend
" Ask what amount is being spent for what reason, and then update the
FinancialHistory accordingly. Use the prompter, a FillinTheBlank, to obtain
the needed information. (Note that comma is the String concatenation
operator. Also note that no special care is being taken to make sure that
the number is a positive one—perhaps you might want to add this condi-
tion.). "

| spendOn amount |
spendOn <- FillinTheBlank request: ' Spend for what?'.
spendOn isEmpty ifTrue: [Tself].
amount - FillinTheBlank request: ' How much for ' , spendOn,' ? ' .
amount isEmpty ifTrue: [Tself].
amount <- Number readFrom: (ReadStream on: amount).
model spend: amount for: spendOn

498
Financial History Views and Controllers

control defaults

isControlActive
" sensor, declared as an instance variable in the superclass Controller, is
an instance of InputSensor. It can determine the cursor location, and
whether mouse buttons or keys on the keyboard are pressed."

τ super isControlActive & sensor blueButtonPressed not

private

initializeYellowButtonMenu

" yellowButtonMenu:yellowButtonMessages: is specified in the superclass
MouseMenuController; the response is to create the correct menu image
and corresponding messages."

self yellowButtonMenu: FHYellowButtonMenu
yellowButtonMessages: FHYellowButtonMessages

After defining the class FinancialHistoryController, remember to define
the message defaultControllerClass in FinancialHistoryView.

To initialize the menus before trying to use the class, you evaluate
the expression

FinancialHistoryController initialize

You can then evaluate

FinancialHistoryView open: HouseholdFinances

in order to try out the user interface as shown in the figures.
These classes are offered as initial ideas with which you can play.

There are several modifications to try. Make certain that only the part
of the view that needs to redisplay does whenever there is a change.
Try to change the user interface to the bar chart so that you can point
to a bar and "drag" it up in order to change the value in the Dictionary
(that is, instead of providing NoController as the user interface to a
BarChartView, create a new controller that handles the user red button
actions). Be careful that the scale on the axis of the chart is appropriate
for such action. Try to create viewing mechanisms that display pie
charts or graphs instead of bar charts. Make a view in which the expen-
ditures or incomes are shown as both graphs and bar charts, and make
certain that both views update correctly when the Dictionary changes.

Appendix 2

Smalltalk-80 Software
Development Do's and
Don'ts

As a software engineer at Xerox Special Information Systems (XSIS), I
am responsible for the ongoing support of the Xerox 1100 Scientific In-
formation Processor Smalltalk-80 System. I participate in the develop-
ment of Smalltalk-80 virtual machine implementations and virtual
image releases. In the past, as a member of the Publishing Systems De-
partment, I developed an experimental interactive page make-up editor
with the Smalltalk-76 programming environment (precursor to the
Smalltalk-80 system). I also observed and supported the development of
two major applications with the Smalltalk-80 system at XSIS. As a re-
sult of these experiences, I would like to share with you several impor-
tant "do's and don'ts" for Smalltalk-80 software development.

Π First and foremost: Do read the documentation. Perhaps this state-
ment should be printed on the cover, or even emblazoned on your ma-
chine, rather than located at the end of a book that you have probably
just finished reading! Early Smalltalk-76 and Smalltalk-80 development
projects at XSIS began with seasoned software engineers who had no
prior experience with Smalltalk programming, nor did they have off-
line documentation. Their success in the beginning should be credited
to their programming background, but also to the user support provided
in the Smalltalk-80 environment. However, several system features and
techniques that would have simplified their development efforts were
not discovered until well into the projects, when early versions of this
book became available. Change management, system tracing, and per-
formance analysis were several useful tools that they had not discov-
ered on their own.

499

500
Appendix 2

Q Before embarking on your first Smalltalk-80 development project: Do
understand the basic language concepts. The basic language concepts
are outlined in Chapter 5 of this book and summarized in Section 5.5.
This recommendation may seem obvious, but it is so easy to develop
software by copying and editing existing system code. Often the new
programmer, anxious to use the system, starts programming before
learning about the object and message-sending metaphor of the
Smalltalk-80 language.

Q Whether your development team consists of one person, or many: Do
understand and use the change manager. The change manager is one
of the most important tools for software development in the
Smalltalk-80 environment. It is described in Section 23.2 "The System
Change Set" and Section 23.3 "The System Audit Trail." This facility
tracks and helps you to maintain all changes you have made to the sys-
tem. It allows you to selectively browse them, remove them, incorporate
them into another version of the system, check for conflicts, and pre-
pare the changes for release to other members of the development team
or to end users. Should a system crash occur, the change manager can
recover all changes since the system's state was last saved.

[] i i the outset of a project involving two or more programmers: Do as-
sign a member of the team to be the version manager. Refer to Section
23.5 "Version Management" to learn about the kinds of tools the ver-
sion manager might create. The responsibilities of the version manager
consist of collecting and cataloging code files submitted by all members
of the team, periodically building a new system image incorporating all
submitted code files, and releasing the image for use by the team. The
version manager stores the current release and all code files for that re-
lease in a central place, allowing team members read access, and
disallowing write access for anyone except the version manager. Much
of this process can be automated.

Q In the course of software development: Do not modify system classes
when subclassing is possible. It is more desirable to subclass an
existing system class, using multiple inheritance When appropriate,
rather than to modify system class definitions and behavior. There are
two reasons for this. The first relates to managing changes. It is more
difficult to track changes to system classes than it is to track changes
that are concentrated in a single, user-defined subclass of a system
class. The second reason involves compatibility with new system re-
leases. It is more difficult to incorporate your software into a new ver-
sion of the Smalltalk-80 image if your system changes conflict with
changes in the new version, that are needed to improve the basic sys-
tem rather than a specific application. There are indeed cases when it

501
Appendix 2

is appropriate to change system classes, but it is important to under-
stand the potential impact before doing so.

Q Do browse the system to find existing features that can be exploited
in your applications. Refer to Part Two of this book "How to Find In-
formation in the System." Unlike traditional programming, about 90%
of Smalltalk-80 programming typically consists of making relatively
small modifications and enhancements to existing code. The program-
mer searches the system for classes and methods that demonstrate be-
havior similar to the desired functionality of the new application, and
then extends the behavior through the mechanism of subclassing or
copying and editing. Graphical interactive applications are created by
extending the existing hierarchy of classes that support viewing and
controlling behaviors.

Q Do not be at the mercy of the system; if you do not like something,
change it. Several XSIS customers comment about various details of
the system that they would prefer to have changed. Examples are the
size of the system font or the functionality of a particular system view
or the way a particular method is written. My response to these com-
ments is to remind the customer that the system is designed so that
they can easily and freely change it. This concept is a new one to many
people because traditional programming environments carefully protect
system code from modification. The Smalltalk-80 environment treats
system code and user code alike. Mold the system into an environment
that suits your needs. The researchers designed the system so that they
could experiment with creating new systems; the changeability of all of
the system parts is a necessary attribute of this research. The easy
changeability of system code, of course, means that you can make
changes that crash the system. Therefore, make certain you have saved
your work before trying something that changes system code that you
might not fully understand. For creating applications that can not be
changed by the end user, you might want to try mechanisms for pro-
tecting the code—for example, hiding the existence of certain classes
from your users.

Q Do share your creative 'goodies" with a friend. Your creativity will
inevitably result in novel yet natural extensions to the environment.
Michael Malcolm, an XSIS software engineer, did not like the way text
selection was handled originally, so he cleverly enhanced the old tech-
nique and shared it with other Xerox Smalltalk-80 programmers. It was
such a useful extension to the system that it was incorporated into all
subsequent releases. This "goodie" became part of the system because
he packaged it so that other programmers could easily file it into their
images for experimentation, and because he announced its existence
over the Xerox electronic network to ensure its broad availability.

502
Appendix 2

The Smalltalk-80 environment provides such a rich set of interactive
software development tools that the programmer's time shifts from
finding the path of least resistance through a complex web of system
utilities to actually writing code. With this system, my belief that pro-
gramming is an art is at last fulfilled.

And finally: Do have fun!

Prepared by
Evelyn Van Orden

Xerox Special Information Systems

System Workspace Index

Expression in System Workspace Explanation and Reference

Create File System

Disk - AltoFileDirectory new

SourceFiles — Array new: 2

This is the code needed to initialize a
file system when the Smalltalk-80
system is first installed. The example
is for the Xerox Alto file system.

The global variable Disk references
the file directory.

The global variable SourceFiles
references the sources and changes
files. See Section 22.4.

SourceFiles at: 1 put: (FileStream
oldFileNamed: 'Smalltalk-80.sources')

SourceFiles at: 2 put: (FileStream
oldFileNamed: 'Smalltalk-80.changes')

(SourceFiles at: 1) readonly

The first element of SourceFiles is a
FileStream on the sources file. See
Sections 1.2 and 22.4.

The second element of SourceFiles is
a FileStream on the changes file. See
Sections 1.2 and 22.4.

The sources file should be read-only.
The system VM-writer is used to
update the sources file. See Section
23.4.

503

504
System Workspace Index

SourceFiles - Disk - nil When these variables are nil, it is
assumed that no sources can be
accessed so that the decompiler
should be used when browsing class
descriptions. In addition, no changes
file (audit trail) will be maintained.
See Section 22.4.

Files Information about external files is
found in Chapters 22 and 23.

(FileStream oldFileNamed:
'fileName.st') fileln

Read the class descriptions and
expressions stored on a file. See
Section 22.3.

(FileStream fileNamed: 'fileName.st')
fileOutChanges

The information maintained in the
system change set can be stored on a
file. See Section 23.2.

(FileStream fileNamed: 'fileName.st')
edit

A view of the contents of a file can
be created. See Section 22.2.

Changes While you are working in a project
(Chapter 4), a set of class and method
changes is maintained. See Section
23.2.

Smalltalk noChanges Initialize the set of changes. See
Section 23.2.

(FileStream fileNamed: 'fileName.st')
fileOutChangesFor: Stream

Changed definitions for a particular
class can be filed out. See Section
23.2.

Stream removeFromChanges References in the set of changes to a
particular class can be removed. See
Section 23.2.

Smalltalk browseChangedMessages View the current changes in a
browser. See Section 23.2.

Smalltalk changes asSortedCollection View the current changes as a
SortedCollection. See Section 23.2.

505
System Workspace Index

Inquiry

Smalltalk browseAlllmplementorsOf:
#messageSelector

The system supports your making
many inquiries about the
relationships among the objects. See
Chapters 8, 9, and 10.

Like the menu item implementors in
the message-selector subview of a
browser. See Section 10.4.

Smalltalk browseAIICallsOn:
#messageSelector

Like the menu item senders in the
message-selector subview of a
browser. See Sections 10.4 and 12.2.

Collection browseAIICallsOn:
#timesRepeat:

Smalltalk browseAIICallsOn: #at:
and: #at:put:

Smalltalk browseAIICallsOn: (Smalltalk
associationAt: #Transcript)

Smalltalk browseAIICallsOn:
(TextConstants associationAt:
#Centered)

Like the menu item senders in the
message-selector subview of a
browser, except constrained to the
methods of a particular class. See
Section 10.4.

Like the menu item senders in the
message-selector subview of a
browser, except accesses information
about two message selectors rather
than just one. See Section 10.4.

Obtain a message-set browser that
provides access to all methods in the
system that reference a particular
literal found in Smalltalk. See Section
10.4.

Obtain a message-set browser that
provides access to all methods in the
system that reference a particular
literal found in the pool dictionary
TextConstants. See Section 10.4.

Smalltalk browseAIICallsOn: (Object
classPool associationAt:
DependentsFields)

Obtain a message-set browser that
provides access to all methods in the
system that reference a particular
literal found in one of Object's pool
dictionaries. See Section 10.4.

Smalltalk browseAIISelect: [:meth
meth numLiterals > 40]

Obtain a message-set browser on all
methods such that, when the block is

506
System Workspace Index

evaluated with the method as its
argument, the result is true. See
Section 10.4.

FileStream instanceCount

FormView alllnstances inspect

Answer the number of instances of
the class that exist in the system.

Create an inspector on the collection
of all the instances of the class that
exist in the system. Inspectors are
presented in Chapter 8.

Undeclared inspect Create an inspector on the pool of
variables that the user tried to
reference but that were found to be
undeclared. See Section 6.1.

Dependents Access objects that have been
declared as dependents of one
another (for example, a particular
view is dependent on the object it
views).

(Object classPool at:
#DependentsFields) keys

DependentsFields is a Dictionary, a
class variable of Object in which
knowledge about object dependencies
is stored. It is sometimes referred to
as a "soft field." Its keys are the
objects that have other objects
dependent on them.

(Object classPool at:
DependentsFields) keysDo: [:each
(each isKindOf: TextCollector) ifTrue:
[each release]]

This is a useful expression for
searching for a particular kind of
object, here instances of TextCollector,
that may have dependents. If there
are dependents, they are sent the
message release, that is, break the
dependency. This is needed to make
certain that undesired cyclic pointers
are destroyed.

Globals Names in Smalltalk other than classes
and pools.

Disk

Sensor

Display

ScheduledControllers

Transcript

Processor

SourceFiles

SystemOrganization

Pool Dictionaries

Smalltalk

AltoFilePool

FilePool

TextConstants

507
System Workspace Index

A FileDirectory.

An InputSensor. See example uses in
Section 6.4 and Chapter 21.

A DisplayScreen. See example uses in
Sections 6.4 and 11.3.

A ControlManager. See Section 2.5.

A TextCollector. See Section 3.4.

This single instance of
ProcessorScheduler coordinates the
use of the physical processor by all
processes requiring service.

Array of FileStreams. See Section 22.4.

A SystemOrganizer, the basis of the
hierarchical indexing for the system
browser. See Chapter 9.

A SystemDictionary in which
reference to all global variables,
especially classes, is maintained. See
Sections 6.1 and 10.4.

A pool dictionary known to AltoFile,
AltoFileDirectory, and AltoFilePage.

A pool dictionary known to
ExternalStream, File, FileDirectory,
and FilePage.

A pool dictionary known to
ArrayedCollection, CharacterBlock,
CharacterBlockScanner,
CharacterScanner,
CompositionScanner, DisplayScanner,
DisplayText, Paragraph,
ParagraphEditor, StrikeFont,
TextLinelnterval, and TextStyle.

508
System Workspace Index

Undeclared

Smalltalk removeKey: #GlobalName

Smalltalk declare: #GlobalName
from: Undeclared

Transcript show. (3 + 4) printString; cr

Smalltalk frills: false

Display

DisplayScreen displayExtent:
1024 @808

DisplayScreen displayExtent:
640® 480

Measurements

Smalltalk core

Smalltalk oopsLeft

Smalltalk coreLeft

A global dictionary in which to store
the names of variables the user
improperly tries to reference. See
Section 6.1»

Remove a particular entry from the
Dictionary Smalltalk.

Add a particular entry from
Undeclared to Smalltalk, effectively
declaring the variable. See Section
6.1.

Display the result of evaluating 3 + 4
in the System Transcript, Transcript.
See Section 3.4.

For slow machines, some of the
automatic selection that happens in
the debugger and browsers can be
turned off by evaluating this
expression.

Evaluate expressions to Display or to
DisplayScreen to change the display
area used by the system.

Make the screen 1024 dots wide by
808 dots high. See Section 6.4.

Make the screen 640 dots wide by
480 dots high. See Section 6.4.

Take some measurements of the
amount of space being used in the
system. Evaluating these expressions
typically takes a long time.

Amount of memory—number of
objects, number of words of data. See
Section 20.3.

Number of objects that can still be
created. See Section 20.3.

Amount of memory left for your
programming. See Section 20.3.

509
System Workspace Index

MethodContext instanceCount Instances of MethodContext hold all
the dynamic state associated with the
execution of a CompiledMethod. In
addition to their inherited state, this
includes the receiver, a method, and
temporary space in the variable part
of the context. This expression is a
way to determine the number of
interrupted executions of a method
that are known to the system.

Disk freePages Amount of space left on your disk for
files.

Time millisecondsToRun:
[SystemOrganization printString]

Length of time in milliseconds it
takes to evaluate the expression(s) in
the block.

MessageTally spyOn:
[Behavior compileAII]

Do an analysis of the performance of
the expression(s) in the block. See
Chapter 14.

(FileStream oldFileNamed:
'spy.results') edit

Examine the file on which a
performance analysis has been
stored.

Change Management and Crash
Recovery

ChangeListView open

Recovering from system crashes is
discussed in Chapter 23.

Create a blank view for change
recovery. See Section 23.3.

ChangeListView openOn: (ChangeList
new recoverFile: (FileStream
oldFileNamed: ' fileName.st'))

Create a view for change recovery
from a given file. See Section 23.3.

ChangeListView recover

Smalltalk recover: 5000

After a crash, create a view to
browse changes since the last
snapshot. See Section 23.3.

Copy the most recent 5000 characters
to the file named ST80.recent and
open an edit window on it. See
Section 23.3.

Menu Command Index

abort 238, 355, 358
accept

to compile 24, 26, 100-101, 164, 166, 174,
179, 200, 221, 238, 242, 244, 252, 256, 280,
284, 303, 308, 310, 320, 324, 333, 346, 364,
369, 373, 389, 392, 399, 402, 406, 416, 452

to store 37, 48, 134, 147, 156, 173-175, 180,
225-227, 233, 249, 254, 265, 268, 272, 278, 284,
303, 331, 339, 395, 439-440, 444, 448, 455, 460,
462, 471, 477

add category 173, 272
add field 156
add protocol 178, 225-227, 278, 284, 308
again 57, 58-59, 61, 179
browser 42, 43, 162, 218
cancel 37, 131, 134, 180, 282, 444
category 475
check conflicts 472, 477
check with system 472, 477
class 163, 168, 218, 278, 364, 475
class refs 175, 213, 303, 324
class var 355
class var refs 175, 211
close 20, 40, 48, 72, 132, 146, 238, 261, 379, 426,

455
collapse 48
comment 174, 249, 303, 324
continue 23
copy 58, 60-61, 179
copy name 440
correct 379
correct it 355, 356, 358, 367
cut 58, 60-62, 179

debug 160, 383, 388, 416
definition 174, 252, 333
display system changes 471, 472
do all 471
do it 106, 107-110, 170, 179, 182, 220, 238, 258,

260, 282, 288, 354, 364, 416, 422, 471
edit all 173, 272
enter 42,68
exit project 42, 68
explain 180,182
file 475
file in 440, 452, 455, 471
file it in 443, 450, 468
file list 42, 439
file out 172, 173, 177, 178, 292, 373, 432-433,

451, 471
forget 471
format 179,244
frame 47,48
full stack 390, 392
get 443,444
get contents 440, 442, 444
global 355
hierarchy 174, 200, 203-204
implementors 179,199, 200, 204, 392
ingpect 146, 152, 284, 404, 422
instance 163,168, 224, 284, 321
inst var refs 174, 211
messages 179, 201, 203, 392
move 47, 179, 264
no 20, 36, 40, 48,126
paste 58, 61,179
put 443, 444, 452, 455

510

511
Menu Command Index

print it 106, 110, 154, 167, 179, 244, 364, 376,
386, 396, 403, 406

print out 172, 174, 177, 178, 435
proceed 159, 379, 390, 392, 396, 409, 416, 451,

453, 455
proceed as is 320, 358, 364, 369
project 42, 68, 329
protocols 174, 225, 230
quit 22, 40, 43
Quit, without saving 23
references 157
recover last changes 471, 472
remove 156, 173, 175, 178, 179, 201, 227, 230,

272, 442, 479
remove all 471
remove it 472
rename 173, 175, 178, 227, 254, 272, 442, 446
restart 392,399
restore all 471
restore display 42, 138, 170, 238
restore it 472
same 475

save 24, 43, 460
Save, then quit 23, 24, 462
selector 475
send 392, 416, 417, 426
senders 178, 196, 200, 204, 392
show category 474
show file 474
spawn 172, 174, 178, 180, 187-191
spawn all 471
spawn hierarchy 174, 192-193
spawn it 472
step 392,416-428
system transcript 43, 65, 68, 204
system workspace 43, 44
temp 355,362
type 475
undeclared 355
under 47
undo 58, 62, 175, 179
update 173,270
workspace 16, 35, 43, 68, 244
yes 20, 36, 40, 48, 72, 126, 173, 360, 367, 379

Subject Index

t 92, 104
Abelson, Hal 138
ActionMenu 301, 315, 333, 338, 346
activation stack 386
argument name 102
array 84, 103, 148-150, 218, 224-233, 237, 243,

274
assignment 89, 91, 103
audit trail 467-468, 477
binary message expression

see message, binary
Bit Editor 31, 49 123, 131-139
block 87, 90, 91-92, 103, 208

argument 90-91, 103
BlockContext 384

see also block
Boolean 91, 192, 313, 321, 325, 384
boot button 14
breakpoints 402-408,416
browser 32, 35, 42, 49, 52, 99-101, 161-193,

218-244, 249, 252, 274, 381
see also Menu Command spawn;
message-set browser;
Project Browser;
Protocol Browser

Browser 167
button 11, 12

see also standard system view
blue 20, 26, 47
red 16, 20, 23, 26, 34, 52, 122-124, 133, 474
yellow 16, 18, 22, 24, 26, 40

caret 52,66
see also text, selection

cascaded message expression
see message, cascaded

categories 100-101, 162-169, 173
class 268-272,274
message 174, 178, 179, 225-233, 278-280

ChangeListView 158, 409, 472
changes 68, 101-102

see also file, changes
change set 462-463, 467
classes 98

Change-Management Browser 467-477
Change-Set Browser 465-467, 472
character 80-84, 148-150, 384
Checker 479
class 77-79, 102

see also browser; categories, class;
class editing; variable, class
abstract 203-204
definition 252
description 93-95, 100
hierarchy 162, 164, 174, 176
name 173-175,254-260
obsolete 479
references 175
template 100,274-278

class browser 188
see also browser

class editing
adding new methods 233-248
adding protocol 224-232
categories 268-272
creating new class 274-278
modifying comments 249-250

512

513
Subject Index

class editing (cont.)
modifying existing methods 218-223
renaming

see renaming
variable declarations 260-268

class hierarchy browser 192-193
see also browser; hierarchy

click 12, 13, 26, 258, 261
see also button; text, selection
double 12, 26, 53-56
single 52

CodeView 301, 306-310, 315, 316, 323, 325, 329,
337

Collection 192, 203, 384
Commander 279-293
commands

see menu
comments 85, 162, 166, 174, 196, 203, 249-250
compactor 31
compilation 98-101, 116, 221, 393

see also Menu Command accept
complimenting 32

see also highlighting
confirmer 20, 27, 31, 36, 37, 40, 48, 49, 72, 173,

175, 178, 230, 356, 360, 367, 379
conflict analysis 471-472, 477
control keys

see text editor
control manager 7, 27, 46-47, 413
control structures 91-92, 372

conditional selection 61, 91
conditional repetition 91

Controller 98
cursor 4, 23, 27, 30-31, 34, 39, 40, 49, 108

crossHair 133
eyeglasses 134,444
execute 26, 108, 261
hourglass 26, 108, 444
writing pen 444, 452

Cursor 31, 32, 134, 137, 221, 267
data structures 95-96
debugger 160, 383, 386-400, 416, 450-451, 455
debugging 65, 107, 147, 385-400

see also debugger; inspector; notifier
decompilation 98, 458
delimiters

see text editor
Dictionary 156-157
diSessa, Andrea * 138
Display 114-116, 237-240, 261
display screen 2, 4, 7-10, 15, 122-126

see also graphics
Display Object 136, 261
DisplayScreen 114-115

documentation 111, 141-142, 162, 168, 481
see also browser; categories;
comments; examples; explanations;
menu; spelling correction;
System Workspace; templates

draw through 52, 66
see also text, selection

editing
class descriptions

see class editing
pictures

see Bit Editor; Form Editor
programs

see class editing
text

see text editor
error handler 411-414

see also debugger; notifier
escape key 110

see also text, selection
examples

in the book
see Commander;
FinancialHistory;
Project Browser;
Protocol Browser

in the system 168-171, 218-220
execution interrupt 101-102, 116, 159-160,

401-414
evaluation within context of 396-400
notification of 375-384

explanations 180, 182-186
expression 80, 103

see also block; variable; message
evaluation 18, 105-117, 452

see also Menu Command do it
and print it

file 4, 14-15, 96, 102, 126, 172, 431-458
changes 14, 24, 26, 27, 100, 457-458,

467-468
see also changes

command 24
condensing sources and changes 480
formats 435-436

see also retrieving information;
saving information

image 14, 24, 26, 27, 464, 477-478
see also snapshot

remove 442
rename 442, 446-448
run 14,24
sources 14, 27, 100, 256, 457-458

see also SourceFiles
file list browser 42, 49, 321, 439-449, 451

514
Subject Index

FileStream 293, 436, 439, 448, 450, 465
FilllnTheBlank 344
filters 474-475
FinancialHistory 364-388, 402, 406, 451, 463-464,

472
flashing 20, 26, 30, 34, 37, 49
font 61-63

see also text
Form 31, 120-123, 126-127, 131-135, 139,

220-223, 237, 240, 261, 422-424
opaque 135, 139

Form Editor 31, 49, 120-131
formatting 179, 244
global variables

see variable, global
graphics

see Bit Editor; Form;
Form Editor; user interface;
view

gridding 124-130
see also Form Editor

hardware systems 4-6, 100
hierarchy

see class, hierarchy;
Class Hierarchy Browser;
Protocol Browser;
Menu Command hierarchy and
spawn hierarchy

highlighting 12, 30
text 32, 52, 57
see also text, selection

identifier
see selector; variable, name

image file
see file, image

inspector 107-108, 144-158, 261-266, 282,
284-288, 355, 376, 386, 390, 403

see also debugger
for dictionaries 156-157, 406

instance 77-79, 102
variable

see variable, instance
interface 76-77, 102-103

see also user interface
interrupt

system control-c 62, 159-160
keyboard 4, 7, 122-123, 134-135
keys 7
keyword message expression 6, 103

see also message, keyword
Krasner, Glenn 435
literal 80, 87, 103, 208
Masinter, L. 354

menu 2, 13, 18, 27, 49
cascaded 64
commands 104
fixed 35, 36, 163
iconic 120-123, 139
list 36, 37, 163
locked 37
pop-up 35, 36, 40, 201
selection 12, 36, 122
system

see System Menu
message 1, 27, 76, 102, 162

argument 103
binary 86-88, 103
cascaded 89, 103
expression 85-89
implementors

see Menu Command implementors
keyword 86-88, 103
pattern 102
protocol

see interface
receiver

see receiver
selector

see selector
senders

see Menu Command senders
unary 86-88, 104

Message Browser 190-191
see also browser

Message Category Browser 189-190
see also browser

message-send 107, 116, 376, 388-390, 409,
418-420

message-set browser 157, 175, 178-179, 196-213,
256, 260, 392, 465

MessageTally 296
metaclass 94-95
method 1, 27, 76, 92-93, 101, 102, 196

see also message-set browsr
literals 208
primitive 103
template 101, 233, 280
value of 92

mouse 4, 11, 27, 52
see also buttons
images 12, 13

nil 109, 116, 301, 355, 396, 479
notifier 159-160, 238, 252, 261, 376, 383,

386-388, 402, 404, 409, 411, 416
number 81
object 1, 27, 76-80, 103

515
Subject Index

Object 95, 156, 192, 301, 310, 319, 321, 323, 388,
436

object-oriented programming 1
OrderedCollection 203,204,240-241,310, 326,479
Papert, Seymour 138
paragraph

see text; text editor
parsing 88
pattern match 439, 446
Pen 136-139, 164, 175-176, 180, 218-223, 354,

360, 416-424
see also Commander

performance 296-297
Point 144, 146, 360
pointing device

see mouse
pool variable

see variable, pool
PopUpMenu 346

see also menu, pop-up
press 12,26

see also button
printing 172, 406, 436

see also Menu Command print out
program editor

see browser
programming environment 76, 99-102, 354
project 2, 32, 42, 49, 67-73, 463
Project 337-344
Project Browser 73, 322-339, 342-346
prompter 24-27, 41, 49, 126, 173, 175, 178, 179,

225-227, 254, 265, 278, 344, 446-448, 460-462, 471,
477

see also FilllnTheBlank
scheduled 41
unscheduled 41

protocol
see categories, message; interface

Protocol Browser 189, 300-322
pseudo-variable 95

see also self; super
Putz, Steve 477, 480
quitting

see stopping procedures
receiver 85-86, 103

context of 394-395
recovery 175, 468

see also changes;
Change Management browser;
snapshot

Rectangle 109-110,114,144-145,151-155, 237,249
rectangle designation 16, 34, 123-124, 133, 146,

180

release 12,26
see also buttons

renaming
see also Menu Command rename
class name 174-175, 254-260
message selector 200-201

retrieving information
see also recovery
pictures 126
programs 376, 442, 450-457, 465
text 442, 443

run file
see file, run

running out of space 409-411
runtime errors 375-384
saving information 24, 43, 373, 411

see also snapshot
pictures 126, 132
programs 172-174, 177-178, 292-293,

432-435
system changes 462-465
system state

see snapshot
ScreenController 346,348
scroll bar 11, 27, 37-40, 46, 108
scrolling 38-40

see also scroll bar
for selection 56

selection
see menu, selection; text, selection;
view, selection

SelectionlnListView 301, 306-310, 316, 323, 325
selector 85-86, 103, 201
self 95, 104, 116, 145, 147, 282, 367, 394
Sensor 115-117, 261, 422
SequenceableCollection 204, 218, 240-244
Set 203
side comments 4
single-step execution 392, 415-428

see also debugging
Smalltalk 94, 108-110, 117, 136, 156, 206-208,

260, 296-297, 355, 411, 463-465, 480
snapshot 23, 26, 411, 460-462, 467-468
SourceFiles 458,460
sources

see file, sources
spawning 180

see also Menu Command spawn
spelling correction 107, 353-362, 367, 381
spy 296-297
standard system view 7, 28, 32,37,46,127,133,439

blue button menu 47-48
StandardSystemController 307

516
Subject Index

301, 306-309, 337
13, 457-458

22,43

StandardSystemView
start up procedures
static checks 479
stopping procedures
StrikeFont 62

see also font
String 83, 241, 244, 310, 329, 339, 396
subclass 78, 95, 103, 256

see also class
subview 7, 27
super 95, 104, 156
superclass 95, 103

see also class
specifying name of 252-254

symbol 83, 104
syntax errors 101, 106-107, 238, 363-374,

450-457
syntax error view 451-457
system

classes 95-99, 103
image 478-479

see also file, image
sources 142

System Browser
see browser

System Category Browser 187
see also browser

System Menu 37, 40-43, 65, 346-349
System Transcript 32, 43, 49, 65, 196, 199, 204,

252, 256, 266, 355, 392, 406, 412-414, 450, 466, 480
System Workspace 32, 43, 45, 49, 111-112, 117,

206, 260, 411, 450
SystemDictionary

see Smalltalk
SystemTracer 99, 478-479
Teitelman, W. 354
templates 100-101, 106, 111, 162-166, 233, 279

see also System Workspace
temporary variable

see variable, temporary
testing 244, 282, 292

see also debugger; inspector
text

buffer 60
copy 52, 57-58, 60-61
delete 52, 57-59
font 52
insert 57-58
move 60-61
paste 58
replace 52,57-58
search 59, 61
selection 18, 30, 52-58, 63, 66, 159-160

Text 329

text collector 65
see also System Transcript

text editor 6, 51-66, 163, 179
see also text
buffer 58
commands 57-64, 179-180
control keys 61
delimiters 54,63-64

TextStyle 62-63
see also font; text editor, control keys

TextView 316
transcript

see System Transcript
Transcript 65, 112, 117, 406
typing 46

see also keyboard; keys; text editor
unary message expression

see message, unary
Undeclared 110,355
UndefinedObject 355
user interface 1, 76, 158, 300-301

classes 98, 158
components 15

user interrupts 409-410
variable

see also class definition; inspector
class 94, 102, 175, 266-267, 355
global 65, 68, 93-94, 102, 109, 111, 355
instance 94, 102, 174, 260-266
name 85, 104
pooled 94, 103, 267-268
pseudo-variable 104, 372
references 211
temporary 92-94, 103, 220, 354, 355, 426
undeclared 107, 110, 252

version management 480-483
view 2, 7, 11, 37, 48, 68, 337

see also browser; inspector
active 11, 28, 45
close 20
collapsed 7, 28
deselection 45
inactive 32,45
overlapping 47
selection 30, 32, 45

View 98, 136, 158, 307
visual cues 2, 37
window

see view
workspace 16, 18-21, 32, 34, 36, 43, 45, 46, 52,

106, 261, 292, 354, 376, 409
see also System Transcript;
System Workspace

Xerox 14, 23-24, 154, 172-174, 177, 432

Halt encountered.

UndefinedObject(Object)>>halt
UndefinedObject>>Dolt
CompilQr>>Qvaluate:in:to:notifying:ifFail:
CodeController>>dolt
CodeController(TextController)>>yellowButtonActivity

| See Chapters 18 and 20

User Interrupt!

NotifierView(StandardSystemView)>>labelDispla
NotifierView(StandardSystemView)>>containsPo
Not if ierGontroller(Cont roller)) >viewHa5Cursor
NotifierController(Mou5eMenuController)>>contrc

align: aPointi with: aPoint2
"Answer a new Quadrangle translated by

aPoint2 - aPointi."

t Quadrangle
region: (super translateBy: aPoint2 -

aPoint 1)
borderWidth: borderWidth
borderColor: borderColor
insideColor: insideColor

See Chapters 19 and 21

origin
corner
border
border

Q@0 corner:
92@20 a Point

0@20

Syntax Error!

"Answer the message
selector for changing the
displayed text,"

| newSelector |
newSelector *•

Expression expected ->*-
selectedClass compile:

aText

See Section 22.3

Quadrangle

self
origin
corner
borderW
borderCt
insideCo

0@0 corner: 92@20

See Chapter 8

File ListJ5t |

filenarne-or-pattern

-new

See Section 22.2

stSO.rQCQnt.j
'instance creation7!
opQnOn: aBrowser withControllQr:
a Controller

"aController may contain
changes that haven't already been
accepted"

| topView tQxtView |
(topView *• self model:

aBrowser label: 'System Browser'
minimumSize: 200@150)

See Section 22.2 and 23.3

Changed Messages

example \
"Draws a spiral in gray j

with a pen that is 4 pixels \
wide." i
| bic | |
bic *• Pen new, I
bic mask: Form lightGray. I
bic defaultNib: 4. |
bic combinationRule: Form I

under, I

See Section 23.2 !

Smalltalk-80. changes,]
() dolt 'From Smalltalk-80 of 18 April 19 .,,
(instance creation) Form class byteScanLineOfWidt
(instance creation) Form class readAISFile:

i (instance creation) Form class readFrom:
j (converting) ByteArray runDecodeFrom:
! (converting) ByteArray runEncodeOn:
j show file
·; file | type J class categor>jselector| same

i See Section 23.3

Smalltalk-80: The Interactive Programming Environment provides an
introduction to the user interface to the Smalltalk-80 system — a
personal, integrated, interactive programming environment.

The book Is divided into five parts. Part One introduces the user
interface to the Smalltalk-80 system. Part Two is an explanation of
the support provided for finding information about objects that
exist in the Smalltalk-80 system. Part Three provides an illustrated
description of how to explore the class descriptions available In
the system, and of how to use the editors for implementing new
class descriptions. Part Four presents the support available for find-
ing and correcting errors, while Part Five introduces access to
external files and such system housekeeping support as crash
recovery and change management. The book is written to
encourage specific practice and exploration. A brief introduction
to the Smalltalk-80 language is also provided in order to explain
the ways in which the user interface components provide access
to the language components. For a more in-depth understanding
of the language; readers may use this book In conjunction with
Smalltalk-80; The Language and Its Implementation, by Adele
Goldberg and David Robson (Addison-Wesley, 1983), which
includes reference material for the system classes.

Adele Goldberg is Manager of the Software Concepts Group at
the Xerox Palo Alto Research Center (PARC), the team responsible
for the development of the Smalltalk-80 system. This is one of a
series of four books documenting the history, development, nature;
and implementation of this revolutionary programming
environment.

Other books in the Addison-Weslev Smalltalk-80 Series

Smalltalk-80: The Language and its Implementation (11371-6)
Smaljtalk-80: Bits of History, Words of Advice (11669-3)
Smalltalk-80: Creating a User Interface and Graphical Applications
(11370-8)

Τ«»Γ»*1 Π _ "Ϊ Π Ί Τ t "1 «Ί "η

