
Stéphane Ducasse, Lukas Renggli,
David C. Shaffer, Rick Zaccone

with Michael Davies

Dynamic
Web

Development
with

ii

Dynamic Web Development with Seaside

Stephane Ducasse Lukas Renggli C. David Shaffer
Rick Zaccone

with Michael Davies

16 July 2014

ii

This book is available as a download from book.seaside.st.

Copyright © July 16, 2014 Stéphane Ducasse, Lukas Renggli, C. David Shaffer, Rick Zaccone.
This book is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0
license.

Published by Square Bracket Associates, Switzerland.
squarebracketassociates.org
ISBN 978-3-9523341-1-9
First Edition, August, 2010.
Cover art by Samuel Morello.

http://book.seaside.st
http://squarebracketassociates.org/

Contents

1 Introduction 3
1.1 What is Seaside? . 3
1.2 Seaside Applications . 5
1.3 What is Smalltalk? . 6

1.3.1 One-Click Image . 6
1.4 Structure of the Book . 7
1.5 Formatting Conventions . 8
1.6 About the Online Book . 9
1.7 Acknowledgments . 10

I Getting Started 13

2 Pharo Smalltalk 17
2.1 Using the One Click Image . 17

2.1.1 Of Mice and Menus . 18
2.2 What is a Smalltalk Image? . 19
2.3 The Comanche Server . 20
2.4 A First Seaside Component . 21

2.4.1 Defining a Category . 21
2.4.2 Defining a Component 21
2.4.3 Defining the Code . 23
2.4.4 Rendering a Counter . 27
2.4.5 Registering as a Seaside Application 28
2.4.6 Automatically Registering a Component 29
2.4.7 Adding Behavior . 31
2.4.8 Adding a Class Comment 33

2.5 Saving your Package to Monticello 33
2.6 Summary . 35

3 Cincom Smalltalk 37
3.1 Loading Seaside into VisualWorks 37
3.2 Seaside Operations Menu . 38

iii

iv CONTENTS

3.3 Seaside Settings . 39
3.4 Persistence . 40
3.5 Developing in VisualWorks . 40

3.5.1 Basic Tools . 40
3.5.2 Packages and Categories 41
3.5.3 Name Spaces . 41
3.5.4 Additional Components 41

3.6 Developing a First Component 42
3.6.1 Create a Package . 42
3.6.2 Create a Name Space . 42
3.6.3 Define a Component . 43
3.6.4 Editing Generated Methods 43
3.6.5 Rendering the Counter 44
3.6.6 Registering the Application 44
3.6.7 Adding Behavior . 46
3.6.8 Rendering the Behavior 46

4 GemStone/S 49
4.1 Using the GLASS Virtual Appliance 49
4.2 A First Seaside Component . 52

4.2.1 Defining a Component 52
4.2.2 Defining Some Methods 54
4.2.3 Rendering a counter . 55
4.2.4 Registering the Application 55
4.2.5 Adding Behavior . 55

4.3 Keeping Up With the Latest Features 56

5 GNU Smalltalk 59
5.1 Creating a GNU Smalltalk image with Seaside loaded 59
5.2 Operating the GNU Smalltalk virtual machine remotely 60
5.3 Developing in GNU Smalltalk 61
5.4 Developing your first component 62

6 VA Smalltalk 65
6.1 Loading Seaside into VA Smalltalk 65
6.2 Starting VA Smalltalk Seaside 66

6.2.1 Seaside Server Control Panel Menu Options 67
6.2.2 Adding a Server Adaptor 68
6.2.3 Starting a Server Adaptor 68
6.2.4 A Simple Seaside Example 69

6.3 Developing Your First Seaside Component 70
6.3.1 Defining a Component 70
6.3.2 Adding Some Methods 71
6.3.3 Rendering a Counter . 71
6.3.4 Registering the Counter Component 72

CONTENTS v

6.3.5 Adding Behavior to the Counter 73

II Fundamentals 75

7 Rendering Components 79
7.1 Rendering Hello World . 80
7.2 Fun with Seaside XHTML Canvas 82
7.3 More Fun with the Seaside Canvas 85
7.4 Rendering Objects . 86
7.5 Brush Structure . 90
7.6 Learning Canvas and Brush APIs 92
7.7 Rendering Lists and Tables . 96
7.8 Style Sheets . 99
7.9 Summary . 101

8 CSS in a Nutshell 103
8.1 CSS Principles . 103
8.2 CSS Selectors . 105

8.2.1 Tag Selector . 105
8.2.2 Class Selector . 105
8.2.3 Pseudo Class Selector 106
8.2.4 Reference or ID Selector 107

8.3 Composed Selectors . 108
8.4 Summary . 108

9 Anchors and Callbacks 111
9.1 From Anchors to Callbacks . 112
9.2 Callbacks . 113
9.3 About Callbacks . 114
9.4 Contact Information Model . 115
9.5 Listing the Contacts . 116
9.6 Adding a Contact . 117
9.7 Removing a Contact . 118
9.8 Creating a mailto: Anchor . 120
9.9 Summary . 121

10 Forms 123
10.1 Text Input Fields and Buttons 123
10.2 Convenience Methods . 126
10.3 Drop-Down Menus and List Boxes 128
10.4 Radio Buttons . 131
10.5 Check Boxes . 133
10.6 Date Inputs . 135
10.7 File Uploads . 137

vi CONTENTS

10.8 Summary . 139

III Using Components 141

11 Calling Components 145
11.1 Displaying a Component Modally 145
11.2 Example of call/answer . 146
11.3 Call/Answer Explained . 147
11.4 Component Sequencing . 148
11.5 Answer to the Caller . 149
11.6 Don’t call while rendering . 151
11.7 A Look at Built-In Dialogs . 151
11.8 Handling The Back Button . 152
11.9 Show/Answer Explained . 153

11.9.1 Transforming a Call to a Show 154
11.10Summary . 155

12 Embedding Components 157
12.1 Principle: Component Children 157
12.2 Example: Embedding an Editor 158
12.3 Components All The Way Down 162
12.4 Intercepting a Subcomponent’s Answer 166
12.5 A Word about Reuse . 166
12.6 Decorations . 167

12.6.1 Visual Decorations . 169
12.6.2 Behavioral Decorations 171

12.7 Component Coupling . 172
12.8 Summary . 175

13 Tasks 177
13.1 Sequencing Components . 177
13.2 Hotel Reservation: Task vs. Component 179
13.3 Mini Inn: Embedding Components 180
13.4 Summary . 182

14 Writing good Seaside Code 185
14.1 A Seaside Program Checker . 185
14.2 Slime at Work . 187
14.3 Summary . 188

IV Seaside In Action 189

15 A Simple ToDo Application 193
15.1 Defining A Model . 193

CONTENTS vii

15.2 Defining the View . 196
15.3 Rendering and Brushes . 198
15.4 Adding Callbacks . 200
15.5 Adding a Form . 202
15.6 Calling Other Components . 203
15.7 Answer . 205
15.8 Embedding Child Components 206
15.9 Summary . 209

16 A Web Sudoku Player 211
16.1 Sudoku Solver . 212
16.2 Sudoku Component . 212
16.3 Rendering the Sudoku Grid . 214
16.4 Adding Input . 218
16.5 Back Button . 220
16.6 Summary . 222

17 Serving Files 223
17.1 Images . 223
17.2 Including CSS and Javascript 225
17.3 Working With File Libraries . 227

17.3.1 Creating a File Library 228
17.3.2 Referencing FileLibrary files by URL 230

17.4 Example of FileLibrary in use 231
17.5 Which method should I use? . 233
17.6 A Word about Character Encodings 234

17.6.1 Character sets . 234
17.6.2 Encodings . 236
17.6.3 In Seaside and Pharo . 237

18 Managing Sessions 241
18.1 Accessing the Current Session 241
18.2 Accessing the Session from the Debugger 242
18.3 Customizing the Session for Login 243
18.4 Lifecycle of a Session . 245
18.5 Catching the Session Expiry Notification 247
18.6 Recovering from Expired Sessions 248
18.7 Manually Expiring Sessions . 251
18.8 Summary . 252

V Web 2.0 253

19 Really Simple Syndication 257
19.1 Creating a News Feed . 258

viii CONTENTS

19.2 Render the Channel Definition 259
19.3 Rendering News Items . 260
19.4 Subscribe to the Feed . 261
19.5 Summary . 262

20 Dynamic Content with Scriptaculous 263
20.1 Prototype and script.aculo.us 264

20.1.1 Installation . 264
20.1.2 Adding the Library . 265

20.2 Snippets and Brushes . 266
20.2.1 Instantiate a Brush . 266
20.2.2 Using a Brush . 268
20.2.3 Configure a Brush . 270

20.3 Adding an Effect . 270
20.4 AJAX: Talking back to the Server 274

20.4.1 Defining a Callback . 274
20.4.2 Serializing a Form . 275
20.4.3 Updating XHTML . 277
20.4.4 Behind the curtains . 279
20.4.5 Wrap Up . 281

20.5 Drag and Drop . 282
20.6 JavaScript Controls . 284
20.7 Debugging AJAX . 287
20.8 Summary . 291

21 jQuery 293
21.1 Getting Ready . 293
21.2 jQuery Basics . 294

21.2.1 Creating Queries . 296
21.2.2 Refining Queries . 297
21.2.3 Performing Actions . 299

21.3 Adding jQuery . 301
21.4 Ajax . 302
21.5 How To . 302

21.5.1 Click and Show . 302
21.5.2 Replace a Component 303
21.5.3 Update Multiple Elements 303
21.5.4 Open a Lightbox . 303

21.6 Enhanced ToDo Application . 304
21.6.1 Adding an Effect . 304
21.6.2 Callbacks Redux . 306
21.6.3 Drag and Drop . 307
21.6.4 Summary . 307

22 Comet 309

CONTENTS ix

22.1 Inside Comet . 309
22.2 Getting Started . 310
22.3 The Counter Explained . 312
22.4 Summary . 314

VI Advanced Topics 315

23 Deployment 319
23.1 Preparing for Deployment . 319
23.2 Seaside-Hosting . 323
23.3 Deployment with Apache . 325

23.3.1 Preparing the Server . 325
23.3.2 Installing Apache . 326
23.3.3 Installing the Squeak VM 327
23.3.4 Running the VMs . 328
23.3.5 Configuring Apache . 331
23.3.6 Serving files with Apache 333
23.3.7 Load Balancing Multiple Images 335
23.3.8 Using AJP . 337

23.4 Maintaining Deployed Images 338
23.4.1 Headful System . 338
23.4.2 Virtual Network Computing 338
23.4.3 Deployment Tools . 339
23.4.4 Request Handler . 341

24 REST Services 343
24.1 REST in a Nutshell . 343
24.2 Getting Started with REST . 345

24.2.1 Defining a Handler . 345
24.2.2 Defining a Service . 346

24.3 Matching Requests to Responses 347
24.3.1 HTTP Method . 348
24.3.2 Content Type . 349
24.3.3 Request Path . 350
24.3.4 Query Parameters . 351
24.3.5 Conflict Resolution . 352

24.4 Handler and Filter . 353
24.5 Request and Response . 354
24.6 Advices and Conclusion . 356

25 Some Persistency Approaches 357
25.1 Image-Based Persistence . 358
25.2 Object Serialization . 364
25.3 Sandstone: an Active-Record Image-based Approach 366

x CONTENTS

25.3.1 The SandstoneDB API 367
25.3.2 About Concurrency . 369

25.4 Magma: an Object-Oriented Database 371
25.4.1 How it works . 372
25.4.2 Getting Started . 373
25.4.3 Running Remotely . 375

25.5 GLORP: an Object-Relational Mapper 376

26 Magritte: Meta-data at Work 377
26.1 Basic Principles . 377
26.2 First Example . 380
26.3 Descriptions . 383
26.4 Exceptions . 385
26.5 Adding Validation . 385
26.6 Accessors and Mementos . 386
26.7 Custom Views . 388
26.8 Custom Descriptions . 388
26.9 Summary . 389

Foreword

If you are writing your first web application, you may look at Seaside and
think, “What’s the fuss? This looks a lot like writing any other application.”
But those of you who bear the scars of hours spent extracting POST variables,
worrying about entity encoding, and passing data from page to page to page
will understand the significance of this carefully crafted illusion.

Avi Bryant and I created Seaside because we wanted to spend our time writing
great applications instead of worrying about what to name our form fields.
If you actually like spending your time thinking about form field names –
not to mention headers, cookies, URLs, redirects, session keys, and so on –
then you should probably stop reading now. If, like we did, you believe there
must be a better way, then keep reading. You can still deal with most of those
details manually, of course; you just won’t need to.

A handful of experienced core developers and early adopters have collabo-
rated on this book to show you how to develop for the web and let Seaside
handle the distractions. And once you’ve finished your first Seaside applica-
tion, I’m willing to bet it won’t be your last. Some people find the “Seaside
way” of doing things a little foreign at first; others feel immediately at home.
But, once they’ve mastered it, most developers just can’t stand the idea of
going back.

Paul Graham observes in his essay “Beating the Averages” that web develop-
ment is unique in giving you complete freedom to choose any development
tools you want. Your users don’t care (or even know) that you wrote your
application with Seaside. But you should (and so should your competitors)
because it could be your competitive advantage. In an industry where late,
over-budget, and under-performing projects are the unfortunate norm, de-
livering on your promises can set you apart. Using Seaside, you can deliver
more in less time and when the requirements change you can adapt more
quickly.

One of my first Seaside projects, with a small team at a university, was
an application to manage Curriculum Vitae. A big part of the project was
working out electronic data exchange with funding agencies and, since they

1

http://www.paulgraham.com/avg.html

2 CONTENTS

were big and slow, we tried to maintain their momentum by adjusting our
system to accommodate them. Also, our users had suffered through at least
two previous attempts to force similar (failed) initiatives on them so we
wanted to build support by engaging them fully in the development process.
All this meant that our requirements were continuously evolving.

From the outset we arranged regular meetings with users and partners. We
demonstrated the system, collected feedback, even prototyped ideas on the
spot. For more complex requests, we took notes and promised to get back to
them next week. After these meetings, I think most people were certain they
would never hear from us again but we took pride in proving them wrong.
Seaside allowed us to quickly develop the most promising ideas and get back
to them – often within 24 hours – with something to look at. That builds real
support.

Seaside began as a simple development tool but has grown into a mature
framework, now the most productive web development environment I know.
It has helped a humbling and fast-growing community of talented users and
developers rediscover the joy of programming for the web. I hope that in
the pages of this book you too will discover some of that joy. Welcome to the
seaside.

Julian Fitzell

Seaside co-creator

Chapter 1

Introduction

Seaside is an excellent framework for easily developing advanced and dy-
namic web applications. Seaside lets you create reusable components that
you can freely compose using Smalltalk – a simple and pure object-oriented
language.

Seaside offers a powerful callback mechanism that lets you trigger code
snippets when the users clicks on a link. With Seaside, you can debug your
web application with a powerful dynamic debugger and modify the code on
the fly while your server is running. This makes the development of complex
dynamic applications smooth and fast.

With Seaside, you have the time to focus on your design and solutions to your
problems. In this chapter, we give an overview of Seaside and present some
Smalltalk basics to help you to follow along with the book. In the next chapter,
we will show you how you can program your first Seaside component in just
15 minutes.

1.1 What is Seaside?

Seaside is a free, open source framework (collection of Smalltalk classes). The
developer can use and extend these classes to produce highly dynamic web-
based applications. By applications, we mean real applications with potentially
complex workflows and user interactions, in contrast to just collections of
static pages. Seaside makes web development simpler and can help you build
applications that are cleaner and easier to maintain because it has:

• a solid component model and callbacks,

• support for sequencing interactions,

3

4 CHAPTER 1. INTRODUCTION

• native (Smalltalk) debugging interface, and

• support for using AJAX and other Web 2.0 technologies.

Seaside applications are based on the composition of independent compo-
nents. Each component is responsible for its rendering, its state, and its own
control flow. Seaside enables you to freely compose such components, creat-
ing advanced and dynamic applications comparable to widget libraries such
as Swing or Morphic. What is really powerful is that the control flow of an
application is written in plain Smalltalk code.

Seaside was originally created by Avi Bryant and Julian Fitzell. It is supported
by an active community and enhanced by several Seaside experts. Currently,
Julian Fitzell, Philippe Marshall, and Lukas Renggli (one of the authors of
this book), are leading its development.

Seaside is often described as a heretic web framework because by design it goes
against what is currently considered best practice for web development – such
as using templates or clean, carefully chosen, meaningful URLs. Seaside does
not follow REST (Representational State Transfer) by default. Instead, URLs
hold session key information, and meaningful URLs have to be generated
explicitly, if needed.

When using a template system (PHP, JSP, ASP, ColdFusion, and so on), the
logic is scattered across many files, which makes the application hard to
maintain. Reuse, if possible at all, is often based on copying files. The
philosophy of the template approach is to separate the responsibilities of
designers and programmers. This is a good idea that Seaside also embraces.
Seaside encourages the developer to use CSS to describe the visual appearance
of a component, but it does not use a templating engine, and encourages
developers to programmatically generate meaningful and valid XHTML
markup.

Seaside is easy to learn and use. By comparison, JSF (JavaServer Faces)
requires you to use and understand several technologies such as Servlets,
XML, JSP, navigation configuration in files, and so on. In Seaside,
you only need to know Smalltalk, which is more compact and easier to learn
than Java. Furthermore, it is good to know some basics about CSS. Seaside lets
you to concentrate on the problem at hand and not on integrating technologies.
Seaside ensures that you always generate valid XHTML and that all your
code is in Smalltalk.

In summary, several aspects of Seaside’s design differ from most mainstream
web application frameworks. In Seaside

• Session state is maintained on the server.

• XHTML is generated completely in Smalltalk. There are no templates
or “server pages” although it isn’t hard to build such things in Seaside.

1.2. SEASIDE APPLICATIONS 5

• You use callbacks for anchors and buttons, rather than loosely coupled
page references and request IDs.

• You use plain Smalltalk to define the flow of your application. You do
not need a dedicated language or XML configuration files.

Combined, these features make working with Seaside much like writing a
desktop GUI application. Actually, in some ways it is simpler, since the web
browser takes a lot of the application details out of your hands.

The next section lists some real-world Seaside applications that you can
browse to understand the kind of applications you can build with Seaside.
Each of these applications allows complex interaction with the user, rather
than a simple collection of pages.

1.2 Seaside Applications

With Seaside, you will be able to build any kind of web application. You
can see some Seaside applications running on the web. You can find more
information at seaside.st/about/users. Seaside is used in many intranet web
applications, that are often not readily visible without going behind the
scenes.

We have selected two Seaside examples from the publicly available projects.
Have a look at them to see the kind of interaction and application flow that
can be built with Seaside.

Yesplan (www.yesplan.be)

Yesplan is a collaborative event planning web application. A video
on the website shows a nice summary of the application. The user
interaction and smooth application flow is really striking and a good
illustration of the power of Seaside to build complex applications.

Cmsbox (www.cmsbox.ch)

An AJAX-based content management system designed for usability.
Here the navigation is more the kind we expect from a web application.

There are also several open-source projects based on Seaside; we list two in-
teresting ones, since you may use them when going through the book.

Pier (www.piercms.com)

Pier is a kind of meta content management system into which a Seaside
application can be plugged. Pier is the second generation of an indus-
trial strength content application management system. It is based on
Magritte, a powerful meta-description framework. Pier enables easy

http://seaside.st/about/users
http://www.yesplan.be/
http://www.cmsbox.ch/
http://www.piercms.com/

6 CHAPTER 1. INTRODUCTION

composition and configuration of interactive web sites with new and
ready-made Seaside application or components through a convenient
web interface without having to write code. The Seaside website is
based on Pier, as is the online version of this book.

SqueakSource (www.squeaksource.com)

SqueakSource is a web-based source management system for Squeak
using the Monticello code versioning system and it is more traditional
in the kind of flow it presents.

1.3 What is Smalltalk?

In his book “Beyond Java”, Bruce Tate asks whether Seaside can really be
innovative if it was developed using Smalltalk, a language that emerged in
the late 80s. It’s a relevant question, and there is an answer; there are several
good reasons why it is so innovative. First, the design of Smalltalk is still
one of the best in terms of elegance, purity, and consistency. Second, the
set of tools is really good: debuggers, browsers, refactoring engines, and
unit testing frameworks were all invented in Smalltalk. Third, and most
important, in Smalltalk you constantly interact with live objects. This is
particularly exciting when developing web applications. There’s no need to
constantly recompile your code or restart the server. Instead, you debug your
applications on the fly, recompile running code, and access your business
objects right in the browser, which gives you a huge productivity gain.

Experience has proven to us that Smalltalk is not difficult to learn, it provides
many advantages and it’s no hindrance to using Seaside. In fact we often see
people starting to learn Smalltalk because of Seaside. To help you get up to
speed, we suggest you read Pharo by Example. It is a free book available at
www.pharobyexample.org. Chapters 3, 4 and 5 contain a minimal description
of Smalltalk, its object-oriented model and the elementary syntax elements
that you need to know to follow this book. In the next chapter, we will help
you to get started with the environment step by step.

1.3.1 One-Click Image

There are several implementations of Smalltalk. Some are commercial, such as
Cincom Smalltalk, GemStone Smalltalk, VA Smalltalk, and Dolphin Smalltalk.
Others are open source, such as Pharo, Squeak and GNU Smalltalk. Seaside
is developed in Pharo, then ported to the other Smalltalks. The first chapter
provides an equivalent of a “Getting Started” chapter to all major Smalltalk
implementations.

http://www.squeaksource.com/
http://oreilly.com/catalog/9780596100940/
http://www.pharobyexample.org/

1.4. STRUCTURE OF THE BOOK 7

In this book, we use the Seaside 3.0 “One Click Image” which you can find on
the Seaside website at www.seaside.st. The “One Click Image” is a bundle of
everything you need to run Seaside once you unzip it. This book is based on
Pharo Smalltalk, a fork of Squeak that is used to build the One Click Image.
We suggest you use this image to start. It makes things much simpler.

The Seaside mailing list is a good place to ask questions because the sub-
scribers to the list answer questions quickly. Do not hesitate to join and
participate in the community.

Okay then, you now have tools at your disposal to help you through any
problems you might encounter.

1.4 Structure of the Book

Part I: Getting Started

Explains how to get a Seaside application up and running in less than
15 minutes. It will show you some Seaside tools.

Part II: Fundamentals

Shows you how to manipulate basic elements, such as text, anchors,
and callbacks, as well as forms. It presents the notion of a brush, which
is central to the Seaside API.

Part III: Using Components

Describes components, the basic building blocks of Seaside. It shows
how components are defined and can populate the screen or be called
and embedded within one another. It also presents tasks that are control
flow components and describes how reuse is achieved in Seaside via
component decoration. It ends with a discussion of the Slime library,
which checks and validates your Seaside code.

Part IV: Seaside In Action

This part develops two little applications – a todo list manager and
a sudoku player. Then it presents how to serve files, a discussion of
character encodings, and how to customize a session to hold application-
centric information.

Part V: Web 2.0

This part describes how to create an RSS feed, as well as the details
of integrating JavaScript into an application. It finishes by showing
some push technology such as Comet, which allows you to synchronize
multiple applications.

http://www.seaside.st/

8 CHAPTER 1. INTRODUCTION

Part VI: Advanced

Presents some details that you face when you configure and deploy
a Seaside application. It shows how to test Seaside components, and
discusses Seaside security by presenting the most common attacks and
how Seaside deals with them effectively. Then, even though Seaside
is not about persistency, we discuss some persistency approaches in
Squeak. Finally, we present Magritte, a meta-data framework, and its
Seaside integration. Magritte lets you generate forms on the fly.

1.5 Formatting Conventions

We need to say a word about formatting conventions before we proceed. In
Pharo, as in most Smalltalk implementations, you edit code using a code
browser as we will show you in the next Chapter. To look at the code for a
method, you select a package, then a class, a method category and finally the
method you want to see. The method’s class is always visible. When reading
a book, a method’s class may not be so obvious.

To help your understanding of the code we present, we will follow a common
convention to display Smalltalk code: we will prefix a method signature with
its class name. Here is an example. Suppose you need to enter the method

in your browser, and this method is in the class: .
You will see the following code in your browser.

To help you remember that this method is defined in the class , we
will write it as follows:

When you enter the text for this method, you do not type >>. It
is there only so you will know the method’s class. We will use a similar
convention in the running text. To be precise about a method and its class,
we will use >> .

In Smalltalk, a class and an instance of a class both have methods. The class
methods are analogous to static methods in Java. Class methods respond to
messages sent to the class itself. To make it clear that we are talking about
a class method, we will refer to it using >> . For

1.6. ABOUT THE ONLINE BOOK 9

example, here is the definition of the class method , defined on the
class :

We use the following annotations for specific notes:

This is a side-note and might be interesting to readers more curious about
the topic.

Note

This is a remark covering advanced topics. It can be safely skipped on the
first pass through the book.

Advanced

This is an important note, if you do not follow the suggestions you are
likely to get into trouble.

Important

1.6 About the Online Book

A free online version of this book is available at book.seaside.st. The online
version is always up-to-date and permits readers to add notes at the bottom
of every page. This immediately notifies other readers of problems and helps
us to quickly resolve remaining issues. We will regularly go through the notes
and address the issues raised in the main text.

The complete book is written using the Pier content management system that
itself is written using Seaside. The PDF version of the book is automatically
rebuilt every night from the contents of the website.

The online version of the book can be navigated using the following keyboard
shortcuts. This allows you to quickly navigate the contents of the book.

Keys Action
left-arrow Previous Page
right-arrow Next Page

Parent Page
Table of Contents

http://book.seaside.st

10 CHAPTER 1. INTRODUCTION

1.7 Acknowledgments

We wish to thank all the people who helped to make this book possible.
Torsten Bergmann, Damien Cassou, Tom Krisch, Philippe Marshall, Ruben
Schempp, Roger Whitney, and Julian Fitzell carefully reviewed the book and
provided valuable feedback. Martin J. Laubach for his Sudoku code. Ramon
Leon for letting us use his ideas described on his blog on SandStoneDB, and
Chris Muller for Magma. Jeff Dorst provided financial support for supporting
student text reading. Markus Gaelli for brainstorming on the book title.
Samuel Morello for designing the cover. We thank the European Smalltalk
User Group, Inceptive.be, Cincom Systems, GemStone Systems Inc. and
Instantiations for the generous financial support.

Furthermore, an uncountable number of people provided feedback through
the notes on the website: 0zkrpm, aaamos, agarcia, alamkhan733, alde-
veron, alejperez, alex.albitov, alleagrastudena, amalagsoftware, amalawi,
andre, andrew.evil.genius, andy.burnett, anhlh, anitatiwari66, anonimo,
antkrause, anukpriya, apstein, arc, ardaliev, artem.voroztsov, asselinray-
mond, astares, awol, b.prior, bart.gauquie, basilmir, bendict101, benoit.astruc,
bgridley, bilesja, bjorn.eiderback, blank, bonzini, bouraqadi, brauer,
briannolan45, bromagosa, bruefkasten, bschwab, bugmenot, cacciaresi,
carlg, carlos.crosetti, cdrick65, cems, cesar.smx, chaetal, chicoary, chip,
chris.pollard, chrismeyer206, christophe.rettien, chunsj, citizen428, cj-
bachinger, colson, craig, crystal.dry.eyes, cuyeu, cy.delaunay, dago1965,
damien.cassou, damien.pollet, dan, danc, david, davidleonhardt, dev,
didier, dmytrenko.d, dsblakewatson, dvciontu, ed.stow, efinleyscience,
elendilo, epovazan, fabio.braga, fgadzinski, flipityskipit, fractallyte, frag-
gerbe, francois.le.coguiec, francois.stephany, frans, frelach, friends.prince,
fritz.schenk, galyathee, garybarnett, gaston.dalloglio, geert.wl.claes, george,
ginolee859, goaway1000, haga551010, halcyonshizzle, hannes.hirzel, hen-
tai, hichem_warum_nicht, hjhoffmann, hm, ino.santangelo, intrader, ismail-
shuaibu, itsme213, jailachure11, jayers, jborden23, jeremy.chan, jesusalberto-
sanchez, jgarcia, jguell, jkiggundu, jnials, joel, john.chludzinski, john_okeefe,
josef.springer, jpamayag, jred_xv, jrinkel, juanmfernandez, junkabyss, ju-
raj.kubelka, justin.forder, karsten, kees, kjborden23, klbogotz, kommentaren,
kontakinti_11, kremerk, landriese, laurent.laffont, lehoanganh.vn, lenglish5,
lgadallah, liangbing64, linuxghostpower, liquidhorse, lorenzo, luis.ramirez,
ma.chris.m, mani7info, manishmore14, marcello.rocha, marcos.macedo,
mark.owens999, martin.t.krebs, matthias.berth, mcleod, merlyn, michael,
misaeboca, miss.martinezsandra, mitul_b_shah, momode56, momoewang,
morbusg, mriffe, muzzahmed01, nathan_benninghoff, nath_kamal, ncalexan-
der, netprobe, nick.ager, nielvv, nikita.pristupchik, niko.saint, niko.schwarz,
nizar.jouini, nrf, nwmullen, offray, pat.maddox, paulpham, pdebruic, peterg,
petton.nicolas, phil, philhunt, pjw1, qwe517, r.koller, rafael.luque.leiva, ra-
jat.tags, ramiro, ramon.leon, ramshreyas.rao, razavi, rene.mages, rh, rhawley,

1.7. ACKNOWLEDGMENTS 11

richard_a_green, riverdusty, robert, robert.reitenbach, robin.luiten, rogthe-
dodge, ron.fucci, rsiel.455, rwelch, samoila.mircea, samthecool7, sean, sean-
sorrel, seaside.web.macta, sebovick, sergio, sergio.rrd, shar_28_min, she-
shadri.mantha, simon, simon.denier, smalltalk, smalltalktelevision, snoob-
abk, sokhoeun.kong, solveig.instantiations, squeakman, ssmith, stefan.izota,
stephan, stephen.smith, steve, stevek, sthomas1, stuart, sukumini_g, szaidi6,
t.pierce, tallman, tanga, tariqrauf2002, tatacarrera, tfahey, thewinterlion, thi-
agosl, timloo0710, tobez, tony, tony.fleig, tpburke, tudor.girba, tyusupov,
udo.schneider, unixmonkey1, vagy, vanchau, victorct83, vinref, vmusulainen,
vsteiss, watchlala, web.macta, wolfopsys, wrcstewart, wrinkles, write.to.me,
wsgibson, xekoukou, xs4hkr, y2ahsan, yanni, yasirkaram, zanveb82, zhangx-
inchun2008. Thank you all.

We give a special thanks to Avi Bryant and Julian Fitzell for inventing Seaside.
In particular, they showed us that going against the current is possible when
you have brilliant ideas and a powerful language such as Smalltalk.

12 CHAPTER 1. INTRODUCTION

Part I

Getting Started

13

15

This part will show you how to get a simple Seaside application up and
running in your favourite Smalltalk dialect in less than 15 minutes. There
is no point in reading all of the following chapters, simply pick the one
describing your favourite platform and skip the others. Seaside itself is the
same everywhere, only the Smalltalk interface and development tools differ
slightly from dialect to dialect.

If you’re new to Smalltalk, the instructions for Pharo/Squeak will introduce
you to the Seaside One Click Image, which is designed to get you up and
running as quickly as possible.

16

Chapter 2

Pharo Smalltalk

In this chapter we will show you how to get started with Seaside using the
Seaside “One Click Image”. Within 15 minutes, you will install and launch
Seaside, interact with a Smalltalk IDE and write a simple Seaside counter
application. You will follow the entire procedure of creating a Seaside appli-
cation. This process will highlight some of the features of Seaside. If you are
new to Smalltalk, we suggest you to read chapters 3, 4 and 5 of Pharo by Exam-
ple which is a free and online book available from www.pharobyexample.org.
This will highlight some of the features of Smalltalk.

As we mentioned previously, there are several implementations of Smalltalk.
Some are commercial, such as VisualWorks, VA Smalltalk, Gemstone, and
Dolphin. Others are open source, such as Pharo, Squeak and GNU Smalltalk;
and finally, some are free but not open source, such as Smalltalk/X. Seaside is
developed in Pharo, then ported to the other Smalltalks.

2.1 Using the One Click Image

In this book, we use Seaside 3.0.4, included in the “One Click Image” which
you can find on the Seaside website at www.seaside.st/download. The “One
Click Image” is a bundle of everything you need to run Seaside, including
the Pharo implementation of Smalltalk. We suggest that you use this bundle
to start, even if you prefer a different Smalltalk implementation. While we
expect that all of our example code will run in all of the Seaside ports, we
have only tested our code thoroughly in the Smalltalk that is included with
this bundle.

Begin by downloading the “One Click Image” from the site. Unzip the file
and you should be able to launch the Seaside Integrated Development Envi-

17

http://www.pharobyexample.org/
http://www.seaside.st/download

18 CHAPTER 2. PHARO SMALLTALK

Figure 2.1: The Seaside development environment.

ronment (IDE) by double clicking on the icon appropriate for your platform.
Windows users should double click , Linux users and
MacOS/OS-X users should simply double click on the application icon cre-
ated when they unzipped the file. After this you should see the Seaside
development environment open in a single window on your desktop similar
to the one presented in Figure 2.1.

2.1.1 Of Mice and Menus

Because Smalltalk images are intended to work identically on many different
operating systems, you may find some of the user interface may be slightly
different from what you’re used to. In order to help you understand the
differences, we will outline the common stumbling points here.

Click. This is a standard mouse click, and is used to move focus to an item,
to select an item in a list, and to select sections of text.

Right Click. We will use right-click to describe the action that will bring up
the "context menu" on an item: this menu holds a list of actions relevant to the
selected item. Mac users who are using a single button mouse will generally
find that pressing the Control key while clicking the mouse button will have
the same effect.

2.2. WHAT IS A SMALLTALK IMAGE? 19

The Third Button. Smalltalk was first used with three-button mice, and some
advanced features of Pharo may require you to emulate a three-button mouse.
The ’third-button’ may be bound to another button on your mouse, or the
mouse scroll-wheel. Alternatively it may require you to press a key while
clicking – the Alt key or the Command (Apple) keys on Macs are common
choices. You shouldn’t worry about this until you need it, but it’s useful to
know just in case you accidentally invoke one of these actions and wonder
where it came from.

World Menu. To launch new applications and open new windows, you will
use the World Menu. This can be opened by clicking anywhere on your
Seaside desktop (i.e., left-clicking on the background area). We will use a
shorthand to refer to this: World |Workspace means "click on the desktop to
bring up the World Menu, then select the Workspace entry".

Workspace. When you want to execute some code, you do so by opening a
new workspace from the World Menu: use World |Workspace.

Try this new knowledge out now: Open a new workspace window. Type
into the window, and select it. Now right-click and select Print it from the

context menu. You should see the answer .

2.2 What is a Smalltalk Image?

All Smalltalk objects live in something called an image. An image is a snap-
shot of memory containing all the objects at a given point in time. This means
that your business objects, Seaside objects, all classes and their methods (since
they are also objects), and development tools are all part of the image. The
Seaside “One Click Image” includes a Smalltalk image with Seaside and a
number of other tools pre-loaded to make it easier for you to get started using
Seaside.

An image is loaded and executed by a virtual machine. When you ran Pharo in
Section 2.1 you really were running the virtual machine on the pre-packaged
“One Click Image” image. For the sake of brevity we call this “running the
image.” The Smalltalk image includes active processes (Smalltalk processes
are more akin to “threads” in other languages). When you load an image
from a disk file you bring objects that were part of that image into RAM and
resume execution of the active processes that were part of that image. If you
were debugging when you saved the image, you’ll still be debugging when
you load that image. We like to think of this as “picking up where you left
off” (note that there are limits to this model: transient objects like a network
connection that was active when the image was saved will not be available
when the image is re-loaded). As an example, the Seaside “One Click Image”
image was saved with the Comanche web server running so, when you load

20 CHAPTER 2. PHARO SMALLTALK

this image that web server process will be running. We’ll say more about that
later.

Development in Pharo involves making incremental changes to the image
(by creating classes, methods etc.). You will want to periodically save your
Smalltalk image to disk so that your changes are saved. To save your image,
select World | Save (i.e., raise the world menu by clicking somewhere in the
background of the Pharo window, and click “Save” in that menu, as described
previously). If you quit Pharo using World | Quit, you will also be prompted
to save your image. You may resume your development efforts by running
the image, as we did in Section 2.1.

2.3 The Comanche Server

The “One Click Image” image includes a web server called “Comanche”
listening on TCP port 8080. You should check that this server is properly
running by pointing your web browser to http://localhost:8080/. You should
see something like Figure 2.2. If you don’t see this page, it is possible that
port 8080 is already in use by another application on your computer.

Figure 2.2: The Seaside server running.

Changing the Seaside port number. If you did not see Figure 2.2, you will
need to try modifying the workspace to restart the Comanche web server on
a different port number (like 8081). The following script asks the server to
stop serving and start serving on port 8081:

http://localhost:8080/

2.4. A FIRST SEASIDE COMPONENT 21

To execute this, you would open a new workspace using World |Workspace,
enter the text, select it, right-click for the context menu, and select Do it.

Once you have done this, you can try to view it in your browser making sure
you use the new port number in your URL. Once you have found an available
port, make sure you note what port the server is running on. Throughout this
book we assume port so if you’re using a different port you will have to
modify any URLs we give you accordingly.

2.4 A First Seaside Component

Now we are ready to write our first Seaside component. We are going to
code a simple counter. To do this we will define a component, add some
state to that component, and then create a couple of methods that define how
the component is rendered in the web browser. We will then register it as
a Seaside application. Finally we will see how we can save our work as a
“Monticello” package.

2.4.1 Defining a Category

To start with, we define a new category that will contain the class that defines
our component. If you don’t have a class browser open yet, open one using
World | System Browser. Raise the context menu for the category pane on
the top left and select Add category.... The menu can be found by right-
clicking onto the list pane. You will get prompted to give a name as shown in
Figure 2.3. We will use the name for our category.

Figure 2.4 shows that the category has been created. Now we are ready to
define a component.

In Pharo images you will often find the terms “Package” and “Category‘”
used interchangeably. “Category” is a technical term based on the internal
implementation, while “Package” better describes the intent of this pane.
From now on, we will be using the term “Package”.

2.4.2 Defining a Component

Now we will define a new component named . In Seaside, a
“component” refers to any class which inherits from the class

22 CHAPTER 2. PHARO SMALLTALK

Figure 2.3: Create a category.

Figure 2.4: An empty category has been created.

2.4. A FIRST SEASIDE COMPONENT 23

(either directly or indirectly).

It is only a coincidence that this class has the same name as its package.
Normally packages will contain several classes, and the package names
and class names are unrelated.

Note

To start creating your class, click on the package you just cre-
ated, to ensure that it is selected. The “class creation template” will appear
in the source pane of the browser. Edit this template so that it looks as
follows:

Notice that lines 3 and 4 contain two consecutive single quote characters,
not a double quote character. We are specifying that the class is a
new subclass of . We also specify that this class has one instance
variable named . The other arguments are empty, so we just pass an
empty string, indicated by two consecutive quote marks. The “category”
value should already match the package name. Note that an orange triangle
in the top-right indicates that the code is not compiled yet.

Once you are done entering the class definition, right-click anywhere in
that pane to bring up the context menu, and select the menu item Accept
(s) as shown in Figure 2.5. Accept in Smalltalk jargon roughly means com-
pile.

Once you have accepted, your browser should look similar to the one shown
in Figure 2.6. The browser now shows the class that you have created in
the class pane. Now we are ready to define some behaviour for our compo-
nent.

2.4.3 Defining the Code

Now we are ready to define some methods for our component. We will define
methods that will be executed on an instance of the class. We call
them instance methods since they are executed in reaction to a message sent
to an instance.

The first method that we will define is the method, which will be
invoked when an instance of our component is created by Seaside. Seaside

24 CHAPTER 2. PHARO SMALLTALK

Figure 2.5: Creating the class WebCounter.

Figure 2.6: The class has been created.

2.4. A FIRST SEASIDE COMPONENT 25

follows normal Smalltalk convention, and will create an instance of the com-
ponent for us by using the message , which will create the new instance
and then send the message to this new instance.

First raise the context menu in the “method category” pane and select Add
category... as shown in Figure 2.7. Select initialization from the resulting
dialog, which will add to the method category pane. Method
categories have no effect on the functionality of your components; they are
intended to help you organise your work.

Figure 2.7: Adding a method category.

Now ensure that the method category is selected, and then
enter the following in the source pane – remember that you do not have to
type WebCounter>> in the source code pane:

Remember that this definition states that the method is an instance
side method since the word does not appear between WebCounter and
>> in the definition.

Once you are done typing the method definition, bring up the context menu
for the code pane and select the menu item accept (s), as shown in Fig-
ure 2.8.

26 CHAPTER 2. PHARO SMALLTALK

At this point Pharo might ask you to enter your full name. This is for the
source code version control system to keep track of the author that wrote
this code.

Note

Figure 2.8: Compiling a method.

The method signature will also appear in the method pane as shown in
Figure 2.9.

Now let’s review what this means. To create a method, we need to define
two things, the name of the method and the code to be executed. The first
line gives the name of the method we are defining. The next line invokes
the superclass method. The final line sets the value of the
instance variable to 0.

To be ready to define Seaside-specific behaviour, now create a new method
category called . From the method category pane bring up the context
menu and select Add category... and type the new category . In this
new category define two more instance methods to change the counter state
as follows.

2.4. A FIRST SEASIDE COMPONENT 27

Figure 2.9: The method has been compiled.

Many programmers like to keep their hands on the keyboard, avoiding
the mouse whenever possible. Most of the actions we have described have
keyboard shortcuts. Keyboard shortcuts for menu item actions are often
indicated in the menu itself. For example the Accept (s) menu item can be
activated by pressing the correct keyboard qualifier key together with the
s-key. The keyboard qualifier key depends on what platform you’re using,
it may be command, control or alt depending on your platform.

Note

2.4.4 Rendering a Counter

Now we can focus on Seaside specific methods. We will define the method
to display the counter as a heading. When Seaside needs to

display a component in the web browser, it calls the method
of the component, which allows the component to decide how it should be
rendered.

Add a new method category called , and add the method defini-
tion

We want to display the value of the variable by using an HTML heading
tag. In Seaside, rather than having to write the HTML directly, we simply

28 CHAPTER 2. PHARO SMALLTALK

send the message to the html object that we were given as an
argument.

As we will see later, when we have completed our application, this method
will give us output as shown in Figure 2.10.

Figure 2.10: A simple counter.

2.4.5 Registering as a Seaside Application

We will now register our component as an application so that we can access it
directly from the web browser. To register a component as an application, we
need to send the message to .

will regis-
ter the component as the application named . The
argument we add to the message specifies the
root component and the path that will be used to access the component
from the web browser. You can reach the application under the URL
http://localhost:8080/webcounter.

Use World | Workspace to open a workspace, which is an area where you
can run snippets of code. Type the text shown above, then select it with the
mouse and bring up the context menu and select Do it (d), alternatively use
the keyboard shortcut.

Now you can launch the application in your web browser by going to
http://localhost:8080/webcounter/ and you will see your first Seaside com-
ponent running.

http://localhost:8080/webcounter
http://localhost:8080/webcounter/

2.4. A FIRST SEASIDE COMPONENT 29

Figure 2.11: Register a component as an application from a workspace.

If you’re already familiar with HTML, you may want to look at the intro-
duction to halos in Section 7.2 to learn a little more about how to investigate
what’s happening under the covers.

2.4.6 Automatically Registering a Component

In the future, you may want to automatically register some applications when-
ever your package is loaded into an image. To do this, you simply need to add
the registration expression to the class method of the component.
A class method is automatically invoked when the class is loaded
from a file. Here is the class method definition.

The word “class” in the >> first line indicates that this must
be added as a class method as described below.

Because this code is in the WebCounter class, we can use the term in place
of the explicit reference to WebCounter that we used in the previous section.
In Smalltalk we avoid hardcoding class names whenever possible.

Let’s implement the method. Select the class , click on the Class
button under the class pane. You are now browsing the class methods of
the class (and there are none yet). Define a method category as

30 CHAPTER 2. PHARO SMALLTALK

we did previously: click on the third pane and bring up the context menu.
From this menu, select the menu item add category, and from the list select or
type . Then in the bottom pane define and accept the
method as shown in Figure 2.12.

Figure 2.12: Compiling a class method.

In the future, we will add configuration parameters to this method, so it
is important to be familiar with creating it. Remember that this method is
executed automatically only when the class is loaded into memory from some
external file/source. So if you had not already executed

Seaside would still not know
about your application. To execute the method manually, type

in a workspace; your application will be registered
and you will be able to access it in your web browser.

Automating the configuration of your Seaside application via class-
side methods play an important role in building deployable
Smalltalk images because of their role when packages are brought into base
images, and is a useful technique to bear in mind for future use.

Important

The following Figure 2.13 shows a trick Smalltalkers often use: it adds the
expression to be executed as comment in the method. This way you just
have to put your cursor after the first double quote, click once to select the
expression and execute it using the Do it (d) menu item or shortcut.

2.4. A FIRST SEASIDE COMPONENT 31

Figure 2.13: Adding the executable comment.

2.4.7 Adding Behavior

Now we can add some actions to our component. We will start with a very
simple change; we will let the user change the value of the variable by
defining callbacks attached to links (also known as anchors) displayed when
the component is rendered in a web browser, as shown in Figure 2.14. Using
callbacks allows us to define some code that will be executed when a link is
clicked.

We modify the method >> as follows.

Don’t forget that >> is on the instance side.
Note

Each callback is given a Smalltalk block: an anonymous method (strictly, a
lexical closure) delimited by and . Here we send the message (to

32 CHAPTER 2. PHARO SMALLTALK

Figure 2.14: A simple counter with actions.

the result of the message) and pass the block as the argument. In other
words, we ask Seaside to execute our callback block whenever the user clicks
on the anchor.

Click on the links to see that the counter get increased or decreased as shown
in Figure 2.15.

Figure 2.15: A simple counter with a different value.

2.5. SAVING YOUR PACKAGE TO MONTICELLO 33

2.4.8 Adding a Class Comment

A class comment (along with method comments) can help other developers
understand a class. With your class selected, press the class com-
ment button ? in the class browser. The code pane in the browser will now
show a class comment template. Delete this template and enter the comment
shown in Figure 2.16. Use the context menu Accept (s) item to save your
comment.

When you’re studying a Smalltalk framework, class comments are a pretty
good place to start reading. Classes that don’t have them require a lot more
developer effort to figure out so get in the habit of adding these comments to
all of your classes.

Figure 2.16: A class comment.

2.5 Saving your Package to Monticello

The Smalltalk image is a great place to work with live objects. It has a few
drawbacks though, so it is useful to have some way to store your Smalltalk
code in traditional files or on a server to share with others. Pharo uses the
Monticello (http://www.wiresong.ca/Monticello/) source code control sys-
tem for this purpose. Monticello stores code in repositories. These repositories
can be network servers, databases, email, or just simple directories on a
disk. We will create a directory repository so that Monticello can store your
packages in files on your disk.

http://www.wiresong.ca/Monticello/

34 CHAPTER 2. PHARO SMALLTALK

The Pharo and Squeak communities use a free online repository called
SqueakSource at http://www.squeaksource.com/ for sharing and collabo-
rating on projects. Once you have registered as a member, you will be able
to contribute to existing projects or start your own to save and share your
code online. See the SqueakSource help pages for details.

Note

Open Monticello. You can open Monticello by using World | Monticello
Browser. You will see two main panes. The left hand pane shows packages
installed in your image, and the right hand pane shows the repositories those
packages came from.

Create your package. First create a package for your code, by pressing the
+Package button. You should call your package WebCounter to ensure that it is
automatically associated with the class category of the same name that you
have already created.

Create a repository. Next, create a directory on your hard drive where you
would like to store your Smalltalk source code. Now, in the Monticello
browser in Pharo make sure no package is selected in the package pane. Click
on the +Repository button and pick “Directory” from the resulting popup
menu. You will be presented with a file/directory browser. Navigate to, and
select, the directory you created. You should see this directory listed in the
repository pane of the Monticello browser. Make sure this new repository
is highlighted and select add to package... from the repository pane context
menu. Select the package from the resulting menu. You will need
to navigate past a large number of package names to find the
package.

Figure 2.17: Monticello Browser.

Publishing your package. With all of this setup out of the way you can now
save your package to the repository by selecting your package in the package
pane, selecting your new repository in the repository pane and pressing Save.
You will be asked to include a comment. Normally you indicate in a few
words what you changed since the last time you saved the package. For now

http://www.squeaksource.com/

2.6. SUMMARY 35

we just enter “initial dump” and press Accept.

Normally you would publish a package any time you have made significant
changes to it. That way if your image should become corrupted you can load
the code from your last saved version.

Monticello can also be used to facilitate having multiple developers work
simultaneously on a single package of code. For this you need a FTP or HTTP
repository like SqueakSource. We will not discuss this advanced usage here,
though.

Loading packages. Once your package has been published to a Monticello
repository, it can be loaded into any Pharo image. To load your package into
an image, first make sure that your repository is listed in this new image. If it
isn’t, repeat the steps listed in Create a repository above. Now, in the Monticello
browser, select your repository in the right pane and press Open. You will be
presented with a repository browser such as the one shown in Figure 2.18.
In the left pane, select the WebCounter package; in the right pane select the
version; and then click Load.

Figure 2.18: Monticello Repository Browser.

2.6 Summary

You have now learned how to define a component, register it, modify it and
save your code to a file. Now you are ready to proceed to Part II to learn all
the details of using Seaside to build powerful web applications.

36 CHAPTER 2. PHARO SMALLTALK

Chapter 3

Cincom Smalltalk

by Bruce Boyer, Cincom Systems, VisualWorks Development

In this section we describe how to get started developing a Seaside appli-
cation in VisualWorks. We assume that you already have a 7.7 version of
VisualWorks installed. If not, go to the Cincom Smalltalk download site
http://www.cincomsmalltalk.com/. We’ll be working with the noncommer-
cial release, although the features that are preloaded into the noncommercial
version aren’t needed for working with Seaside.

As an alternative, Seaside and VisualWorks are tightly integrated in WebVe-
locity, which is also available on the Cincom Smalltalk download page. Web-
Velocity provides a browser-based development environment and detailed
documentation that help guide you in developing Seaside applications.

3.1 Loading Seaside into VisualWorks

Seaside support is provided as a loadable parcel. There are actually several
parcels, but most are prerequisites that are loaded automatically when you
load the Seaside parcel.

Launch a VisualWorks image, such as visualnc.im. Then, open the Parcel
Manager, System | Parcel Manager in the launcher. Select the Web Development
category, then select the Seaside-All parcel, and click the load button, see
Figure 3.1.

Once the parcel loads, a Seaside menu is added to the VisualWorks Launcher.
Start a server and open a browser on the server using commands in this menu,
see Figure 3.2.

37

http://www.cincomsmalltalk.com/

38 CHAPTER 3. CINCOM SMALLTALK

Figure 3.1: Loading Seaside.

By default, Seaside serves on and the entry address is
// / . This is the default entry point, but can be

changed in the Seaside Settings.

Figure 3.2: Seaside dispatcher.

3.2 Seaside Operations Menu

When the Seaside support parcel is loaded into VisualWorks, a Seaside menu
is added to the VisualWorks Launcher. This provides menu access to several
common control operations.

3.3. SEASIDE SETTINGS 39

Start Server Starts the Seaside server; requests can now be
serviced. By default the server is running on port
7777.

Stop Server Stops the Seaside server; no more transactions
are accepted.

Open Browser on Server Opens a web browser on the first page of the
running Seaside server.

Inspect Server Open a VisualWorks inspector on the server.
Log to Transcript Log all server events (requests received, re-

sponses sent, etc.) into the Transcript.
Debug Mode Server errors will open a debugger instead of

being suppressed. This may prevent the server
from being able to handle further requests, but
allows you to investigate the errors on the server
side.

Settings Opens the Seaside Settings dialog.

3.3 Seaside Settings

Several properties of the Seaside environment can be set using the Settings
Tool, accessible by picking Seaside | Settings in the Transcript. For each setting
item there is online help provided. Click Help on the page with the setting
item to view the description.

Figure 3.3: Seaside Settings.

For example, you can change the port the server is running on by entering
the new number in the Port: field and clicking Apply. This stops the server
and restarts it on the specified port.

40 CHAPTER 3. CINCOM SMALLTALK

3.4 Persistence

One of the strengths of VisualWorks as platform for Seaside is its strong
support for relational databases commonly already installed in many envi-
ronments. This provides an obvious persistence mechanism, when data being
used by the Seaside application must be stored.

To simplify using these databases for persistence, Seaside on VisualWorks is
integrated with GLORP, a framework for mappings between objects and the
RDBMS data structures. GLORP is loaded when you load Seaside-All parcel.
It’s actually pre-loaded in the VisualWorks non-commercial image.

GLORP is a project of Camp Smalltalk. Information about the project,
including current documentation, is available at http://glorp.org. Addi-
tional information about using GLORP in a Seaside/VisualWorks environ-
ment is available in the WebVelocity documentation, which is available
by downloading that product from the Cincom Smalltalk Download site
http://www.cincomsmalltalk.com/.

3.5 Developing in VisualWorks

Developers who are already familiar with VisualWorks can skip this section.
For those who might be trying VisualWorks for the first time as a develop-
ment environment for Seaside, a few brief comments about the development
environment might be helpful. We’ll make these comments in the context of
developing the simple counter example.

3.5.1 Basic Tools

When a clean image is opened only two tools are open: the Launcher and a
Workspace. The Launcher is the primary tool for opening additional tools,
and also has a text area, called the transcript. The Workspace is a sandbox for
testing code.

Most coding is done in the System Browser, which you open by selecting
Browse | System in the Launcher. The System Browser provides access to
all classes in the system, either by their containing package (or bundle or
packages), or by class hierarchy. The package view is the more common
working view.

Additional tools are opened as requested from the various menus in the
Launcher and other tools. Online descriptions are available for most of these
from the Help menu.

http://glorp.org
http://www.cincomsmalltalk.com/

3.5. DEVELOPING IN VISUALWORKS 41

3.5.2 Packages and Categories

Smalltalk systems have traditionally provided class categories to help orga-
nize classes into related clusters. They had no semantic value, and were not
represented by objects. In VisualWorks, categories have been supplanted by
packages.

Unlike traditional categories, VisualWorks packages are real objects (instances,
surprisingly enough, of the class PackageModel). They provide the organi-
zation feature of categories, but they are also the basic archival unit for the
Store repository.

When developing application code, you should create your own new package
to contain this work, rather than use an existing package. To create a new
package, make sure no package is selected (Ctrl-click to deselect, or just select
Local Image) in the System Browser, then pick Package | New... and enter a
name in the dialog.

3.5.3 Name Spaces

Because of the strong potential for class and (global) variable name colli-
sions in large VisualWorks applications, VisualWorks has implemented name
spaces, a mechanism for restricting the referential scope of such names.

While advanced usage of name spaces can be quite involved and intricate, in
practice can be quite simple, especially in the context of a Seaside application.
Essential points are that:

• The top-level name space is named Smalltalk.

• All VisualWorks base Smalltalk classes and add-ons are defined in
sub-namespaces of Smalltalk.

• Most Seaside classes are in the name space named Seaside.

Your application should, in general, be in a name space that you create for
your own usage. However, for simplicity especially during early devel-
opment, you can define your classes directly in the Smalltalk name space.
The various examples included with Seaside are defined in their own name
spaces.

3.5.4 Additional Components

A variety of Seaside expansions, enhancements, and examples are included
with Seaside for VisualWorks, also provided as packages for easy loading. In

42 CHAPTER 3. CINCOM SMALLTALK

the parcel manager, browse the contents of the Seaside Web Development
page. Each component has a comment describing its content.

3.6 Developing a First Component

To illustrate the above points, let’s go through the initial steps of developing
the Counter example in VisualWorks. We’ll use a slightly different name so
we won’t conflict with the example already loaded with Seaside.

Open a System Browser from the Launcher. There is, of course, a tool button
for this and for other tools as well.

3.6.1 Create a Package

First, create a package for your project. Make sure no package is selected
in the top-left pane (ctrl-click on any currently selected package, or select
Local Image), then pick Package | New Package.... As a name for our package
enter WebCounter, and click OK. Leave the new package selected after it is
created.

3.6.2 Create a Name Space

Next, we should create a name space for our work. Pick Class | New | Names-
pace... in the System Browser. In the dialog that opens, the package and
Namespace fields are already correctly filled. Enter a name, which we will
call WebCounter again. In the imports field, add so the field con-
tents is:

Figure 3.4: Creating a name space.

Then click OK. The name space is created and selected in the
System Browser, and the definition is shown as:

3.6. DEVELOPING A FIRST COMPONENT 43

3.6.3 Define a Component

A Seaside component is defined by a subclass of class. Accord-
ingly, to create a component, you create the corresponding class. To create
the new class, with your package selected in the top-left pane of the System
Browser, pick Class | New Class.... Again, the package and name space are
correctly filled in already, as shown in Figure 3.5. For a class name, again
enter . Change the superclass to in Seaside. You can
search for it in several ways in the tool, and when selected it will show as

. As is the case with the original WACounter example,
we need the one instance variable count, so enter that.

Figure 3.5: Create a class.

Leave the three checkboxes selected, and click OK to create the class. Because
the check boxes were all checked, an initialize method for the class and two
accessor methods for counter are also created. So, we have a start on the
component.

3.6.4 Editing Generated Methods

Select the generated initialize method, and change it to:

To save the method, select Edit | Accept or press Ctrl+S.

44 CHAPTER 3. CINCOM SMALLTALK

3.6.5 Rendering the Counter

Each component is responsible for rendering itself in the web browser. This is
done in Seaside by implementing a >> method.
In this simple case, that means displaying the counter value.

Create a new protocol, called rendering, and add this method:

3.6.6 Registering the Application

To be able to access the application at a URL path, we must register it with
Seaside.

First, we must declare that our application component can be a root compo-
nent, or a starting point. To do this, click the Class tab in the System Browser,
add a protocol called testing, and define this class method:

Note that the method does not register the application (we will do
that in a minute). It only declares that the component should appear in the
list of registered applications.

To complete the registration, use the configuration tool in the web browser. If
you have closed the browser, reopen it by selecting Seaside | Open Browser on
Server in the VisualWorks launcher.

Click the config link in the browser (second item) to open the Configuration
tool

Click the Add button to open the editor. Enter a name, NewCounter, for the
handler, and select Application as the type, see Figure 3.6.

Click OK to accept this addition.

In the new page, scroll down to the General section. From the Root Class
drop-down list, select our application, WebCounter.WebCounter, see Fig-
ure 3.7.

There are a lot of configuration options available on this page, but we don’t
need to bother with them for this example. Scroll down the page a little more
and click Save.

3.6. DEVELOPING A FIRST COMPONENT 45

Figure 3.6: Add our application.

Figure 3.7: Configuring the application.

Our application is now listed as , and will be listed on the open-
ing web page. (Open a new browser on the server from the VisualWorks
Launcher to verify that.)

This procedure is equivalent to what we do using the expression
or redefining the class as

follows.

To see that it works, go back to http://localhost:7777 and click NewCounter
to see the current state of our application.

Pretty boring at the moment.

http://localhost:7777

46 CHAPTER 3. CINCOM SMALLTALK

Figure 3.8: Registered Component.

3.6.7 Adding Behavior

We want to be able to increment and decrement the counter, which requires
two methods.

In the System Browser, select Protocol | New to add a method category for
methods to update the value of count. Call the category updating. Then add
these two methods:

These use the accessor method that was generated when the class was
first created.

3.6.8 Rendering the Behavior

Interactions between the browser and Seaside are done using callbacks
in the Smalltalk code, and these are entered, directly or indirectly, in the

>> method.

In the System Browser select the method and edit it to:

This adds two anchors with increment (++) and decrement (–) links that call
back to our increase and decrease methods. Save the method. Then go back
to the web browser and refresh the page to see the change.

3.6. DEVELOPING A FIRST COMPONENT 47

Figure 3.9: A counter with action.

Click the new links a few time to verify that it works.

That’s it. You developed your first Seaside component in VisualWorks.

48 CHAPTER 3. CINCOM SMALLTALK

Chapter 4

GemStone/S

by Monty Williams, GemStone Systems

In this chapter we show you how to develop a simple Seaside application in
GemStone/S. There are two different ways to install and run a GemStone/S
server: the GLASS Virtual Appliance (GLASS is an acronym for GemStone,
Linux, Apache, Seaside, and Smalltalk) – a pre-built environment for running
GemStone/S in VMware, and the GemStone/S Web Edition – a native version
of GemStone/S for Linux or Mac OS X Leopard. Further information is
available at http://seaside.gemstone.com/.

The identical development process is used for both the GLASS Virtual Ap-
pliance and the native GemStone/S Web Edition. Both are available from
http://seaside.gemstone.com/downloads.html. For most developers we rec-
ommend using the appliance, since this avoids the intricacies of system
administration tasks. All GemStone/S editions which run Seaside are fully
64-bit enabled, and require 64-bit hardware, a 64-bit operating system, and at
least 1GB RAM. The GLASS Virtual Appliance will run on a 32-bit Windows
OS as long as the underlying hardware supports running a VWware 64-bit
guest operating system.

4.1 Using the GLASS Virtual Appliance

The GLASS Virtual appliance is a pre-built, ready-to-run, 64-bit VMware
virtual appliance configured to start GemStone, Seaside, Apache, and Fire-
fox when it is booted. It is a complete Seaside development environment,
including:

49

http://seaside.gemstone.com/
http://seaside.gemstone.com/downloads.html

50 CHAPTER 4. GEMSTONE/S

• Seaside 2.8 running in a GemStone/S 2.2.5 64-bit multi-user Smalltalk
virtual machine, application server and object database.

• A Squeak 3.9 VM and Squeak image configured as a development
environment for the GemStone/S server running on the appliance.

• An Apache 2 web server configured to display Seaside applications
running in GemStone/S.

• A Firefox web browser set to display the GemStone/S system status
on its home page (although you can reach that same page from any
browser on your network.)

• A toolbar menu to start, stop, or restart GLASS or Apache, start Squeak,
and run GemStone/S backups.

• A toolbar icon which starts a terminal session on the appliance.

• The latest stable release of Xubuntu Linux – Version 7.10.

You start the GLASS Virtual Appliance from your VMware console, just as
you would any other VMware virtual appliance. The first time it may take
several minutes before the system is fully operational since it must boot Linux,
start the GemStone/S server, three GemStone virtual machines, Apache, and
Firefox. It’s ready once you see the status page shown in Figure 4.1.

Figure 4.1: GLASS Virtual Appliance status page.

We recommend when you are ready to stop work, you suspend the appliance
rather than shut it down. This will make the next startup much faster. You’ll
be able to start up just where you left off.

The status of your GemStone/S system is refreshed every 10 seconds. All the
GemStone processes listed in the right sidebar should have a green OK status

4.1. USING THE GLASS VIRTUAL APPLIANCE 51

as shown in Figure 4.2. If not, use the “GLASS Appliance” menu shown in
Figure 4.4 to start, stop, or restart GLASS or its individual components.

Figure 4.2: GLASS Virtual Appliance status.

You should now be able to explore the Seaside components installed in the
GLASS Virtual appliance by clicking on the "GLASS: Seaside" bookmark you
can see in Figure 4.3. You can also view that web page from another computer
on your network by using the "eth0:" IP address listed under "Network
Information".

Figure 4.3: GLASS Virtual Appliance Seaside page.

Should you need to edit a file or perform other command line operations on
the appliance, you can open a terminal session by clicking on the terminal
icon in the toolbar. If you prefer, you can to the appliance by using the
IP address mentioned above and the username/password glass/glass. To
copy files to/from the appliance use the command. Here’s an example
of using to copy a seaside log file from the appliance to your current
directory.

52 CHAPTER 4. GEMSTONE/S

Figure 4.4: GLASS Virtual Appliance menu.

4.2 A First Seaside Component

Let’s build the counter application in GemStone/S. We’ll be using a Squeak
GUI as a development environment for GemStone/S. While this is quite
similar to developing in Squeak, you will notice a few differences.

The most important difference developers need to be aware of is is due
to GemStone/S being a multi-user object database with ACID transaction
properties. Each GemStone/S VM sees a consistent state of the database
in isolation from intermediate changes underway in any other VM. Those
changes cannot be seen until they are committed to the database. This is
handled automatically in your Seaside application since the GemStone/S
Seaside framework immediately commits any data sent from a web client
to the GemStone/S application server. However, when writing code, you must
manually commit before that code can be used or or even seen by other VM’s. Con-
versely, if you decide you’ve made a mistake, you can abort and your code
changes will be erased.

Start by selecting "Run Squeak" in the "GLASS Appliance" menu in the toolbar.
This will open a Squeak image containing a GemStone/S Login window
(Figure 4.5). Click on the "Login" button, type your initials into the box that
pops up, than click "accept". This will open a GemStone/S Transcript window
(Figure 4.6). The text pane in the GemStone/S Transcript window is actually
a workspace and not a transcript. This will be changed in the next release
when this window is reimplemented in OmniBrowser.

4.2.1 Defining a Component

There are two ways to define the new subclass of
.

Type the following class definition into the GemStone/S Transcript window
or a GemStone workspace, then type CTL-d or use the "doit" menu item. Note

http://en.wikipedia.org/wiki/ACID
http://en.wikipedia.org/wiki/ACID

4.2. A FIRST SEASIDE COMPONENT 53

Figure 4.5: GemStone/S Login window.

Figure 4.6: GemStone/S Transcript window.

that this GemStone/S class definition is slightly different than it would be
in Squeak. The Squeak form works equally well, however you’ll always see
class definitions in the GemStone/S form when you browse the class.

Figure 4.7: WAcomponent subclass template.

Alternatively, open a GemStone/S System Browser on the class
and fill in a "subclass template" as shown in Figure 4.7. To do this, click

54 CHAPTER 4. GEMSTONE/S

the green "Browse" button in the GemStone/S Transcript window, and type
WAComponent into the popup. Left click WAComponent and then select the
"subclass template" menu item. After filling in the template with the class
definition above, type CTL-s or select the "accept" menu item.

4.2.2 Defining Some Methods

Now we define some instance methods to initialize the value of the counter
to zero , and to increment or decrement the value of the counter.

While it is not strictly necessary, it can be useful to define categories for
methods you add. Middle button click on the all as shown in Figure 4.8,
select "create category" and type in a category name. If you select a method
category, new methods will appear in that category.

Figure 4.8: Create a category.

At this point it would be a good idea to commit your changes to the database.
Click the commit button in the transcript window. You should always commit
any changes to your code before logging out of GemStone, just as you would
save a text document in an editor before logging off of your computer. If you
want to throw away any code created or modified since your last commit,
click the abort button instead.

4.2. A FIRST SEASIDE COMPONENT 55

4.2.3 Rendering a counter

In order to render the counter in a web browser, we must create a
>> method. The following method will display

the value of the variable as an HTML heading.

4.2.4 Registering the Application

Before you can access the counter application from your web browser, you
must register it with Seaside. Type the following code into a Transcript or
Workspace and then type CTRL-d or use the "doit" menu item. Afterwards,
make sure to commit your code.

Note that this expression can also be added in the class method
which is invoked at the time the class is loaded in memory as shown be-
low.

Now you can launch the application in your web browser by visiting
http://localhost/seaside/WebCounter, see Figure 4.9.

Figure 4.9: A simple counter.

4.2.5 Adding Behavior

Now we can add some actions by defining callbacks attached to anchors, see
Figure 4.10. A callback is a piece of code that will be executed when a link is
clicked. We will explain this in detail later in the book. Modify the method

>> as follows and commit your changes.

http://localhost/seaside/WebCounter

56 CHAPTER 4. GEMSTONE/S

Now when you click on the links you will see the counter increment or
decrement.

Figure 4.10: A simple counter with increment and decrement actions.

4.3 Keeping Up With the Latest Features

We regularly update the Seaside features of GemStone/S between ma-
jor product releases. These are usually announced in Dale’s blog at
http://gemstonesoup.wordpress.com/. It’s important to load Monticello
packages in the sequence below to ensure the GLASS package in GemStone/S
and the GemStone package in Squeak are in sync.

Step 1. Load the latest GLASS-dkh into GemStone from
http://seaside.gemstone.com/ss/GLASS. This loads a large number
of packages so it takes minutes to complete even on a fast connection. Be
patient.

To load a Monticello package into GemStone/S, click the green "Mon-
ticello" button in the Transcript or Workspace window. Highlight the
package name in the left pane (Figure 4.11), the URL starting with
http://seaside.gemstone.com/ss/ in the right pane, and then click the "open"
button. This will open a Monticello repository browser. Highlight the package
name in the left pane (Figure 4.12) and the package version in the right pane.
Check the comments on the package for any precautions on compatibility
before loading – you could need to use an earlier package.

http://gemstonesoup.wordpress.com/
http://seaside.gemstone.com/ss/GLASS
http://seaside.gemstone.com/ss/

4.3. KEEPING UP WITH THE LATEST FEATURES 57

Figure 4.11: GemStone Monticello browser.

Figure 4.12: GemStone Monticello repository.

After updating, it’s a good idea to click the green "Test Runner" button in
the Transcript window, and then click "Run Selected". If all the tests pass
(Figure 4.14), commit your transaction. If some fail, it’s probably simpler to
abort rather than debug the problem.

Then log completely out of GemStone, or the next step will not succeed.

Step 2. Load the latest GemStone-dkh into Squeak from
http://seaside.gemstone.com/ss/GemStone.

Then you can log back in to GemStone.

Loading a Monticello package into Squeak is similar (Figure 4.13), but you
start by opening a Squeak Monticello browser rather than a GemStone/S
one. It’s important to remember Squeak and GemStone/S are two different
systems. Even though they can run much of the same Smalltalk code, it’s
important to load your code into the one you intended.

http://seaside.gemstone.com/ss/GemStone

58 CHAPTER 4. GEMSTONE/S

Figure 4.13: Squeak Monticello repository.

Figure 4.14: Making sure tests pass.

Chapter 5

GNU Smalltalk

by Paolo Bonzini, developer of GNU Smalltalk

In this section we describe how to get started developing a Seaside application
in GNU Smalltalk. We assume that you already have the 3.0a version (or a
later one) of GNU Smalltalk installed. This is the latest release at the time of
this writing, and the first to include support for Seaside.

To download it, follow instructions at http://smalltalk.gnu.org/download.

5.1 Creating a GNU Smalltalk image with Seaside
loaded

Seaside support is split into a number of separately loadable packages. Here
are the ones that are available in GNU Smalltalk 3.0a:

• Seaside-Core

• Seaside-Adapters-Swazoo

• Seaside-Development

• Seaside-Examples

The Seaside package is a collective package that loads the first two.

First of all, you should create a new image with the package loaded. In GNU
Smalltalk, the image acts as a kind of cache and preloading the package will
speed up further operation.

59

http://smalltalk.gnu.org/download

60 CHAPTER 5. GNU SMALLTALK

In the remainder of this section, is used as the prompt for things you type
at the shell, and > is used as the prompt for things you type for GNU
Smalltalk.

5.2 Operating the GNU Smalltalk virtual machine
remotely

At the end of the previous section you created a new image from the GNU
Smalltalk read-eval-print loop. If you’re familiar with other Smalltalk, it
is a sort of console-based Transcript; if you’re familiar with other scripting
languages you will have already recognized it.

From now on, however, you will run Seaside applications within a remote-
controlled instance of GNU Smalltalk, running in background as a daemon.
The following three commands start the daemon, print the daemon’s process
id, and finally stop the daemon.

The first command has the command-line option, and hence starts
an instance of GNU Smalltalk that will run in the background and will be
used to serve web pages. The other two don’t have the command-line option,
and all they do is interacting with the background instance of GNU Smalltalk.
Note that you don’t need to specify the image unless you are starting the
background instance of GNU Smalltalk, because only the background virtual
machine needs to have the Seaside packages loaded.

Now, let’s start the daemon again and also start the web server:

Seaside is now serving on http://localhost:8080/; the entry ad-
dress is by default http://localhost:8080/seaside. Try visiting the
http://localhost:8080/seaside/examples/counter URL to make sure that the
system works.

You can stop and restart the server without killing the daemon by run-
ning:

http://localhost:8080/
http://localhost:8080/seaside
http://localhost:8080/seaside/examples/counter

5.3. DEVELOPING IN GNU SMALLTALK 61

Be sure to restart serving web pages after running this command.

Another common operation is loading a file into the remote GNU Smalltalk
instance. You do this using the following expression.

You can also control an instance of GNU Smalltalk that’s running in back-
ground using . After you put a Smalltalk command
that is executed within the server, for example:

will compute 100! in the background image and print the result.

supports running commands on a virtual machine running on a
different machines, by specifying a hostname right after the command name
itself. Note that, in this case, arguments to still refer to paths on the local
machine.

5.3 Developing in GNU Smalltalk

Developers who are already familiar with other scripting languages, for
example Ruby, will have few problems adapting to GNU Smalltalk.

A relatively important difference from other Smalltalk dialects is the avail-
ability of namespaces, a mechanism for restricting the referential scope of
such names. While advanced usage of name spaces can be quite involved, in
practice it is relatively simple and based on a few essential points.

• The top-level name space is named Smalltalk.

• All classes and add-ons are defined in sub-namespaces of Smalltalk.

• Most Seaside classes are in the namespace named Seaside.

Your application should, in general, be in a namespace that you create for
your own usage. If you use the package system of GNU Smalltalk, switching
to a separate namespace is actually done automatically while loading the
package.

However, for simplicity especially during early development, you can define
your classes directly in the Smalltalk name space.

62 CHAPTER 5. GNU SMALLTALK

5.4 Developing your first component

To illustrate the above points, we will go through the initial steps of develop-
ing the Counter example in GNU Smalltalk. We’ll use a slightly different name
so we won’t conflict with the example already loaded with Seaside.

Place the following code in a file:

You can see that, apart from some syntactic sugar, the above is just Smalltalk
as in any other dialect, except that method bodies are surrounded by square
brackets. declares an instance variable.

Here are the few concepts that the above basic component highlights:

• A Seaside component, is defined by a subclass of class.
Accordingly, to create a component, the above file creates the corre-
sponding class.

• Each component is responsible for rendering itself in the web browser.
This is done in Seaside by implementing a method.
In this simple case, that means displaying the counter value.

• Registering the application with Seaside makes its entry point is acces-
sible at a URL path.

Registering an application is done in two steps. First, we must declare that our
application component can be a root component, by defining a

>> class method. Second, we must register the component
as an application, which is done by the final line of the file. Code that is
outside a class declaration corresponds to a doit (or, if you are not coming
from Smalltalk, is just evaluated as the file is parsed).

After loading the code in a running server:

5.4. DEVELOPING YOUR FIRST COMPONENT 63

the application will be visible at http://localhost:8080/seaside/webcounter.
At the moment however it is pretty boring, so we improve the

>> method like this:

Reload the code in the server using the same invocation as above.
Go back to the web browser and refresh the page: there are now two an-
chors with increment (++) and decrement (–) links that call back to the ac-
tions.

Click the new links a few time to verify that it works. That’s it. You developed
your first Seaside component.

http://localhost:8080/seaside/webcounter

64 CHAPTER 5. GNU SMALLTALK

Chapter 6

VA Smalltalk

by John O’Keefe, Principal Software Architect, Instantiations Inc.

In this section we will show you how to get started developing Seaside
applications with VA Smalltalk. First we will discuss how to obtain and
install Seaside. Then we will show you how to develop your first application:
a simple counter.

6.1 Loading Seaside into VA Smalltalk

Seaside was first delivered as part of the VA Smalltalk V8.0 release. You can
download the latest VA Smalltalk release from the Instantiations download
site at http://www.instantiations.com/VAST/download/. After installing VA
Smalltalk, start the development image.

Seaside support is provided as a loadable feature in VA Smalltalk. From the
Transcript, select Tools | Load/Unload Features... to open the Feature Loader,
see Figure 6.1.

Scroll down to the ST: Seaside Core feature, select it, and use the >> button
to mark it for loading. You can see other Seaside features in the list that you
may also want to load. When you have selected all the features you want to
load, and have moved them to the Loaded features list, select the OK button
to load the features into your image.

65

http://www.instantiations.com/VAST/download/

66 CHAPTER 6. VA SMALLTALK

Figure 6.1: VA Smalltalk Feature Loader.

6.2 Starting VA Smalltalk Seaside

Once you have the VA Smalltalk image running and Seaside loaded, you can
start a Seaside Server. From the Transcript, select Tools | Open Seaside Control
Panel to open the Seaside Control Pane, see Figure 6.2.

Figure 6.2: Open Seaside Control Panel.

6.2. STARTING VA SMALLTALK SEASIDE 67

6.2.1 Seaside Server Control Panel Menu Options

The Seaside Server Control Panel is the central control point for Seaside
Servers. When the Seaside Server Control Panel is first opened it is empty,
see Figure 6.3.

Figure 6.3: Initial Seaside Server Control Panel.

The menu on the control panel provides options to manage server adaptors
and to configure the control panel. The options are:

Manage

Add adaptor... Create a new server
Start All Start all the servers that are not currently run-

ning
Stop All Stop all the servers that are currently running
Start Start the selected server(s)
Stop Stop the selected server(s)
Remove Remove the selected server(s) – they must be

in the stopped state
Inspect Open a VA Smalltalk inspector on the selected

server
Use new dispatcher
Clear configuration caches
Clear sessions

Configure

Default port ... The default port used when adding a
server adaptor

Control Panel refresh interval ... The frequency of refreshing the control
panel information. It is specified in sec-
onds; a value of 0 turns off refresh.

Reset to defaults Reset the default port to 8080 and the re-
fresh interval to 5 seconds

68 CHAPTER 6. VA SMALLTALK

6.2.2 Adding a Server Adaptor

Select Manage | Add adaptor ... to add an adaptor that will serve Seaside pages,
see Figure 6.4. The added Server Adaptor will be in the stopped state.

Figure 6.4: Seaside Server Control Panel Add Adaptor.

In the Add Server Adaptor dialog you can select the Server Adaptor class
(currently only one class is available) and the port used to connect to the
server, see Figure 6.5.

Figure 6.5: Add Seaside Server Adaptor Dialog.

You can add multiple server adaptors which can listen on different
ports.

6.2.3 Starting a Server Adaptor

Once you have added a server adaptor to the Seaside Server Control Panel,
you can start that server adaptor. Select the server you want to start; then
select Manage | Start from the menu bar, see Figure 6.6. Alternatively you
might want to use Manage | Start All to start all the server adaptors.

6.2. STARTING VA SMALLTALK SEASIDE 69

Figure 6.6: Start Server Adaptor.

At this point Seaside is running and ready to serve web pages, see Fig-
ure 6.7.

Figure 6.7: Started Server Adaptor.

6.2.4 A Simple Seaside Example

At this point you have a running Seaside Server. Now you can try a sim-
ple example shipped with Seaside. In a browser, enter the following URL:
http://localhost:8080/examples/counter to see the pre-built counter applica-
tion. You should see something like the page presented in Figure 6.8.

Selecting the ++ or – links will increment or decrement the counter. Later in
this section you will build a Seaside application similar to this example.

http://localhost:8080/examples/counter

70 CHAPTER 6. VA SMALLTALK

Figure 6.8: Sample Counter.

6.3 Developing Your First Seaside Compo-
nent

Now you are ready to write your first Seaside component. You will code a
simple counter in several steps: define an application and a class, define state,
and define how the component is rendered. Finally you will declare it as a
Seaside application.

6.3.1 Defining a Component

First we will define a new VA Smalltalk application to hold our simple
counter. We create the SampleSeasideApp application using VA Smalltalk’s
Applications Manager. Select Applications | Create | Application... to specify the
name of the new application, see Figure 6.9.

Figure 6.9: VASmalltalkApplicationManager.

You will also need to specify the prerequisite applications for your new

6.3. DEVELOPING YOUR FIRST SEASIDE COMPONENT 71

application. We are going to use the ’ tool to manage the application,
so you should specify its application () as the only direct
prerequisite of your new application.

Now we define a new Seaside component named by defining
a subclass of . You can do this by selecting Classes | Add | New
Class.... Select as the superclass of your new class and select
OK; enter the name of your new class () and select OK; finally,
select subclass as the type of subclass you are creating and select OK. At this
point you have created an application with 2 classes in it, and

.

Now open a browser on the class and add an instance variable
that will contain the state of the counter. The class definition should look like
this:

6.3.2 Adding Some Methods

Now we define some instance methods to initialize and change the value of
the counter.

6.3.3 Rendering a Counter

Now we define the instance method to display the counter
as a heading. Seaside will call such a method when it needs to display a
component in the web browser. In the following method we just say that
we want to display the value of the variable using a heading HTML
tag.

72 CHAPTER 6. VA SMALLTALK

As you see, in Seaside you do not directly write HTML but rather you use
a higher-level interface that models HTML. This helps you avoid making
HTML mistakes. We will go into much more detail on this subject later in the
book.

6.3.4 Registering the Counter Component

Now we should register the component as an application so that we can
access it directly from the url path that will be associated with it. To register
a component as an application, we ask the administration interface class

to do the work for us:

will register the component as the application named
.

Note that this expression can also be added in the class method
which is invoked when the class is loaded into memory:

Now you can launch the application in your web browser by going to
http://localhost:8080/webcounter, see Figure 6.10.

Figure 6.10: Simple-counter.

http://localhost:8080/webcounter

6.3. DEVELOPING YOUR FIRST SEASIDE COMPONENT 73

6.3.5 Adding Behavior to the Counter

Now we can add some actions by defining callbacks attached to anchors. We
will explain actions in detail later in this book. A callback is a piece of code
that will be executed when a link is clicked. For now this is just to give you a
feel of Seaside programming. We update the >>

method as follows.

After saving your changes, refresh the browser page and you will now see
the increment and decrement links. Click on the links so see that the counter
get incremented or decremented, see Figure 6.11.

Figure 6.11: VAST sample counter with actions.

74 CHAPTER 6. VA SMALLTALK

Part II

Fundamentals

75

77

In this part we will introduce you to the manipulation of basic elements such
as texts, anchors and callbacks as well as forms. It presents the notion of
brushes that is central to the Seaside API. Understanding these concepts will
be fundamental to your use of Seaside.

78

Chapter 7

Rendering Components

In this chapter you will learn the basics of displaying text and other in-
formation such as tables and lists with Seaside and its powerful XHTML
manipulation interface. You will learn how to create a component which could
include text, a form, a picture, or anything else that you would like to display
in a web browser. Seaside’s component framework is one of its most power-
ful features and writing an application in Seaside amounts to creating and
manipulating components. You will learn how to use Seaside’s API, which is
based on the concept of “brushes”, to generate valid XHTML.

One of the great features of Seaside is that you do not have to worry about
manipulating HTML yourself and creating valid XHTML. Seaside produces
valid XHTML: it automatically generates HTML markup using valid tags, it
ensures that the tags are nested correctly and it closes the tags for you.

Let’s look at a simple example: to force a line-break in HTML (for instance,
to separate the lines of a postal address) you need to use a break tag: < />.
Some people use < > or < ></ >, and neither is valid in XHTML. Some
browsers will accept these incorrect forms without a problem, but some will
mark them as errors. If your content is getting passed on through RSS or
Atom clients, it may fail in unexpected ways. You do not need to worry about
any of this when using Seaside.

The basic metaphor used in Seaside for rendering HTML is one of painting
on a canvas using brushes. Methods such as that are called
to render content are passed an argument (by convention named) that
refers to the current canvas object. To render content on this object you can
call its methods (or to use the correct Smalltalk terminology, you can pass
it messages). In the simple example given above, to add a line-break to a
document you would use .

79

80 CHAPTER 7. RENDERING COMPONENTS

When you send a message to the canvas, you’re actually asking it to start
using a new brush. Each brush is associated with a specific type of HTML tag,
and can be passed arguments defining more detail of what you want to be
rendered. So to write out a paragraph of text, you would use

. This tells the canvas to start using the paragraph
brush (which causes ‘< >’ to be output), then output the text passed as the
argument, and finally to finish using the brush (which causes ‘</ >’ to be
output).

Many brushes can be passed multiple messages before they are finished,
by chaining the messages together with (this is called cascading messages
in Smalltalk). For example, a generic heading exists which can be used to
generate HTML headings at various levels, by passing it a message
with an argument specifying the level of heading required:

This will produce the HTML:

You can cascade as many messages as you need to each brush object.

You can easily tell Seaside to nest tags by using Smalltalk blocks:

This will produce the HTML:

Note that we’ve used a very handy shortcut here: many of the brush meth-
ods have an equivalent method that can be called with a single argument
so instead of typing you need only type

.

This is a very brief introduction that will allow you to begin to experiment
with how these techniques can be combined into a larger piece of content, as
you will see in the following sections.

7.1 Rendering Hello World

Our first Seaside component will simply display Hello world. Begin by creating
a category called ’SeasideBook-Hello’ and then create the class as a

7.1. RENDERING HELLO WORLD 81

subclass of as shown below.

When we use the term component in this text we generally mean an instance of
a subclass of . For now, just think of subclasses of as
“visual components”. When it is time for a component to be displayed, Seaside
sends it the message >> with a single argument
(by convention called) which is an instance of the class
(the “canvas”). Think of the canvas as the medium on which you will paint
your component. It provides a transparent interface to XHTML which makes
it easy to produce text, anchors, images etc., in a modular way (i.e., attached
to each component of your application). To start, we just want to show a
simple text message. Fortunately the canvas supports a message for
just this purpose, which we can use as shown below.

Note that all the classes in Seaside are prefixed with which acts as a
namespace. Do not use this prefix for your components. is intended for
Seaside framework classes.

Important

Great, we have a component but how do we get Seaside to serve it? For now,
evaluate the following code in a workspace:

Now open your web browser and go to http://localhost:8080/hello, and you
should see something very like Figure 7.1.

Seaside added XHTML markup for the skeletal structure of an XHTML
document (, and tags). OK, so what is happening here? Grossly
simplified: When we request this URI, Seaside creates a new instance of our
class for us and then sends it >> . After being
placed inside a skeleton XHTML document, the XHTML painted onto the
canvas is then returned to the web browser to be displayed.

Never invoke the method directly, Seaside will do it for
you.

Important

http://localhost:8080/hello

82 CHAPTER 7. RENDERING COMPONENTS

Figure 7.1: Hello World in Seaside.

You will never need to send your component the message
>> since the Seaside framework takes

care of that for you. When it is time to paint your component, Seaside
sends it . This is very similar to models used in most GUI
frameworks where a component (or window) is told to paint itself whenever
the windowing system deems necessary. Also, keep this in mind as you work
with Seaside: a rendering method is just for displaying a component not
changing its state.

Your rendering method is just for painting the current state of your compo-
nent, it shouldn’t be concerned with changing that state.

Important

7.2 Fun with Seaside XHTML Canvas

Let’s try making our component look a little more exciting. Rede-
fine the method as follows. Refresh your browser and you
should see a situation similar to Figure 7.2.

7.2. FUN WITH SEASIDE XHTML CANVAS 83

Figure 7.2: Some simple XHTML elements in Seaside.

You created two paragraphs, added some text, a break, a horizontal rule
and an image. But notice that you did not edit any tags directly and you
generated valid XHTML! In the following sections we will analyze what we
did in detail but for now let’s continue to explore what Seaside has generated
for us.

Sometimes you would like to know exactly what XHTML elements Seaside
is generating for you. Try to use your web browser to view the XHTML
source for your . You’ll find that it is not particularly readable since
it is not formatted for human readers (no line-feeds, indentation, etc) and
it contains much more than your single component XHTML. Not to worry,
Seaside has a great tool called the halos that can be used to get to a display
of nicely formatted XHTML source code of all the components displayed on
a page and do much more as well. At the bottom of your web browser’s
window you should see a tool bar (see Figure 7.3). The tool bar contains tools
that are available in development mode. For now you just have to know that
such buttons let you interact with the tools. Note that depending on your
Seaside version you may have different tools.

Halos let you interact directly with the components you are editing. Click
the “Halos” link and notice that a border, or ‘halo’, appears around your

84 CHAPTER 7. RENDERING COMPONENTS

Figure 7.3: The Seaside tool bar.

component’s visual representation. Figure 7.4 shows the component and
its halo. Figure 7.5 shows the html generated for the component currently
displayed. Even if your component contained links or actions, you can
activate them even when browsing the generated XHTML.

Figure 7.4: A component decorated with halos.

Your component is now displayed in the web browser but it is decorated
with a border. On the top you will now see a number of icons and links.
For now let’s focus on the links / on the right. The bold Render
means that you are currently seeing your component as normally rendered in
your web browser, as seen in Figure 7.4. Pressing Source will show you the
XHTML generated by Seaside for the component. Notice that what you see is
just the XHTML for the current component and not the complete application.
Notice that < /> and < /> are valid!

7.3. MORE FUN WITH THE SEASIDE CANVAS 85

Figure 7.5: XHTML of a component generated by Seaside.

7.3 More Fun with the Seaside Canvas

Now let’s have even more fun. Since Seaside uses plain Smalltalk rather
than templates to build web pages, we can use Smalltalk to build the logic of
our rendering method. We are only limited by our imagination and artistic
taste. For example, suppose that we want to display 10 Seaside logos. We can
simply use the Smalltalk loop as shown in the next method. See
the output in Figure 7.6.

Since we’re writing Smalltalk, changes are easy. In the next example, we
added a horizontal rule inside the loop but noticed that it didn’t look very
nice (see Figure 7.7), so we moved it outside the loop (see Figure 7.8).

86 CHAPTER 7. RENDERING COMPONENTS

Figure 7.6: Using Smalltalk to write a loop in our rendering method.

Using Seaside’s canvas and brushes eliminates many of the errors that occur
when manually manipulating tags.

7.4 Rendering Objects

Let’s take a moment to step back and review what we have learnt. Consider
the following method:

7.4. RENDERING OBJECTS 87

Figure 7.7: Rendering images vertically.

Figure 7.8: Rendering images horizontally.

88 CHAPTER 7. RENDERING COMPONENTS

There are four patterns that appear in this method.

1. . This message adds the renderable object to
the content of the component. It doesn’t use any brushes, it just tells the
object to render itself.

2. Message with zero or one argument. These create brushes. Just as
a painter is able to use different tools to paint on a canvases, brushes
represent the various tags we can use in XHTML, so will
produce the tag . Some brushes take an argument such as
other don’t. Section 7.5 will cover this in depth.

3. Composed messages. The expression creates an image brush,
and then sends it a message to configure its attributes.

4. Block passed as arguments. Using a block (code delimited by and
) allows us to say that the actions in the block are happening in the

context of a given tag. In our example, the second paragraph takes an
argument. It means that all the elements created within the block will
be contained within the paragraph.

About the message. As you saw, we use the message to
render objects. Modify the method of your ScrapBook
component as follows.

Refresh your web browser, see Figure 7.9. The method ren-
ders a string and the object representing the current date. It uses the method

. Most of the time you will use the method to render objects
or other components, see Chapter 12.

We use a block as the argument of the because we want to specify
that the string and the textual representation of the current date are
both within a paragraph. Seaside provides a shortcut for doing this. If you
are sending only the message inside a block, just use the renderable

7.4. RENDERING OBJECTS 89

Figure 7.9: Rendering object with the #render: method.

object as a parameter instead of the block. The following two methods are
equivalent and we suggest you to use the second form, see Figure 7.10.

Two equivalent methods.

Figure 7.10: Two equivalent forms.

About the method . You may see some Seaside code using the message
>> as follow.

The method produces the string representation of an object, as would
be done in an inspector. You can pass any object and by default its textual
representation will be rendered. In Pharo and GemStone the method
will call the method >> , while VisualWorks uses the method

90 CHAPTER 7. RENDERING COMPONENTS

>> . In any case, the string representation is generated by
sending the message >> to that object.
is an efficient short hand for the expression
in Pharo.

About the method . If you browse the implementation of
>> you will see that calls . Do not

conclude that you can send in your method.
>> is an internal method which is part of a double dis-

patch between the canvas and an object it is rendering. Do not invoke it
directly!

7.5 Brush Structure

In the previous section you played with several brushes and painted a canvas
with them. Now we will explain in detail how brushes work. A canvas
provides a simple pattern for creating and using these brushes as shown in
Figure 7.11.

1. Tell the canvas what type of brush you are using.

2. Configure the brush, specifying any special options that it may use.

3. Render the contents of this brush. This is often done by passing an
object such as a string or a block to .

It is not always necessary to send a brush the message. Do so only if
you want to specify the contents of the body of the XHTML tag. Since this
message causes the XHTML tag to be rendered, it should be sent last.

Note

Figure 7.11: Select brush, configure it, and render it.

Here is an example:

7.5. BRUSH STRUCTURE 91

produces the following XHTML

In this example

1. We first specify the brush (tag) we are using with .

2. We then send that brush the message to indicate that this
should be a level 1 heading.

3. We tell the brush the contents of the heading and cause it to be rendered
using .

Here are some examples that show that it is not necessary to use if you
do not specify the attributes of the brush.

Just a brush

produces

A brush with implicit content

produces

Setting the content explicitly

produces

Setting attributes directly

produces

If no configuration of the brush is necessary, it is usually possible to specify it
with a keyword parameter which becomes the contents of the tag. Thus the
two following expressions are equivalent

92 CHAPTER 7. RENDERING COMPONENTS

since level 1 is the default level for a heading.

As you can see, there are two cases where you can write more compact code.
These are summarized in Figure 7.12. There is a style checking tool called
Slime that checks for such cases. Slime is explained in Chapter 14.

Figure 7.12: Brush Simplifications.

The next section will show you what the other brushes are and how to find
information about them within Seaside.

7.6 Learning Canvas and Brush APIs

As we proceed and introduce new brushes, we will provide a table describing
the parts of the Brush API that are essential for this book. Once you’ve used
the table to find the brush to use for a given tag, you can read the source
code for that brush class to find out how to use it. For example, if you
want to produce a heading such as < > </ > you’ll see
that you should use the >> message which produces a
brush instance of which has the following API:

Methods in Description
Specify as the heading level for this
brush.
Render this heading tag with as its
body.

To help you to find the correct brush, the brushes are presented from the
perspective of the HTML tags in the following table:

7.6. LEARNING CANVAS AND BRUSH APIS 93

94 CHAPTER 7. RENDERING COMPONENTS

Smalltalk typically encourages explicit naming and avoids abbreviations
– the few seconds per day you save by typing an abbreviated method or
variable name may often come back much later to haunt you or someone
else reading your code as minutes or even hours spent trying to debug
code with poor readability.

Note

This book is not a complete Seaside reference. Once you’re done reading it
you will want to discover new brushes and brush options yourself. Let’s take
a few moments to describe how you would do that.

Suppose you know a specific XHTML tag you want to use and need to find
the appropriate brush method. Some brush method names are the same as the
corresponding XHTML tag name. For example you create a tag using the

>> brush method. In other cases the brush name is the long
form of the equivalent XHTML tag (>> creates a tag,

>> creates a tag etc). This choice makes your
methods a lot more readable than if the XHTML tags were used everywhere.
Compare the following two code fragments.

7.6. LEARNING CANVAS AND BRUSH APIS 95

If you can’t guess the brush method name just open a class browser on the
canvas class . Keep in mind that the method you’re interested
in may be in a superclass, see the hierarchy below.

Normally, the brush configuration methods that set tag attributes, use the
same name as the attribute. So, for example, to set the attribute
for an (image) tag you’d send the brush the >>

message. If you don’t know the tag attribute you need to open a class browser
on the specific brush class. Once again, keep in mind that the method you’re
interested in may be in a superclass. In addition to tag attributes, many of the
Seaside brushes support convenience methods and common Javascript hacks
(like setting the focus of an input field). The best way to find these is to use
your Smalltalk tools.

When you first begin using Seaside your canvas and brush vocabulary will
be limited and it might take you a few minutes to find what you’re looking
for. After a while you’ll discover that there is a significant shared API (imple-
mented in the abstract superclasses) and that you are already familiar with
many of the brushes. Also helpful is the autocompletion mechanism in the
development environment.

96 CHAPTER 7. RENDERING COMPONENTS

7.7 Rendering Lists and Tables

We will modify our to display the site contents using a
list. We want to use an ordered list so we’ll ask the canvas for an

7.7. RENDERING LISTS AND TABLES 97

>> brush, which answers with an instance of
. Inside the body of that tag we want a collection of list item tags

() which we get with the canvas’ >> method. We
use the short form so we don’t have to use for each list item.

Let’s use our earlier suggestions to write this code more succinctly. We’ll
use instead of , and we’ll use the ordered list
shortcut >> . We can use this last shortcut since we
aren’t configuring the ordered list tag.

Open this component in your web browser and you should see something
similar to Figure 7.13.

As good Smalltalkers following the DRY (Don’t Repeat Yourself) principle,
we can refactor this method to avoid an explicit enumeration as follows.
This demonstrates the power of having a programmatic way to specify the
component contents.

98 CHAPTER 7. RENDERING COMPONENTS

Figure 7.13: A list of items.

Let’s create a table of expected delivery dates. We suggest you perform a
similar refactoring of the following method which illustrates and

.

Notice that we generate table text entries in a fashion that is very sim-
ilar to what we did in the list example. Note also that we used

>> to designate a cell that represents a row header.

7.8. STYLE SHEETS 99

Figure 7.14: A table of items.

7.8 Style Sheets

The visual design of most modern web applications is controlled with Cascad-
ing Style Sheets (CSS). Seaside provides a simple method to add a style sheet
to a component. Override the >> method in your compo-
nent to return a CSS style sheet as a string, for example as follows:

Now, refresh your browser and you should see a centered “Hello world”.
Bring up the halo on this component and click the pencil. Notice that you can
edit the component’s style method here. If you save your changes then the
component’s style method will be updated.

Use of the >> method is discouraged for anything but writ-
ing sample code and rapid development while experimenting with compo-
nent styles. There are several reasons for this:

• It places too much emphasis on presentation at the component level and
makes it difficult to reuse components in applications with a different
“look”. The same motivation for having XHTML separate from CSS
applies to separating style documents from components.

• Having many small methods increases the load time of your pages.
Each >> method is loaded as a separate document.

• Having a method at the component level may give you the false
impression that this style only applies to that component. In fact, CSS
style sheets are loaded in the XHTML section of the document and

100 CHAPTER 7. RENDERING COMPONENTS

apply to the entire document, which means you have to be careful to
get your CSS selectors right. It can be very difficult to track down an
errant style selector when it is hidden in a component.

• It makes it more difficult to work with other non-Smalltalk developers
to style your documents.

As you work through this book use the method but keep in mind that a
more complex application would use an external style sheet as described in
Chapter 8 or file library style sheet as described in Chapter 17.

If you’ve used CSS regularly then you’re already familiar with using
(block elements) and (inline elements) with the attribute to help
you select specific parts of a document to style.

Here’s how one would, for example, give a red background to error
text:

This book is not about XHTML or CSS but Chapter 8 provides a quick
overview of CSS. We do have a few suggestions:

• Use and with CSS classes to mark content generated by your
components. Quite often, components render themselves entirely
within a whose CSS class is the name of the component’s Smalltalk
class. This makes it easier for CSS developers to locate the XHTML
elements that they want to style. Come up with conventions that work
for you and stick to them.

• Your component’s method should be simple. Do not
include style information, otherwise it will be difficult to customize the
way in which your component is displayed.

• Your component’s method should be short. If your
method gets longer than a couple of lines create intention-revealing
helper methods following the naming pattern . This
is especially useful if you start to use conditional statements and loops.
This technique will also allow you to override certain aspects of the
rendering process in subclasses of your component.

7.9. SUMMARY 101

• Use component method only when the style elements are very
specific to that component. Otherwise use style libraries as discussed
later in Chapter 17.

• Try to use style sheets to structure your document’s overall presentation,
rather than XHTML tables. There are many good CSS references which
show you how to lay out pages.

7.9 Summary

We have shown that you can specify the visual aspect of your component
using the Seaside brush API. These brushes will make it easy to produce valid
XHTML code. We have also demonstrated that you can use all the power
of Smalltalk to specify your content, and that all the visual aspects of your
application can be specified using CSS.

The method is automatically invoked by Seaside. It allows
you to specify the output of the application. Brushes are used to paint XHTML
tags onto a canvas object. Blocks are used to create a scope within tags. For
example:

renders the string ’today’ within < > </ >. A brush is an expression of
the form:

Code can be made more compact in two ways.

1. When the nested expression is a single object you can avoid blocks. The
expression is equiv-
alent to .

2. When you don’t need to configure the brush’s attributes, you don’t
need to use . The expression is
equivalent to .

In conclusion the following three code snippets create exactly the same output.
For readability and to avoid having to type unnecessary code, we usually
choose the shortest version possible:

102 CHAPTER 7. RENDERING COMPONENTS

Chapter 8

CSS in a Nutshell

In this chapter we present CSS in a nutshell and show how Seaside helps
you to use CSS in your applications. The goal of the chapter is not to replace
CSS tutorials, many of which can be found on the web. Rather, the goal
is to establish some basic principles and show how Seaside facilitates the
decoupling of information and its visual presentation in web browsers. A
clear separation between the page components and their rendering is really
central to Seaside. Sometimes this frustrates newcomers because Seaside does
not use template mechanisms for rendering. However, the Seaside approach
allows the clear separation between the responsibilities of the web designer
and the web developer. The developer is not responsible for rendering and
layout of the application, this is the job of the web designer.

The idea behind CSS is to decouple the presentation from the document itself.
The tags in a document are interpreted using a CSS (Cascading Style Sheet)
which defines the layout and style of the rendered document. In the context
of Seaside, the component rendering methods generate XHTML and the CSS
associated with the application specifies how such components should be
displayed and placed on the page.

8.1 CSS Principles

Basically, a CSS specification contains a set of rules. A rule is a description
of a stylistic aspect of one or more elements. A rule is composed of a selector
and a declaration. In the following rule is a selector which specifies that
the following declaration will be applied to all the first-level
headings, see Figure 8.1. The rule has the effect that all the first level headings
will be red.

103

104 CHAPTER 8. CSS IN A NUTSHELL

A declaration is composed of two parts separated by a colon and ended with
a semicolon. The first part is the property being specified, and the second is
the value assigned to that property.

We can group multiple CSS selectors to share the same property. The follow-
ing rules:

are equivalent to this single rule:

Similarly, it is possible to assign several values to a single selector. For exam-
ple, the following rule changes the alignment and color of headings.

Figure 8.1: Essential CSS structural elements.

Most declarations are inherited from higher levels of your document tree.
CSS property values assigned to one element are transferred down the tree to
its descendants. For example, a property value set in the body of a document
will be propagated to all its children, which may then redefine the value
locally. This is true for color, font, etc., but not for other properties like width,
height, and positioning, for which inheriting would not make sense.

While CSS declarations can be embedded in your document using a
tag, it is a good practice to have your CSS in a separate file. Then, if you were
writing your XHTML by hand, you would add a reference to your CSS file in
the head section of your document as follows.

8.2. CSS SELECTORS 105

It’s not necessary to write this in Seaside though. The CSS will be served by
using either the Seaside file library or with Apache, see Section 23.3.6. For
rapid prototyping, you can define the CSS of a component by overriding its

>> method.

8.2 CSS Selectors

CSS allows you to select individual elements of an XHTML document, or
groups of elements that share some property. Let’s look at the different kind
of selectors and how they can be used.

8.2.1 Tag Selector

The tag selector applies to specific XHTML tags, as we saw in the previous
examples. The selector consists simply of the tag name as it appears in the
XHTML source, but without the angle brackets. The following example
removes the underlining from all anchor elements and changes the base font-
size of the text within the page to 20 points. The tag is one of the top-level
tags automatically created by Seaside enclosing the whole page.

8.2.2 Class Selector

The class selector is by far the most often used CSS selector. It starts with a pe-
riod and usually defines a visual property that can be added to XHTML
tags. The following CSS fragment defines the and the
classes.

To use class selectors, simply set the >> attribute of the
tag you want to change. Here we associate the class selector to a
given div element and to a given paragraph.

106 CHAPTER 8. CSS IN A NUTSHELL

The generated XHTML code looks like this:

Multiple classes can be added to a single XHTML tag. So the following code
will display a single text that is centered and highlighted:

The generated XHTML code looks like this:

Often CSS classes are used to conditionally highlight certain elements of a
page depending on the state of the application. Seaside provides the conve-
nience method >> to make this as concise as possible.
The following code snippet creates ten tags and adds the CSS class
only if the condition evaluates to . This is shorter than to
manually build an construct.

8.2.3 Pseudo Class Selector

Pseudo classes are similar to CSS classes, but they don’t appear in the XHTML
source code. They are automatically applied to elements by the web browser,
if certain conditions apply. These conditions can be related to the content,
or to the actions that the user is carrying out while viewing the page. To
distinguish pseudo classes from normal CSS selectors they all start with a
colon.

8.2. CSS SELECTORS 107

The first rule specifies that elements (typically input fields of a form) get
a yellow background, if they have focus. The second rule specifies that all
elements will appear in bold while the mouse cursor hovers over them.

The following table gives a brief overview of pseudo classes supported by
most of today’s browsers:

Matches an activated element, e.g. a link that is clicked.
Matches the first child of another element.
Matches the first character within an element.
Matches the first line of text within an element.
Matches an element that has the focus.
Matches an element below the mouse pointer.
Matches an unvisited link.
Matches a visited link.

8.2.4 Reference or ID Selector

A reference or ID is the name of a particular XHTML element on the page.
Thus, the given style will affect only the element with the unique ID
(if defined). The ID selector is indicated by prefixing the ID with a charac-
ter:

To create a tag with the given ID use the following Seaside code:

The generated XHTML code looks like this:

There are a couple of issues to be aware of when using IDs in your XHTML.
IDs have to be unique on a XHTML page. If you use the same ID multiple
times, some web browsers may not render your page as you expect, or
may even refuse to render it at all. Furthermore some Javascript libraries
dynamically apply their own IDs to identify page elements and these may
override your carefully chosen IDs, causing your styling to fail in mysterious
ways. See Part V on Javascript programming.

So, to avoid invalid XHTML and conflicts with JavaScript code, do not use
IDs for styling. Exclusively use CSS classes for styling, even if the particular
style is used only once.

Important

108 CHAPTER 8. CSS IN A NUTSHELL

8.3 Composed Selectors

CSS selectors can be composed in various ways to give you more control over
which page elements they select.

Conjunction. If you concatenate selectors without any spaces, it means that
the matching element must satisfy all given selectors. This is generally used
to refine the application of class or pseudo-class selectors. For example, we
can write in the style sheet and this will affect only the tags that
also have the class . Similarly will only apply when the user
moves their mouse over anchor tags. It might be tempting to specify multiple
classes with . Even though this is part of the CSS standard,
it does not work in older versions of Internet Explorer.

Descendant. Another possibility is to combine selectors with a space. This
finds all elements that match the first term, then searches within each for
descendant elements that match the second term (and so on). For example,

selects all the elements within a tag that have the CSS class
. Elements that have the class but no tag as one of its parents,

are not affected.

Child. Yet another possibility is to combine two selectors with>. For example,
> . This selects all the tags with the class that are direct

children of a tag. Again this does not work in older versions of Internet
Explorer.

There are a few more selectors available in modern web browsers to allow
other criteria such as matching adjacent siblings. Since these selectors are not
widely implemented in web browsers yet, we don’t discuss them here.

8.4 Summary

Styling web applications is a broad topic. This chapter has shown you the
most important things to get started. For most people this will be enough to
get a decent looking prototype up and running. For commercial applications
you will often hire a graphic designer with experience of designing web pages.
Once such designers have worked with you on the desired look and feel of
your pages, they can provide you with a purpose built style-sheet. Using
the techniques described in this chapter you will be able to integrate such
style-sheets with the content generated by your application to make it look
beautiful.

We have found the following two documents to be helpful in learning more
about XHTML and CSS:

8.4. SUMMARY 109

XHTML Specification http://www.w3.org/TR/xhtml1/
CSS Level 2 Specification http://www.w3.org/TR/REC-CSS2/

There are many CSS resources on the web. We’ve accumulated a long list but
here are a few that stand out as sites that we repeatedly visit.

CSS Zen Garden http://www.csszengarden.com/
A List Apart http://www.alistapart.com/
Blueprint CSS http://www.blueprintcss.org/
The Layout Reservoir http://www.bluerobot.com/web/layouts/
Subtraction http://www.subtraction.com/

http://www.w3.org/TR/xhtml1/
http://www.w3.org/TR/REC-CSS2/
http://www.csszengarden.com/
http://www.alistapart.com/
http://www.blueprintcss.org/
http://www.bluerobot.com/web/layouts/
http://www.subtraction.com/

110 CHAPTER 8. CSS IN A NUTSHELL

Chapter 9

Anchors and Callbacks

In this chapter, you will learn to display anchors, also known as “links”.
Seaside can generate traditional anchors linking to arbitrary URI’s but the
most powerful use of anchors is to trigger callbacks (Smalltalk blocks of code)
which perform actions in your applications.

You’ve already seen that Seaside uses the concepts of the canvas and brushes
to insulate you from the complexities of generating valid XHTML. Similarly
Seaside uses callbacks to hide the even greater complexities of allowing user
interactions over the web.

Traditional web applications are stateless, that is, as soon as they have dis-
played a page to the user, they forget everything about that page. If the user
then clicks a button on that page, the web application knows nothing about
what was on the page the user was looking at, how the user got there, what
choices they had made previously, and so on. If the web developers want
to keep track of such information, they have to do so explicitly, by hiding
information on the web page, or by saving records into a datastore every
time they send a page to the user. Setting up, accessing and managing these
structures takes up much of the time and energy of web developers.

In Seaside, you don’t have these problems: the current state of the program,
all its variables and methods, and its history, are all stored automatically
whenever a page is sent to the user, and this information is all restored for you
behind the scenes if the user then performs any actions on that page.

This section will show you how to make use of all these features. We’ll
introduce you to your first real web application, “iAddress”, which is a
simple address book application to illustrate the points presented in this
chapter and the following ones.

111

112 CHAPTER 9. ANCHORS AND CALLBACKS

9.1 From Anchors to Callbacks

You can generate run-of-the-mill HTML anchors by creating an anchor brush
(send >> to the canvas), then configuring the anchor to
be associated with a URL using >> and specifying the text
for the anchor using >> . Here is a simple component that
displays an anchor that displays a link to the Seaside web site.

Register this component as “simple-anchor” then view the component
through your browser and you should see a page similar to Figure 9.1.

Figure 9.1: A simple anchor.

Clicking on the Seaside Website anchor will bring you to the website.

9.2. CALLBACKS 113

9.2 Callbacks

In Seaside, anchors can be used for much more than simple links to other
documents. An anchor can be assigned a callback, which is a Smalltalk block
(similar to closures or anonymous methods in other languages). When the
user clicks on the link, the user’s browser submits a request back to Seaside,
which then runs the code in the block (it evaluates the block in Smalltalk
terminology).

Here is an example of a component defining a callback which increases the
value of the variable of the component:

This method creates an anchor element by sending
>> to the canvas object (). The method re-

turns an instance of which is then used to set the callback (via the
method) and text for this anchor (via the message).

When the user clicks on the anchor labelled "click to increment", the callback
block is executed: it sends the message to the component which
in turn increments the count. Once this callback is processed, Seaside renders
our component (which will show the new count).

Register the above application as “anchor” and view it in your browser, see
Figure 9.2. Clicking on the link will increment the count.

Methods on Description
Specify a URL to visit when this link is clicked.
Specify a block that will be invoked when this
link is clicked.
This specifies the anchor text.

114 CHAPTER 9. ANCHORS AND CALLBACKS

Figure 9.2: Using a callback.

Callback Processing. When Seaside receives a request, it processes all
active callbacks and then asks the component to render itself. The order
of this process is important. Only when it has completed processing call-
backs will it move on to the rendering phase. It will become important to
remember this as you build increasingly complicated applications.

Important

9.3 About Callbacks

The contents of a callback are not limited to a single message send. A callback
can contain any valid Smalltalk code. In a callback you can do anything
you want, except that you should never use the render canvas from an outer
scope. This canvas will be invalid at the time the callback is executed, as it
has already been sent through the wire. Normally callbacks are not used for
rendering, with the exception of AJAX. In this case AJAX passes you a new
renderer into the callback, never use the old one from the outer scope. This
means never refer to the canvas argument in the rendering method in
which the callback is declared.

It is sometimes better to put your callback code in a separate method so that
you can use it from different callbacks or when subclassing your component.
Some callbacks also take an argument that contains the input entered by the
user (more on this later).

9.4. CONTACT INFORMATION MODEL 115

Do not render within callbacks. Do not send any messages to the
canvas while processing callbacks. At the time the callback is evaluated the
canvas is not active anymore.

Important

Another problem that new Seasiders might run into is that they try to change
the state of their application while rendering. This will inevitably lead to con-
fusing errors, so pay attention and memorise the following warning:

Do not change state while rendering. Don’t instantiate new components.
Don’t components. Don’t . Don’t add or remove decorations
(, , , etc.). Just produce output and de-
fine callbacks that do the fancy stuff you can’t do while rendering.

Important

9.4 Contact Information Model

In the next few chapters we will develop a simple application, named iAd-
dress, which manages an email address book. We will begin by creating a
new category , and creating in this category a class whose instances
will represent the contacts in our address book.

On the instance side, add the following methods:

Next we provide an instance creation method and a method that creates a
sample database of instances. Note that these are class side methods,
and should be put in an method category.

116 CHAPTER 9. ANCHORS AND CALLBACKS

Three more methods should be added to the class side:

We use the class variable named to store an of
instances. Note that as you work with this class, you can always reset

the database by evaluating the following expression.

9.5 Listing the Contacts

Let’s create a component which displays a list of contacts:

9.6. ADDING A CONTACT 117

In some Smalltalks, saving this method will raise a warning, telling you that
the selector is unknown. This is because we haven’t yet
defined the method with that name, but you should confirm that this name is
correct because we will define it in the next snippet:

Notice how we split up the rendering method. This is common practice
in Seaside. Register this component as “contacts” and then browse it at
http://localhost:8080/contacts and you should see a window similar to the
one shown in Figure 9.3.

Figure 9.3: Displaying the contact database.

Already, with just a few lines of very readable code, you are able to load data
from a (very simple) data store and list that data on a web page. Let’s see
how easy it is to start adding new records.

It is actually bad design to refer to the class directly. It would be
better to add a model instance variable to our component, but for now, we
will stick with what we have in the interest of simplicity.

Advanced

9.6 Adding a Contact

We will modify the render method so that we can add a contact to our
database, as follows. We add a callback associated with the text ’Add con-

http://localhost:8080/contacts

118 CHAPTER 9. ANCHORS AND CALLBACKS

tact’:

You should now have the Add contact link as shown in Figure 9.4.

Figure 9.4: Contact list with Add contact link.

Here we’ve made use of the >> method to display a
message for the user to enter a name, then another message for them to enter
an email address. We will discuss the method in Part III. Note that
a real application would present a form with several fields to be filled up by
the user.

9.7 Removing a Contact

We would like to display an anchor which, when clicked, removes an item
from this list. For this we just can redefine as follows. We
add another callback with the ’remove’ text, see Figure 9.5.

9.7. REMOVING A CONTACT 119

Figure 9.5: Contacts can now be removed.

Try it yourself. Click on the remove anchors. The corresponding contact entry
will be removed from the database. When you’re done playing around be
sure to reset the database as described at the end of Section 9.4.

It would be nice to get a confirmation before removing the item. The following
method definition fixes that.

We send the component (self) the message >> , which
displays a “Yes/No” confirmation dialog (See Figure 9.6).

The method returns if the user answers “Yes” and other-
wise. This is very straightforward because Seaside handles all the complexity
for you, which is amazing when you consider what a mess this kind of interac-
tion is with many other web frameworks. Let’s look at what happens:

1. The user clicks on the anchor, causing the web browser to submit a
request to Seaside.

120 CHAPTER 9. ANCHORS AND CALLBACKS

Figure 9.6: With a removal confirmation.

2. Seaside finds and evaluates the callback for the anchor (our block of
code).

3. The callback sends >> , which in turn
sends >> .

4. The execution of >> is suspended, and
the confirmation page is returned to the user’s web browser.

5. The user clicks the “Yes” or “No” button causing their browser to send
a request to Seaside.

6. The confirmation component handles this request, “answering” if
the user clicked “Yes” and otherwise.

7. When the confirmation component answers, the
>> method resumes execution

and processes the answer from , deleting the contact item if the
answer was .

So, in Seaside, it is easy for a method to display another component, wait for
the user to interact with it, and then resume execution when that component
has completed its job. This is akin to modal dialogs in Graphical User Interface
(GUI) applications, see Part III.

9.8 Creating a mailto: Anchor

In this section, we add “mailto:” links to our . Users of our
application can then simply click on the e-mail address to send an e-mail,
assuming that their web browser is properly configured to respond to

9.9. SUMMARY 121

links. As discussed in Section 9.1, we can specify the URL for an anchor
explicitly. Here is the modified version of our rendering method:

Test this new component in your browser to see that your mailto: links are
working correctly, see Figure 9.7.

Figure 9.7: With mailto anchor.

Note that rather than manipulating strings in this way, experienced Smalltalk-
ers might want to actually define an “email address” class to handle the dif-
ferent representations of email addresses. In fact, Seaside 3.0 already defines
a class WAEmailAddress which may be used for this very purpose.

9.9 Summary

In this chapter you saw callbacks, a powerful feature of Seaside. Using a
callback, we can attach an action or a small program to a link or button that
will be executed only when the element is activated. What is really powerful
is that you can write any Smalltalk code in a callback. In the next chapter, we

122 CHAPTER 9. ANCHORS AND CALLBACKS

will continue to enhance the iAddress application to show you how to handle
forms.

Chapter 10

Forms

In this chapter, we describe how to use XHTML forms and controls in Seaside.
Controls such as text input fields, popup lists, radio buttons, check boxes, date
inputs, and buttons are always created within an XHTML element. In
this chapter we show how to create this element and how to use these
common controls.

10.1 Text Input Fields and Buttons

Let’s continue with the same domain model class that we used in
Chapter 9. We wish to create a form that allows the user to update the name
and email address for a . Smalltalkers are generally very careful to
separate presentation from the core of the data model, so we will create a
component that will hold the user interface code to allow the user to edit the
underlying instance:

Notice that we’ve specified a instance variable; this will be used to
hold a reference to the instance of the class that we want to edit. Now
we create the accessors for the instance variable.

123

124 CHAPTER 10. FORMS

Look carefully at the method below. Before returning the value of
the instance variable, it checks that it has been set. If it hasn’t been
set, the code in the block is executed which assigns a sensible value to the
variable. This lazy initialisation is a common idiom in Smalltalk code. At
the moment we want to test this component as a stand alone component,
so the accessor method will lazily load one of the contacts for us.

Note

Next, we introduce our first new canvas message: the message . This
method returns an instance of . The only message in
of interest to us right now is which, as we’ve seen before, takes an
argument and renders that argument between the open and close XHTML
tags (i.e. the < > and </ > tags in this case). Controls such as input
fields, buttons, popups, list boxes, and so on must all be placed inside a
element.

Forgetting to add the form element is a common mistake. Controls such
as input fields, buttons, popups, list boxes etc., must all be placed inside
a tag. If not, they may not be rendered, or they may be rendered but
then ignored by the browser.

Important

Our form will have three elements: two text boxes, one each for the name and
the email address; and a button for the user to submit their changes.

Let’s look first at the text fields for the name and e-mail address inputs.
These fields are created by the canvas’ message which returns a

. For each brush we use two methods and .
The method determines what should be put into this field when it
is displayed to the user; here we use the accessor methods on the
instance to give these values. The method takes a block that has
a single argument. When the user submits the form, the block will have the
new contents of the field passed to it using this argument; here we use this to
update the instance (via its accessor methods).

Finally we would like our component to have a Save button. We cre-
ate a button with the canvas method, which answers a

. We assign a callback so that when the user presses this
button the message is sent.

10.1. TEXT INPUT FIELDS AND BUTTONS 125

Here’s the rendering method which creates two text inputs and a submit
button:

In Seaside 3.0, the brushes and you can also use the
message and interchangeably. They both define the contents
of the button of text input field.

Note

When the user’s browser submits this form, first all the input callbacks are
processed, then the (single) submit button callback will be processed. The
order is important because the input callbacks set the corresponding field in
the instance. The method expects those fields to be set before it
is invoked.

You should remember that Seaside processes all input field callbacks before
the submit button callback.

Important

Register this component as a new application called “contact”, see Sec-
tion 2.4.5 for details. Point your web browser to http://localhost:8080/contact
and you should see the form as shown in Figure 10.1. Try entering values
and submitting the form.

Brush Message Summary The two following tables show a summary of the
most useful and brush methods.

http://localhost:8080/contact

126 CHAPTER 10. FORMS

Figure 10.1: Filling up our contact view.

Methods on Description
Specify a single argument callback block
which is passed the string value entered by
the user.
Specify an initial value for the text input.
This is a convenience method explained in
the next section.

Methods on Description
Specify a zero-argument callback block
which is invoked when the user clicks this
button.
Specify a label for this submit button.
This is a convenience method explained in
the next section.

10.2 Convenience Methods

Seaside offers also some convenience methods that make your code shorter.
Let’s have a look at them.

Text input fields. The initial value of an input field often comes from an
accessor method on some class (for example). Similarly
your input field callbacks will often look like those in the previous example,
and simply take the text that the user entered and store it using a similar
method name (for example). Because this is such
a common pattern, text input brushes provide the method , which does
this automatically for you so you can write:

10.2. CONVENIENCE METHODS 127

instead of:

Buttons. Similarly, the label of a submit button can often be inferred from the
name of the method it invokes. Submit button brushes provide the method

, which does this automatically for you allowing you to write one
line:

instead of all of this:

The actual conversion from the selector name to the button label happens by
sending to the second argument. The default implemen-
tation of this method simply capitalizes the first letter of the selector and
returns a string, but applications might decide to customize that method
by overriding it.

Note

Text fields. For text fields, the method takes the (symbol) name of the
property to be edited and the object which holds the property.

Specifying method names. Seaside generates method names from the prop-
erty names using the usual Smalltalk accessor/mutator naming conventions.
For example, a property called would use a method called as an
accessor and a method called as a mutator. The accessor is used to
provide the starting value for the field and the mutator is used in a callback
to set the value of the property.

Generating labels. For submit buttons, takes the name of the method
to invoke and the object to which to send the message. It will use the method
name to generate a label for the button with a bit of intelligence. The symbol

becomes the label “Save”, whereas the symbol
becomes “You Can Use Camel Case”. If you don’t like this translation, use the

and methods, as demonstrated in the last section.

So, putting all these techniques to work, our render method could be changed
to:

128 CHAPTER 10. FORMS

All of the Seaside input components support both the and the more
primitive and methods, so we will use whichever form
makes our code the more readable. Anchors also support .

As we mentioned above, controls such as input fields, buttons, popups, list
boxes, and so on must all be placed inside a tag. Typically only a single

tag is needed on a page. tags must not be nested but multiple
tags can occur, one after another, on a single page. Only the contents

of a single will be submitted by the web browser though (normally
determined by the form in which the user clicked a submit button).

Important

10.3 Drop-Down Menus and List Boxes

XHTML provides a single element, , which can be shown by web
browsers as a drop-down menu or a list box, depending on the parameters
of the element. In this section, we look at examples of each type. We’ll start
with a drop-down menu.

For the sake of an example, let’s track the gender of each of our contacts.
Change the class definition to include the instance variable
and add the methods which manipulate it, as shown below.

10.3. DROP-DOWN MENUS AND LIST BOXES 129

We would like to add a drop-down menu to our editor that allows the user to
indicate the gender of someone in the contact list. The simplest way to do this
is with the canvas’ method. This method returns a .

The following method shows how the brush can be parametrized to
render a list for gender selection.

Notice that allows us to specify which item is selected by default
(when the list is first displayed). Let’s update the method to display the
gender as follows:

Try the application now. You should see a drop-down menu to select the
gender, as shown in Figure 10.2.

Modify the gender input so that it specifies a list size:

130 CHAPTER 10. FORMS

Figure 10.2: Gender as a drop-down menu.

Experienced Smalltalkers will be getting concerned at the length of this
method by now. Generally it is considered good practice in Smalltalk to
keep your methods to a few lines at most. For the purposes of this exercise,
we will be ignoring this good practice, but you may want to think about
how you could split this method up.

Advanced

Now view the application in your browser. Most browsers will show a list

10.4. RADIO BUTTONS 131

rather than a drop-down menu, see Figure 10.3.

Figure 10.3: Gender as a list.

Select Brush Message Summary. The following table shows a summary of
the most important message of the brush.

Methods on Description
Specify the list of options from which to
select.
Specify the object which should be shown
as selected by default.
Specify a single-argument callback block
which will be passed the object selected by
the user.
Specify the number of rows of the list that
should be visible. Note, if you don’t specify
a size, the default on most browsers will be
to use a drop-down menu. If you specify
a size then most browsers will present the
options in a list box.
This is a convenience method as explained
previously.

10.4 Radio Buttons

In our gender example above, the list is a bit of overkill. Let’s present the
user with radio buttons instead. We create radio buttons with the canvas’

message, which returns a . Radio buttons are

132 CHAPTER 10. FORMS

arranged in groups, and radio buttons in a group are mutually exclusive, so
only one can be selected at a time.

We will make two changes to our method: declare a local
variable named and replace the list code with a radio button definition,
as shown in the following method:

First, we ask the canvas to create a new group using . We then
ask the group for a new radio button using the message . The

message determines if the browser will render the page with that
button selected. Notice in our example that we select the button if it corre-
sponds to the current value of the variable. That way the form reflects
the state of our component.

The method should be a zero argument callback block which is
executed when the page is submitted with that radio button selected. Note
the callback block is not called for options that were not selected.

Radio Button Brush Summary. The following table gives a summary of the
most important brush messages.

10.5. CHECK BOXES 133

Figure 10.4: With radio buttons.

Methods on Description
Specify the radio group to which this but-
ton belongs.
Specify a boolean value that indicates
whether this radio button is initially se-
lected.
Specify a zero argument callback block
which is called if this button is selected
when the submit button is pressed.

10.5 Check Boxes

Let’s modify our model class again. This time we will add an instance variable
(and accessors) for a Boolean property that indicates if a contact wants to
receive e-mail updates from us.

134 CHAPTER 10. FORMS

We will use the canvas’ method to produce a as shown
in the following method. Checkboxes are useful for boolean inputs such as

.

Next, update the display method to show the value of this flag. Figure 10.5
shows our new form.

Try the application now. Fill out the form and submit it to see that the
checkbox is working.

Model adaptation. It often requires some work to get the model and the UI
(web or graphical) to communicate with each other effectively. For example,
we can’t write this inside the render method:

This is because the method expects the property to have acces-
sors and mutators. In this case we can either configure the brush with

10.6. DATE INPUTS 135

Figure 10.5: With the checkbox.

>> and , or use a go-between or adapter method
in our view class. This is what we did in the example above. Callbacks are
flexible and designed for specifying such an interface.

Checkbox Brush Message Summary. The following table shows a summary
of the most important messages of the brush.

Methods on Description
Specify a one-argument callback
block which will be passed true or
false.
This is a convenience method.
Specify two zero-argument blocks.
One is performed if the box is
checked when the form is submit-
ted, and the other if the box is not
checked.
Specify the initial value for the check-
box.

10.6 Date Inputs

Using the canvas’ method is the simplest way to provide a date
editor. It produces a , which understands the messages
and .

First, add a instance variable to the class and produce
accessor methods for it. You should be familiar with how to do this by now.

136 CHAPTER 10. FORMS

If not, look back at the changes you’ve made in the previous sections.

Then add the following code to the block on your
method:

For those who like to see the date presented in a different order, cascade-send
to the brush.

Your method should now look like this:

Finally update our display method, as below:

10.7. FILE UPLOADS 137

Figure 10.6: Full contact view.

Because the instance variable is , the date is displayed with the
current date. Your final version of the application should look something like
Figure 10.6.

Date Message Summary. The following table shows the messages of the
brush.

Methods on Description
Specify a single argument callback block which
is passed a object representing the date
entered by the user.
Specifies the date with which we will initialize
our date editor. If is , today’s date is
used.
Specify the order in which the , and

fields are rendered.

10.7 File Uploads

You can use a form to allow a user to upload a file. Here is how you would
construct a simple form for a file upload.

138 CHAPTER 10. FORMS

This code will produce a form, as shown in Figure 10.7. Some browsers may
also display a text input field so you can enter the file path.

Figure 10.7: File uploads.

You must send the message to the form brush if you want to use
the form for file uploads (as shown in this example). If you forget to do
this, the upload won’t work.

Important

Press the Choose File button to select the file, then press Send File to start the
upload. When the upload completes, Seaside will invoke our callback which
sends the message with a object that represents your
file. As an example, the method below will save the file in a directory called

in Pharo.

Note that it is possible to press the Send File button before selecting a file. In
this case the callback is not triggered.

To make this method more robust, you could also check for empty files and
devise a check that would prevent malicious persons from uploading many
large files in an attempt to fill up your disk space. Note also that this method
will quietly replace an existing file with the same name. You could easily
change this method so that it checks for duplicate file names or tests the size
of the file before saving it.

10.8. SUMMARY 139

Alternatively you can offer to download the file again. Add an instance
variable called and change your code according to the following exam-
ple:

10.8 Summary

Seaside makes it easy to display forms with buttons, popup lists, checkboxes,
etc. It is easy in part because of the callbacks that it uses to inform you
of the value of these items. In Chapter 9, we saw how callbacks are used
with anchors. Seaside uses the power of callbacks to make your job much
easier.

140 CHAPTER 10. FORMS

Part III

Using Components

141

143

This part describes the core of Seaside: its component model. In Seaside,
components are generally designed to have a direct relationship with the state
of some part of the underlying model, and to take advantage of their state to
change the way they display themselves and interact with the user. The fact
that this state is encapsulated locally in the component, rather than stored
globally as “session state”, sets Seaside apart from most other web application
development frameworks. For example, a list can be made responsible for
holding the currently selected item or a calendar the currently selected date. In
fact, you’ve already started building your applications this way: in Chapter 10
the knew which contact it was editing. Understanding how best
to use these stateful components, and how to build interactions between them,
allows us to build widgets just as we would for desktop applications.

You have already seen how components can be created and how they can
display themselves on the web page. This section will demonstrate how you
can have more control over these processes and how components can interact
with other components. You will see two forms of interaction. A component
can embed content and functionality from other components into its own web
page; alternatively, it can call other components, allowing them to take over
its web page until they return a result to the main component. Tasks can be
used to give more control over these interactions.

You will also see how a pre-defined component can be given different be-
haviour and appearance to allow it to be re-used in different ways. This reuse
is achieved in Seaside via component decoration.

Finally, you will see a discussion of “Slime”, which despite its name is an
extremely useful library to check and validate your Seaside code.

144

Chapter 11

Calling Components

Seaside applications are based on the definition and composition of compo-
nents. Each component is responsible for its rendering, its state and its own
control flow. Seaside lets us freely compose and reuse such components to
create advanced and dynamic applications. You have already built several
components. In this chapter, we will show how to reuse these components by
“calling” them in a modal way. Embedding components in other components
will be discussed in the following chapter.

11.1 Displaying a Component Modally

Seaside components have the ability to specify that another component
should be rendered (usually temporarily) in their place. This mechanism is
triggered by the message . During callback processing, a component
may send the message with another component as an argument. The
component passed as an argument in this way can be referred to as the delegate.
The method has two effects:

1. In subsequent rendering cycles, the delegate will be displayed in place
of the original component. This continues until the delegate sends the
message >> to itself.

2. The current execution state of the calling method is suspended and does
not return a value yet. Instead, Seaside renders the web page in the
browser (showing the delegate in place of the original component).

The delegate may be a complex component with its own control flow and state.
If the delegate component later sends the message , then execution of

145

146 CHAPTER 11. CALLING COMPONENTS

the (currently suspended) calling method is resumed at the site of the .
We will explain this mechanism in detail after an example.

From the point of view of a component, it calls another component and
that component will (eventually) answer.

Important

11.2 Example of call/answer

To illustrate that mechanism, let’s use the and
components developed in earlier chapters. Our goal is simple: in a

component, we will display a link to edit the contacts
(as shown in Figure 11.1), and when the user selects that link, display
the on that . We accomplish this using the mes-
sage.

Figure 11.1: New version of the ContactListView.

The method is passed a contact as an argument. It creates
a component for the contact and calls this new component by
sending it the message .

Next, we change the method >> to invoke
the method we just defined when the edit link is selected, as below:

11.3. CALL/ANSWER EXPLAINED 147

In the previous chapters, the method of the component
just displayed the contact values using a dialog. Now, using the message

, we are able to return control from the newly created
component to the which created it and called it. Modify the

so that when the user presses Save it returns to the caller (the
):

Have a look at the way the method creates a new instance of
and then passes this instance as an argument to the mes-

sage. When you call a component, you’re passing control to that component.
When that component is done (in this case the user pressed the Save button),
it will send the message to return control to the caller.

Interact with this application now and follow the link. Fill out the resulting
form and press the Save button. Notice that you’re back to the
component. So, you another component and when it is done it should

, returning control of the display to the caller.

You can think of the call/answer pair as the Seaside component equivalent
of raising and closing a modal dialog respectively.

Important

11.3 Call/Answer Explained

Figure 11.2 illustrates the call/answer principle. The application is showing
our component.

When the user presses edit next to a contact name, the
component executes its callbacks until it reaches the line ,
where it sends the message and passes it the component.

148 CHAPTER 11. CALLING COMPONENTS

Figure 11.2: Call and Answer at Work.

This causes to take control of the browser region occupied by
. Note that the other component , can continue to be ac-

tive; this is an example of having multiple, simultaneous control flows in an
application.

When the component reaches the line , it sends the
message , which has the effect of closing the component,
giving back control to the component, and possibly return-
ing a value, as you will see in the next section. The returned value can be
a complex object such as credit card information or a complete Contact ob-
ject, or it can be as simple as a primitive object such an integer or a string.
With Seaside you handle objects directly and there is no need to translate or
marshall them in order to pass them around different components.

After the message send, the execution of the component
continues just after the call that opened the component

. This is marked as in the diagram.

11.4 Component Sequencing

As we just showed, calling is a modal interaction, that is, the method
doesn’t return until the component it called answers. That allows us to
sequence component display.

11.5. ANSWER TO THE CALLER 149

Let’s suppose that you have redefined the method as shown
above. The method calls the view component and then, after the view an-
swers, it displays a message. Here’s something to wrap your brain around.
What if the user fills in the form, presses the Save button, then presses Back
and changes the values in the form and saves again? After the first save, the
above method calls >> but when the user presses Back
your method backs up into the of .

What Seaside does is the following: It snapshots the state of execution of
your method so that it can jump back in response to the Back button. We’ll go
into much more detail about this later in Section 11.8, For now just try it and
confirm that things work as you’d expect.

11.5 Answer to the Caller

There is a version of the message which takes an argument. This
version, named returns a value to the caller. One common use of
this is to return a boolean to indicate if the user canceled or completed the
operation. Since we don’t have a cancel button in our , let’s add
one and answer appropriately, see Figure 11.3.

But before doing that, we will refactor the method. It’s too
long and overdue for refactoring. Using the refactoring capabilities of your
favorite browser, extract methods so that it looks like this.

Now edit your new method to add a cancel button:

Redefine the following methods to cancel and save the editing.

150 CHAPTER 11. CALLING COMPONENTS

Figure 11.3: Contact edition with a cancel button.

Now we can change the method >> to use the
returned value to avoid showing the final dialog.

If you try using the application as it currently stands, you may get a nasty
surprise: if the user changes the name in the form and then presses Cancel, the
underlying object will still be updated! So, rather than passing it the object
we want to edit, we should instead pass it a copy of the contact to be edited
and then, depending on the result passed by the , decide whether to
substitute the corresponding contact in the contact list.

When you edit a user now, you’ll notice that the user ends up moved to the
end of the list of the users; this is the expected behaviour.

Note

11.6. DON’T CALL WHILE RENDERING 151

11.6 Don’t call while rendering

One of the most common mistakes for first-time Seaside developers is to send
the message a component from another component’s rendering method,

. The rendering method’s purpose is rendering. Its only job
is to display the current state of the component. Callbacks are responsible
for changing state, calling other components, etc. If you want to render one
component inside another one read Chapter 12.

Don’t a component from , only call components
from callbacks or from subclasses.

Important

11.7 A Look at Built-In Dialogs

Now it’s time to look at the source code for the >> method
from the class. Do not type this code, it is already part of Seaside.
The definition of the method of the class is the following
one.

The method sends the message to raise a newly created
component, exactly the same way as does.

How do you find related methods? Looking through re-
veals:

• >> displays a dialog with a message to the user
until he clicks the button.

• >> displays a message and Yes and No buttons.
Returns true if user selected Yes, false otherwise.

• >> , >> ,
>> , and >>

display a message, an optional label and an input box. The string
entered into the input box is returned. If the argument is
specified it is used for the initial contents of the input box.

• >> , >> ,
>> , and

152 CHAPTER 11. CALLING COMPONENTS

>> display a drop-down list
with different choices to let the user choose from. A default selection
and a title can be given. The methods answer the selected item.

11.8 Handling The Back Button

Web browsers allow you to navigate your browsing history using the back
button. The problem is that when you press the back button, the application
interface and the underlying model can be out of sync. When you press the
back button, only the browser is involved and not the server and the server
has no way to know that you changed. Therefore your UI can be out of
sync from its domain. Seaside offers you a way to control the back button
effect.

There are two kinds of synchronization problems: UI state and model state.
Seaside offers a good solution for UI state synchronization.

Experiment with the problem. In this section, we show the back button prob-
lem and show how Seaside makes it easy to handle. Perform the following
experiment.

1. Browse the application that we developed in the first chapter
of this book.

2. Click on the ++ link to increase the value of the counter until the counter
shows a value of 5.

3. Press the back button two times: you should see 3 now.

4. Click on the ++ link.

Your web browser does not show you 4 as you would expect, but instead
displays 6. This is because the component was not aware that you
had pressed the back button. This situation can also arise if you open two
windows that interact with the same application.

Solving the Problem. Seaside offers an elegant way to fix this problem. De-
fine the method >> so that it returns an array that contains
the objects that you want to keep in sync. In our example we want
to keep the count instance variable synchronized so we write the method as
follows.

This is not really what we want because the Seaside backtracking support is
mostly intended for UI state and not model state. We want to backtrack the
counter component, not the integer instance variable.

11.9. SHOW/ANSWER EXPLAINED 153

Redo our back button experiment and you will see that after pressing the back
button two times you can correctly increment the counter from 3 to 4.

11.9 Show/Answer Explained

This section explains the method in . is a variation of
. You may want to skip this section if you are new to Seaside. You will

find it helpful later on if you need to have more control on how components
replace each other.

The method passes the control from the receiving component to the
component given as the first argument. As with the receiver will be
temporarily replaced by . However, as opposed to ,
does not block the flow of control and immediately returns.

If we replace the in the method with the application
does not behave the same way as before anymore:

The reason is that does not block and the confirmation is displayed
immediately, effectively replacing the . Clicking on the Ok then
reveals the . Of course this is not the intended behavior. We can
fix this issue by assigning an answer handler to the view that displays the
confirmation:

This solves our problem, but is arguably not very readable. Luckily there is
that combines the two method calls:

154 CHAPTER 11. CALLING COMPONENTS

In fact, what we did above is continuation-passing style. Like this we can
emulate the blocking behavior of by using and a block that defines
what happens afterwards. Any code that uses can be transformed
like this, however in case of loops that can become quite complicated (see
Section 11.9.1).

11.9.1 Transforming a Call to a Show

Why is useful at all?

• First of all allows one to replace multiple components in one
request. This is not possible with as it blocks the flow of execution
and the developer has no possibility to display another component at
the same time.

• Another reason to use is that it is more lightweight and that it uses
fewer resources than . This means that if the blocking behavior is
not needed, then is more memory friendly.

• Finally some Smalltalk dialects cannot implement due to limita-
tions in their VM.

If you want or must get rid of the statements in a sequence of calls
things are relatively simple. Transform code using

to the following using

If you have a loop like the following one, things are slightly more compli-
cated:

11.10. SUMMARY 155

The example below shows an equivalent piece of code that uses recursion to
implement the loop:

The transformation technique applied here is called continuation-passing style
or short CPS. The block implements the continuation of the flow
after the shown component answered. Unfortunately for more complicated
flows CPS lead to messy code pretty quickly.

11.10 Summary

In this chapter we showed how to display component using the method.
In the next chapter we will demonstrate how to embed components within
each other.

156 CHAPTER 11. CALLING COMPONENTS

Chapter 12

Embedding Components

Building reusable components and frameworks is the goal of all developers
in almost all parts of their applications. The dearth of truly reusable (canned)
component libraries for most of the existing web development frameworks is
a good indication that this is difficult to do.

Seaside is among the few frameworks poised to change this. It has a solid
component model giving one all of the mechanisms necessary to develop
well encapsulated components and application development frameworks.
We have seen in Section 11.1 that components can be sequenced. In this
chapter we show how to embed one component inside another component.
In Section 12.6, we will see how to decorate a component to add functionality
or change its appearance and as such reuse behavior. With a good component
model, the possibility to display components and create new ones by reusing
existing ones, writing Seaside applications is very similar to writing GUI
applications.

We will start by writing an application which embeds one component, then
refactor it into an application built out of two components. Finally we will
discuss reuse and show how component decoration support this. We will
show how components can be plugged together using events to maximize
reuse.

12.1 Principle: Component Children

When we want to display several components on the same page, we can
embed the components into each other. Usually a Seaside application consists
of a main component which is usually called the root component. All the

157

158 CHAPTER 12. EMBEDDING COMPONENTS

child components of the root component and their recursive children form a
tree of nested components.

Child components are no different to other components or the root component.
Note that the component tree of an application might change during the
lifetime of a session. Through user interaction new components can be shown
and old ones can be hidden.

Seaside requires that each component knows and declares all its visible child
components using the method >> . This allows Seaside
to know in advance what components will be visible when building the
HTML and configure and trigger some event on these components before the
actual rendering happens.

Note that Seaside does not require children to know their parents and the
framework also does not provide this information. When instantiating the
components such a link can be easily established, but we do not suggest
doing so as it would introduce strong coupling between the child component
and its parent. For example, it would no longer be easily possible to use the
same component in a different context.

Here are the steps that should be performed to embed components within
another.

1. The parent component initializes the child components in the method
.

2. The parent component defines a method named that returns
all its direct child component instances, regardless of how and where
they are store.

3. The parent component renders its child components in the method
using .

12.2 Example: Embedding an Editor

We will build a new variation of our contact list manager. What we’d like
to do is adapt our contact manager so that we see the item editor on the
same page as the contact list item. That is, we want to embed the editor on
the same page as the address list itself. While we could adapt the previous
component to embed a component, we prefer to define a new component
from scratch.

We already have a working editor component so let’s just add it to a new
component. That is, we’re going to embed the compo-

nent within the component.

12.2. EXAMPLE: EMBEDDING AN EDITOR 159

Figure 12.1: Embedding a ContactView into another component.

Create the class. First we create the class of the new component
.

We add an instance variable, , to the class which is a reference
to the editor that we will embed within our component. It is not
always necessary to maintain a reference to an embedded component: we
could also create the component on the fly (as soon as it is returned as part of
the component’ children). In our case, since the elements of our application
are stateful objects, it is better to reuse components, taking advantage of the
fact that they can store state, rather than recreating them. We will revisit this
issue in Section 12.7.

Initialize instances. The method creates the editor and gives it
a default contact to edit. We can then reuse the editor to edit other con-
tacts, avoiding the need to create a new editor every time we want to edit
something.

160 CHAPTER 12. EMBEDDING COMPONENTS

Specifying the component’s children. Any component that uses embed-
ded children components should make Seaside aware of this by returning
an array of those components. This is necessary because Seaside needs to
be able to figure out what components are embedded within your compo-
nent; Seaside needs to process all the callbacks for all of the components
that may be displayed, before it starts any rendering of those components.
Unless you add the children components to the parent’s method,
the first Seaside will know about your children components is when you
reference them in your rendering methods.

Important

Specify the children. Here is how to define the method which
returns an array containing the editor that is accessible via the instance
variable .

Specify some actions. Now define methods to create, add, remove and edit
a contact.

Some rendering methods. We use a table to render the current contact list
and let the user edit a contact by clicking on the name link.

12.2. EXAMPLE: EMBEDDING AN EDITOR 161

Figure 12.2: Embedding a ContactView into another component with Halos.

Register the application as "iAddress" and try it out. Make sure that the
editor is doing its job. Activate the halos. You’ll notice that there is a separate
embedded halo around the editor component, see Figure 12.2. It is very

162 CHAPTER 12. EMBEDDING COMPONENTS

helpful to inspect the state of a component in a running application (or view
the rendered HTML.)

Our simple implementation of >> will save changes
even when you press cancel. See Section 11.5 to understand how you can
change this.

Note

12.3 Components All The Way Down

The changes to your code in this section are presented purely to help you
explore the embedding of components: they are not an example of good UI
design, and are not required to progress with the following sections.

Let’s define a component that manages our list of contacts using com-
ponents all the way down. Figure 12.3 shows that we will build
our application out of two components: and

. In addition, will be composed of
several components. We really get a tree of
components. This exercise shows that a component should be designed to be
pluggable. It also shows how to plug components together.

A Minimal Contact Viewer. We would like to have a compact contact
viewer. First we will subclass the class to create the class

. This class has an instance variable
which will hold a reference to the component that will contain it, since it
should know how to invoke the contact editor.

When the user clicks on the contact name, we want the associated user object
to pass itself to the parent for editing. A similar action should occur when
removing a contact from the database. Note that this component does not
include a form. This is because only one form should be present on a page
at any time, so a component is much more reusable if it does not define a
form.

12.3. COMPONENTS ALL THE WAY DOWN 163

Figure 12.3: With components all the way down.

Class Definition. Now we define the class . Since
this component will embed all the contact viewer components, we add an
instance variable , that will refer to them. We also define an
instance variable to refer to the editor that will show the detailed information
of the currently selected contact.

164 CHAPTER 12. EMBEDDING COMPONENTS

We will use an identity dictionary to keep track of the contact viewer as-
sociated with each contact. Initializing our top level component consists
of first creating the editor and then creating the viewers for the existing
contacts.

Children accessing and rendering. We have now to specify that the con-
tact viewers are embedded within the and how to
render them.

We define a couple of methods to manage contacts.

12.3. COMPONENTS ALL THE WAY DOWN 165

Plugging everything together. Now we are ready to define a new version of
. We simply subclass and pay attention to the fact that the

list is now a component. So we initialize it, add it as part of the children of
the component and render it.

We pass the list component to the editor which has already been initialized in
. We must also invoke the list’s method, since it

is the list that manages the creation of contacts. The rendering of the compo-
nent includes a form in which the other components are embedded.

Note of course that embedding such an editor under the list of contacts is not
a really good UI design. We just use it as a pretext to illustrate component
embedding.

166 CHAPTER 12. EMBEDDING COMPONENTS

12.4 Intercepting a Subcomponent’s Answer

Components may be designed to support both standalone and embedded
use. Such components often produce answers (send) in re-
sponse to user actions. When the component is standalone the answer is
returned to the caller, but if the component is embedded the answer is ig-
nored unless the parent component arranges to intercept it. In our example
application the editor provides an answer when the user presses the “Save”
button (i.e. in >>) but this answer is ignored. It is easy to
change our application to make use of this information; let’s say we want
to give the user confirmation that their data was saved. To accomplish
this, change >> and add the >> be-
haviour:

Now restart your application (press “New Session”) and try it out. When you
press the save button in the editor you should get a dialog tersely notifying
you that your data is saved. Note that the component answer is passed into
the block (although we didn’t use it in this example).

The method is an important protocol for handling components and
their answer.

12.5 A Word about Reuse

Suppose you wanted a component that shows only the name and email of
our component. There are no special facilities in Seaside for
doing this, so you may be tempted to use template methods and specialize
hooks in the subclasses. This may lead to the definition of empty methods in
subclasses and may force you to define as many subclasses as situations you
want to cover, for example if you want to create a and a

.

An alternative approach is to build more advanced components using the
messages or with a list of method selectors to be
sent:

12.6. DECORATIONS 167

You can also define a component whose rendering depends on whether it is
embedded. Here is an example where the rendering method does not wrap its
content in a form tag when the component is in embedded mode (i.e., when
it would expect its parent to have already created a form in which to embed
this component). A better way of doing this would be to use a
as shown in Section 12.6.

This would then be embedded by another component using code like:

If you need more sophisticated dynamic control over the rendering of your
component, you may want to use Magritte with Seaside. Magritte is a frame-
work which allows you to define descriptions for your domain objects. It then
uses these descriptions to perform automatic actions (loading, saving, gener-
ating SQL...). The Magritte/Seaside integration allows one to automatically
generate forms and Seaside components from domain object described with
Magritte descriptions, see Chapter 26. Magritte also offers ways to construct
different views on the same objects and so the possibility to create multiple
varieties of components: either by selecting a subset of fields to display, or by
offering read-only or editable components. As such, it is an extremely useful
addition to plain Seaside.

12.6 Decorations

Sometimes we would like to reuse a component while adding something to
it, such as an information message or extra buttons. Seaside has facilities for
doing this. In Seaside parlance, this is called “decorating” a component. Note
that this is not implemented using the design pattern of the same name, but

168 CHAPTER 12. EMBEDDING COMPONENTS

Figure 12.4: A readonly view of the ContactView.

rather as a Chain of Responsibility. This means that decorations form a chain of
special components into which your component is inserted, and that a given
message pass through the chain of decorators.

Decorations can be added to any component by calling
>> . Decorations are used to change the be-

havior or the look of the decorated component.

A component decoration is static in the sense that it should not change after
the component has been rendered. Thus, a decoration should be attached to
a component either just after it (the decorator) is created, or just before the
component is passed as argument of a message

There are three kinds of decorations:

• Visual Decorations. These change a visual aspect of the decorated com-
ponent: renders a heading above the component;

renders a form with buttons around the component;
and renders a border with a close widget around
the component.

• Behavioral Decorations. These allow you to add some common be-
haviours to your components: allows you to
add validation of the answer-argument and the display of an error
message.

• Internal Decorations. These support internal logic that you will use
when building complex applications: is used to imple-
ment the message; is used to handle the
message.

12.6. DECORATIONS 169

12.6.1 Visual Decorations

Message Decorations. renders a heading above the
component using the message >> . As an example
we add a message to the component by sending it ,
see Figure 12.5.

Figure 12.5: Adding a message around a component.

Note that the >> returns the decoration, so you may
want to also use the message if you need to refer to the component
itself:

Window Decoration. renders a border with a close wid-
get around the component.

The following example adds a window decoration to the com-
ponent. To see it in action, use the contacts application implemented by
the component (probably at http://localhost:8080/contacts. The
result of clicking on an edit link is shown in Figure 12.6.

http://localhost:8080/contacts

170 CHAPTER 12. EMBEDDING COMPONENTS

Figure 12.6: Decorating a component with a window.

You may see that your Save and Cancel buttons are duplicated: you can
remove this duplication by commenting out the
line from >> .

Note

It is much more common to add a window decoration when calling a com-
ponent rather than when initializing it. The following example illustrates a
common idiom that Seaside programmers use to decorate a component when
calling it. It uses a decoration to open a component on a new page.

Form Decoration. A places its component inside an HTML
form tag. The message >> should be used to spec-
ify the buttons of the form. The button specification is a list of strings or
symbols where each string/symbol is the label (first letter capitalized) for
a button and the name of the component callback method when button is
pressed.

12.6. DECORATIONS 171

The component that a decorates must implement the
method >> , which returns the string/symbol
of the default button (the one selected by default) of the form. For each
string/symbol specified by the >> method, the
decorated component must implement a method of the same name, which is
called when the button is selected.

Be sure not to place any decorators between and its com-
ponent, otherwise the message may fail.

Important

You can examine the source of and its subclasses to see the use
of a FormDecoration to manage buttons:

Using Decorations in the Contacts application. You can add a
to as follows: define an method

to add the decoration, and remove the superfluous rendering calls from
, to leave simpler code and an unchanged application (see

Figure 12.7).

We chose and as our button names since these methods were
already defined in the class, but we could have used any names we wanted
as long as we implemented the corresponding methods.

12.6.2 Behavioral Decorations

Validation. A validates its component form
data when the component returns using >> or

>> . This decoration can be added to a component via the
method >> as shown below.

172 CHAPTER 12. EMBEDDING COMPONENTS

Figure 12.7: Using a decoration to add buttons and form to a ContactView.

If the component returns via , the argument is passed to the
validate block. If the component returns using the sender of is
passed to the validate block.

Accessing the component. To access the component when you
have only a reference to its decoration you can use the message

>> .

12.7 Component Coupling

Here is an interesting question that often comes up when writing components,
and one which we faced when embedding our components: “How do the
components communicate with each other in a way that doesn’t bind them
together explicitly?” That is, how does a child component send a message
to its parent component without explicitly knowing who the parent is? De-
signing a component to refer to its parent (as we did) is not always an ideal
solution, since the interfaces of different parents may be different, and this
would prevent the component from being reused in different contexts.

Another approach is to adopt a solution based on explicit dependencies,
also called the change/update mechanism. Since the early days of Smalltalk, it
has provided a built-in dependency mechanism based on a change/update

12.7. COMPONENT COUPLING 173

protocol–this mechanism is the foundation of the MVC framework itself.
A component registers its interest in some event and that event triggers a
notification.

Announcements. Perhaps the most flexible and powerful approach is to use a
more recent framework called Announcement. While the original dependency
framework relied on symbols for the event registration and notification,
Announcement promotes an object-oriented solution; i.e. events are standard
objects. Originally developed by Vassili Bykov, this framework has been
ported to several Smalltalk implementations, and is popular with Seaside
developers.

The main idea behind the framework is to set up common announcers and
to let clients register to send or receive notifications of events. An event is an
object representing an occurrence of a specific event. It is the place to define all
the information related to the event occurrence. An announcer is responsible
for registering interested clients and announcing events. In the context of
Seaside, we can define an announcer in a session. For more information on
sessions see Chapter 18.

An Example. Here is an example taken from Ramon Leon’s very good
Smalltalk blog (at http://onsmalltalk.com/). This example shows how we
can use announcements to manage the communication between a parent
component and its children as for example in the context of a menu and its
menu items.

First we add a reference to a new to our session:

Second a subclass of an is created for each event of interest, here
child removal:

Each subclass can have additional instance variables and accessors added
to hold any extra information about the specific announcement such as a
context, the objects involved etc. This is why announcement objects are both
more powerful and simpler than using symbols.

http://onsmalltalk.com/

174 CHAPTER 12. EMBEDDING COMPONENTS

Any component interested in this announcement registers its interest by
sending the announcer the message
or . You can also
ask an announcer to an object.

The messages and are strictly equivalent to the mes-
sages (an object under-
standing) and

.

Note

In the following example, when a parent component is created, it expresses
interest in the event and specifies the action that it will perform
when such an event happens.

And any component that wants to fire this event simply announces it by
sending in an instance of that custom announcement object:

Note that depending on where you place the announcer, you can even have
different sessions sending events to each other, or different applications.

Advanced

Pros and cons. Announcements are not always the best way to establish
communication between components and you have to decide the exact design
you want. On one hand, announcements let you create loosely coupled
components and thus maximize reusability. On the other hand, they introduce
additional complexity when you may be able solve your communication
problem with a simple message send.

12.8. SUMMARY 175

12.8 Summary

In this chapter we have seen how to embed components to build up complex
functionality. In particular, we have learned:

• To embed a component in another one, the parent component should
just answer the component as one of its children. Its method
should return the direct children components.

• Each component may render its immediate children in its own render
method by calling various methods and possibly the method.

• A component may be reused with decorations. Decorations are compo-
nents which add visual aspects or change component behavior.

176 CHAPTER 12. EMBEDDING COMPONENTS

Chapter 13

Tasks

In Seaside, it is possible to define components whose responsibility is to rep-
resent the flow of control between existing components. These components
are called tasks. In this chapter, we explain how you can define a task. We also
show how Seaside supports application control flow by isolating certain paths
from others. We will start by presenting a little game, the number guessing
game. Then, we will implement two small hotel registration applications
using the calendar component to illustrate tasks.

13.1 Sequencing Components

Tasks are used to encapsulate a process or control flow. They do not directly
render XHTML, but may do so via the components that they call. Tasks are de-
fined as subclasses of , which implements the key method >> ,
which is invoked as soon as a task is displayed and can call other compo-
nents.

Let’s start by building our first example: a number guessing game (which
was one of the first Seaside tutorials). In this game, the computer selects a
random number between 1 and 100 and then proceeds to repeatedly prompt
the user for a guess. The computer reports whether the guess is too high or
too low. The game ends when the user guesses the number.

177

178 CHAPTER 13. TASKS

Those of you who remember learning to program in BASIC will recognise
this as one of the common exercises to demonstrate simple user interaction.
As you will see below, in Seaside it remains a simple exercise, despite the
addition of the web layer. This comes as a stark contrast to other web
development frameworks, which would require pages of boilerplate code
to deliver such straightforward functionality.

Note

We create a subclass of and implement the method:

The method randomly draws a number. Then, it asks the user to guess a
number and gives feedback depending on the input number. The methods

and create components (and)
on the fly, which are then displayed by the task. Note that unlike the compo-
nents we’ve developed previously, this class has no method,
just the method . Its purpose is to drive the user through a sequence of
steps.

Register the application (as ’guessinggame’) and give it a go. Figure 13.1
shows a typical execution.

Why not try modifying the game to count the number of guesses that were
needed?

This example demonstrates that with Seaside you can use plain Smalltalk
code (conditionals, loops, etc.,) to define the control flow of your application.
You do not have to use yet another language or build a scary XML state-
machine, as required in other frameworks. In some sense, tasks are simply
components that start their life in a callback.

Because tasks are indeed components (is a subclass of),
all of the facilities available to components, such as and mes-
sages, are available to tasks as well. This allows you to combine components

13.2. HOTEL RESERVATION: TASK VS. COMPONENT 179

Figure 13.1: Guessing Game interaction.

and tasks, so your can call a , and so
on.

Tasks do not render themselves. Don’t override in your
tasks. Their purpose is simply to sequence through other views.

Important

If you are reusing components in a task – that is, you store them in instance
variables instead of creating new instances in the method – be sure to
return these instances in the #children method so that they are backtracked
properly and you get the correct control flow.

Important

13.2 Hotel Reservation: Task vs. Component

To compare when to use a task or a component, let’s build a minimal hotel
reservation application using a task and a component with children. Using
a task, it is easy to reuse components and build a flow. Here is a small
application that illustrates how to do this. We want to ask the user to specify
starting and ending reservation dates. We will define a new subclass of

180 CHAPTER 13. TASKS

with two instance variables and of the selected
period.

We define a method that will first create a calendar with selectable dates
after today, then create a second calendar with selectable days after the one
selected during the first interaction, and finally we will display the dates
selected as shown in Figure 13.2.

Note that you could add a confirmation step and loop until the user is OK
with his reservation.

Now this solution is not satisfying because the user cannot see both cal-
endars while making his selection. Since we can’t render components in
our task, it’s not easy to remedy the situation. We could use the message

to add a message to a component but this is still not
good enough. This example demonstrates that tasks are about flow and not
about presentation.

13.3 Mini Inn: Embedding Components

Let’s solve the same problem using component embedding. We define a
component with two calendars and two dates. The idea is that we want to

13.3. MINI INN: EMBEDDING COMPONENTS 181

Figure 13.2: A simple reservation based on task.

182 CHAPTER 13. TASKS

always have the two mini-calendars visible on the same page and provide
some feedback to the user as shown by Figure 13.3.

Since we want to show the two calendars on the same page we return them
as children.

We initialize the calendars and make sure that we store the results of their
answers.

Finally, we render the application, and this time we can provide some simple
feedback to the user. The feedback is simple but this is just to illustrate our
point.

13.4 Summary

In this chapter, we presented tasks, subclasses of . Tasks are components
that do not render themselves but are used to build application flow based

13.4. SUMMARY 183

Figure 13.3: A simple reservation with feedback.

on the composition of other components. We saw that the composition is
expressed in plain Smalltalk.

184 CHAPTER 13. TASKS

Chapter 14

Writing good Seaside
Code

This short chapter explains how you can improve the quality of your code
and your programming skills in general by running Slime, a Seaside-specific
code critics tool. For example, Slime can detect if you do not follow the
canonical forms for brush usage that we presented in Chapter 7. It will also
help you identify other potential bugs early on, and help you produce better
code. Furthermore, if you work on a Seaside library, it is able to point out
portability issues between the different Smalltalk dialects.

14.1 A Seaside Program Checker

Slime analyzes your Seaside code and reveals potential problems. Slime
is an extension of Code Critics that is shipped with the Refactoring Browser.
Code Critics, also called SmallLint, is available with the Refactoring Browser
originally developed by John Brant and Don Roberts. Lukas Renggli and the
Seaside community extended Code Critics to check common errors or bad
style in Seaside code. The refactoring tools and Slime are available in the
One-Click Image and we encourage you to use them to improve your code
quality.

Pay attention that the rules are not bulletproof and by no means complete.
It could well be that you encounter false positives or places where it misses
some serious problems, but it should give you an idea where your code might
need some further investigation.

Here are some of the problems that Slime detects:

185

186 CHAPTER 14. WRITING GOOD SEASIDE CODE

Possible Bugs. This group of rules detects severe problems that are most
certainly serious bugs in the source code:

• The message is not last in the cascade,

• Instantiates new component while generating HTML,

• Manually invokes ,

• Uses the wrong output stream,

• Misses call to super implementation,

• Calls functionality not available while generating output, and

• Calls functionality not available within a framework callback.

Bad style. These rules detect some less severe problems that might pose
maintainability problems in the future but that do not cause immediate
bugs.

• Extract callback code to separate method,

• Use of deprecated API, and

• Non-standard object initialization.

Suboptimal Code. This set of rules suggests optimization that can be applied
to code without changing its behavior.

• Unnecessary block passed to brush.

Non-Portable Code. While this set of rules is less important for application
code, it is central to the Seaside code base itself. The framework runs without
modification on many different Smalltalk platforms, which differ in the syntax
and the libraries they support. To avoid that contributors from a specific
platform accidentally submit code that only works with their platform we’ve
added some rules that check for compatibility. The rules in this category
include:

• Invalid object initialization,

• Uses curly brace arrays,

• Uses literal byte arrays,

• Uses method annotations,

• Uses non-portable class,

• Uses non-portable message,

• ANSI booleans,

• ANSI collections,

14.2. SLIME AT WORK 187

• ANSI conditionals,

• ANSI convertor,

• ANSI exceptions, and

• ANSI streams.

14.2 Slime at Work

Slime is not available on all Smalltalk platforms. To run Slime on Pharo follow
these steps:

1. Open a scoped Browser. In most cases, you don’t want to run Slime in the
default System Browser, as this would run the checks on the complete image.
To open Slime on a specific package, you need to open a scoped browser.
Click on a class of your package and select refactoring scope, then select the
menu item package.

You should obtain a browser that only shows the contents of the package.
Any tool or analysis of the refactoring browser is scoped to the visible context.
Other than that, this is a normal code browser that you can use to edit your
code. Figure 14.1 shows that the analysis will be performed on the classes
contained in the package.

Figure 14.1: A scoped browser onto the Store package.

2. Start the Code Checker. In the scoped browser, select refactor and then
code critics. This opens a new window that starts to run all the Code Critics
and Slime rules on the selected code.

188 CHAPTER 14. WRITING GOOD SEASIDE CODE

The progress of the search is shown in the title bar of the Code Critics
browser, depending on the size of the selected code the analyze might take
a while. After a while the tool should update and display some categories
and rules in bold, showing the number of detected problems as shown in
Section 14.1.

Figure 14.2: The Code Critics Result Browser.

3. Displaying the Problems. You can now start to walk through the list
of detected problems. Note that this does not only list the Seaside specific
problems, but also other more general problems. Most rules have a detailed
description explaining the issue. When you select a bold entry and click on
the open open, you can navigate to the actual problem in the code.

14.3 Summary

Slime offers the validation of your code and it will verify some coding prac-
tices. Once again, we suggest you run this tool often. This tools as well
as your unit tests and the debugger are your best friends to produce good
quality code.

Part IV

Seaside In Action

189

191

This part develops two little applications – a todo list manager and a sudoku
player. Then it presents how to serve files in Seaside as well as character
encodings and how to customize sessions to hold application centric informa-
tion.

192

Chapter 15

A Simple ToDo
Application

The objective of this chapter is to highlight the important issues when building
a Seaside application: defining a model, defining a component, rendering the
component, adding callbacks, and calling other components. This chapter
will repeat some elements already presented before but within the context of
a little application. It is a kind of summary of the previous points.

15.1 Defining A Model

It is a good software engineering practice to clearly separate the domain
from its views. This is a common practice which allows one to change the
rendering or even the rendering framework without having to deal with the
internal aspects of the model. Thus, we will begin by presenting a simple
model for a todo list that contains todo items as shown by Figure 15.1.

Figure 15.1: A simple model with items and an item container.

ToDoItem Class. A todo item is characterized by a title, a due date and a
status which indicates whether the item is done.

193

194 CHAPTER 15. A SIMPLE TODO APPLICATION

It has accessor methods for the instance variables , and .

We specify the default values when a new todo item is created by defining a
method as follows:

A word about and . Squeak/Pharo is the only Smalltalk
dialect that performs automatic object initialization. This greatly simplifies
the definition of classes. If you have defined an method, it will
be automatically called when you send the message to your classes.
In addition, the method is defined in the class so you
can (and are encouraged) to invoke potential methods of your
superclasses using in your own method. If
you want to write code that is portable between dialects, you should rede-
fine the method in all your root classes (subclasses of) as shown
below and you should not invoke via a super call in your root
classes.

Important

15.1. DEFINING A MODEL 195

In this book we follow this convention and this is why we have
not added in the methods >> and

>> .

We also add two testing methods to our todo item:

ToDoList Class. We now create a class that will hold a list of todo items. The
instance variables will contain a title and a list of items. In addition, we define
a class variable that will refer to a singleton of our class.

You should next add the associated accessor methods , ,
and .

The instance variable is initialized with an in the
method:

We define two methods to add and remove items.

Now we define the class-side method that implements a lazy initial-
ization of the singleton, initializes it with some examples and returns it. The
class-side method will reset the singleton if necessary.

196 CHAPTER 15. A SIMPLE TODO APPLICATION

Finally, we define a method to add some todo items to our application so that
we have some items to work with.

Now evaluate this method (by selecting the text and
selecting from the context menu). This will populate our model with
some default todo items.

Now we are ready to define our seaside application using this model.

15.2 Defining the View

First, we define a component to see the item list. For that, we define a new
component named .

We can register the application by defining the class method as
shown and by executing >> .

15.2. DEFINING THE VIEW 197

Figure 15.2: The application is registered in Seaside.

You can see that the todo application is now registered by pointing your
browser to http://localhost:8080/config/ as shown in Figure 15.2.

If you click on the todo link in the config list you will get an empty browser
window. This is to be expected since so far the application does not do any
rendering. Now if you click on the halo you should see that your application
is present on the page as shown in Figure 15.3.

Figure 15.3: Our application is there, but nothing is rendered.

Now we are ready to work on the rendering of our component.

http://localhost:8080/config/

198 CHAPTER 15. A SIMPLE TODO APPLICATION

15.3 Rendering and Brushes

We define the method to access the singleton of as fol-
lows.

A word about design. Note that directly accessing a singleton instead
of using an instance variable is definitively not a good design since it
favors procedural-like global access over encapsulation and distribution
of knowledge. Here we use it because we want to produce a running
application quickly. The singleton design pattern looks trivial but it is often
misunderstood: it should be used when you want to ensure that there is
never more than one instance; it does not limit access to one instance at a
time. In general, if you can avoid a singleton by adding an instance variable
to an object, then you do not need the singleton.

Note

The method is called by Seaside to render a component. We
will now begin to implement this method. First we just display the title of
our todo list by defining the method as follows:

If you refresh your browser you should obtain Figure 15.4.

Figure 15.4: Our todo application simply displaying its title.

15.3. RENDERING AND BRUSHES 199

Now we will make some changes that will help us render the list and its ele-
ments. We will define a CSS style so we redefine the method
to use the brush .

Refresh your browser to see that you did not change much, except that
you will get a bigger title. To render a list of items we define a method

that we will invoke from . To render an
individual item we define a method called .

As you see, we are rendering the todo items as an unordered list. We also
conditionally assign CSS classes to each list item, depending on its state. To
do this, we will use the handy method since it allows us to write
the condition and the class name in the cascade of the brush. Each item will
get a class that indicates whether it is completed or overdue. The CSS will
cause each item to be displayed with a color determined by its class. Because
we haven’t defined any CSS yet, if you refresh your browser now, you will
see the plain list.

Next, we edit the style of this component either by clicking on the halos and
the pencil and editing the style directly, or by defining the method on
the class in your code browser. Check Chapter 8 to learn more
about the use of style-sheets and CSS classes.

200 CHAPTER 15. A SIMPLE TODO APPLICATION

Refresh your browser and you should see the list of items and the todo list
title as shown in Figure 15.5.

Figure 15.5: Our todo application, displaying its title and a list of its items
colored according to status.

15.4 Adding Callbacks

As we saw in Chapter 9, Seaside offers a powerful way to define a user action:
callbacks. We can use callbacks to make our items editable. We will extend the
method with edit and remove actions. To do this, we render
two additional links with every item.

15.4. ADDING CALLBACKS 201

We use an brush and we attach a callback to the anchor. Thus, the
methods defined below are invoked when the user clicks on an anchor. Note
that we haven’t implemented the edit action yet. For now, we just display
the item title to see that everything is working. The remove action is fully
implemented.

You should now be able to click on the links attached to an item to invoke the
and methods as shown in Figure 15.6.

Figure 15.6: TodoWithAnchors.

You can have a look at the generated XHTML code by turning on the halos
and selecting the source link. You will see that Seaside is automatically adding
lots of information to the links on the page. This is part of the magic of Seaside
which frees you from the need to do complex request parsing and figure out
what context you were in when defining the callback.

Now it would be good to allow users to add a new item. The following code
will just add a new anchor under the title (see Figure 15.7):

202 CHAPTER 15. A SIMPLE TODO APPLICATION

For now, we will define a basic version of the addition behavior by simply
defining as the addition of the new item in the list of items. Later on we
will open an editor to let the user define new todo items in place.

Figure 15.7: Our todo application with add functionality.

15.5 Adding a Form

We would like to have a Save button so that we can save our changes. We
need to wrap our component in a form in order for this to work correctly (see
Chapter 10). Here is our updated method:

Now we can add a checkbox to change the status of a todo item, see Fig-
ure 15.8.

15.6. CALLING OTHER COMPONENTS 203

Figure 15.8: Our todo application with checkboxes and save buttons.

Note that the value of the checkbox is passed as an argument of the checkbox
callback. The callback uses this value to change the status of the todo item.
Notice the use of the to add a submit button in the form.

15.6 Calling Other Components

We are ready to create another component and call it. We create a component
called that is used to represent a specific todo item. Let’s create
a new class that will refer to the item it represents via an instance variable
named .

204 CHAPTER 15. A SIMPLE TODO APPLICATION

We define the corresponding accessor methods.

Now we can define the rendering method for our new component. Note
that this is a nice example showing the diversity of brushes since we use a
different brush for each entity we manipulate.

Finally, we make sure that this new component is used when we edit an item.
To do this, we redefine the method of the class so that it
calls the new component on the item we want to edit. Note that the method

takes a component as a parameter and that this component will be
displayed in place of the calling component, see Part III.

If you click on the edit link of an item you will be able to edit the item. You
will notice one tiny problem with the editor: we do not yet let users save or
commit their changes! We will correct this in the next section.

In the meantime, add a style sheet to make the editor look nice:

15.7. ANSWER 205

15.7 Answer

We just saw how one component can call another and that the other compo-
nent will appear in place of the one calling it. How do we give back control to
the caller or return a result? The method performs this task. It takes
an object that we want to return as a parameter.

Let’s demonstrate how to use . We will add two buttons to the in-
terface of the : one for cancelling the edit and one to return the
modified item. Note that in one case we use a normal , and in
the other case we use .

Pay attention since the cancel button looks exactly the same as a submit
button, but it avoids processing the input callbacks of the form that would
modify our model. This means we don’t need to copy the model as we did
in Section 11.5.

Advanced

Working directly on the model. Now the use of the cancel button does solve
the problem in the above example, but generally this approach isn’t sufficient
by itself: when a component returns an answer, you often want to do some
additional validation on the potentially invalid object before updating your
model.

206 CHAPTER 15. A SIMPLE TODO APPLICATION

Therefore, we should also modify the method to edit a copy of the item
and, depending on the returned value of the editor, we should replace the
current item with its modified copy.

Add the following method to :

Magritte Support. Replacing a copied object works well in our example,
but does not if there are other references to the object (because you end
up with a new object). One of the advanced features of Magritte (that we
present in Chapter 26) is that it uses a Memento to support the automatic
cancellation of edited objects: in other words, it copies the whole object
during the edit operation into an internal data-structure and then edits only
this object. As soon as the changes are saved, it walks over the Memento
and pushes the changes to the real object.

Advanced

15.8 Embedding Child Components

So far, we have seen how a component displays itself and how a component
can invoke another one. This component invocation has behaved like a modal
interface in which you can interact only with one dialog at a time. Now,
we will demonstrate the real power of Seaside: creating an application by
simply plugging together components which may have been independently
developed. How do we get several components to display on the same page?
By simply having a component identify its subcomponents. This is done by
implementing the method.

Suppose that we would like to add an item to our list. Normally a web
application developer would use a single form which would be used both
to edit and to add a todo item, but for demonstration purposes we take a
different approach. We would like to display the editor below the list. That is,
we want to embed a in a . Our solution is to allow
the user to add an item by pressing a button which will display an editor for
the new item, as seen in Figure 15.9.

15.8. EMBEDDING CHILD COMPONENTS 207

Figure 15.9: Getting an editor to edit new item.

We begin by adding an instance variable named to the
class as follows:

Then, we define the method that returns an array containing all
the subcomponents of our component. This array contains just the element

since list items are rendered by the list component itself. Note that
Seaside automatically ignores component children that are nil, so we don’t
have to worry if it is not initialized.

We modify to add an Add button and to trigger the add
action. Note that when the value of the instance variable is nil the
rendering does not show anything.

208 CHAPTER 15. A SIMPLE TODO APPLICATION

Figure 15.10: With an item added.

Next we redefine the method to add a new component. It first creates an
instance of whose model is a newly created todo item.

Notification of messages. How do we update the todo list model?
Suppose the user cancels the editing. How do we handle that situation?
We need a way to know when a subcomponent executed the method. You
can get notified of execution by using the method . Using

involves attaching a handler from the parent once the child compo-
nent is instantiated. The method requires a block whose argument
represents the object that got answered (|
).

The block will be executed with the answered object as its argument.
Since the editor will return when the user cancels editing, we need to
check the value passed in. We modify the method as follows:

Note that the Save button is different from the Add button since the Save
button (so far) does nothing but submit the form. In the AJAX chapter, we
will see that this situation can be avoided altogether (see Part V).

15.9. SUMMARY 209

Figure 15.11: TodoFinal.

If you get the error "Children not found while processing callbacks", check
that the method returns all the direct subcomponents. The halos are
another good tool for understanding the nesting and structure of components.
We suggest you turn on the halos while developing your applications, as seen
in Figure 15.11.

15.9 Summary

You have briefly reviewed all the key mechanisms offered by Seaside to
build a complex dynamic application out of reusable components. You can
either invoke another component or compose a component out of existing
ones. Each component has the responsibility to render itself and return its
subcomponents.

210 CHAPTER 15. A SIMPLE TODO APPLICATION

Chapter 16

A Web Sudoku Player

In this chapter we will build a Sudoku web application as shown in Fig-
ure 16.1. This gives us another opportunity to revisit how we build a simple
application in Seaside.

Figure 16.1: Just started playing.

211

212 CHAPTER 16. A WEB SUDOKU PLAYER

16.1 Sudoku Solver

For the Sudoku model we use the ML-Sudoku package developed by Martin
Laubach which is available on SqueakSource. We thank him for allowing us
to use this material. To load the package, open a Monticello browser and click
on the +Repository button. Select HTTP as the type of repository and specify
it as follows:

Click on the Open button, select the most recent version and click Load.

ML-Sudoku is composed of 4 classes: , , , and
. The class responsibilities are distributed as follows:

• is the Sudoku solver. It knows how to solve a Sudoku.

• knows its neighbors and their location on the game board. A cell
does not know its possibility set, see below.

• contains the cells and their possibility sets.

• is a list of possible numbers between 1 and 9 that can
go into a cell. These are the values that are possible without violating
the Sudoku rule that each row, column and 3-by-3 sub-grid contains
each number once.

16.2 Sudoku Component

First we define the class which is the Sudoku UI. We will create this
class in the new category:

This component will contain a Sudoku solver (an instance of) which
we will refer to using the instance variable . We initialize this variable
by defining the following >> method.

16.2. SUDOKU COMPONENT 213

Describing and registering the application. Now we add a few methods to
the class side of our component. We describe the application by defining the

method. We register our component as an application by defining
the class method and declare that the component can
be a standalone application by having return true:

Finally we define a CSS style for the Sudoku component:

214 CHAPTER 16. A WEB SUDOKU PLAYER

16.3 Rendering the Sudoku Grid

What we need to do is to render a table that looks like a Sudoku grid. We
start by defining a method that creates a table and uses style tags for format-
ting.

Make sure that you invoked the class side method and then run the
application by visiting http://localhost:8080/sudoku. Your browser should
display the string This is a test.

We need two helper methods when creating the labels for the and axis of
our Sudoku grid. You don’t need to actually add these helper methods your-
self, they were already loaded when you loaded the Sudoku package:

First we print a space to get our labels aligned and then draw the label for
each column.

We make sure that the method >> invokes the
board rendering method we just defined.

http://localhost:8080/sudoku

16.3. RENDERING THE SUDOKU GRID 215

Figure 16.2: The column labels look like this.

If you run the application again, you should see the column labels as shown
in Figure 16.2.

We now draw each row with its label, identifying the cells with the product
of its row and column number.

If you have entered everything correctly, your page should now look like
Figure 16.3.

Now we define the method that sets the style
tags and redefine the as follows so that it uses our style
sheet.

You also need to change >> so that it uses our new
method >> .

216 CHAPTER 16. A WEB SUDOKU PLAYER

Figure 16.3: Row labels are letters, column labels are numbers.

If you refresh your page again, you should finally see a styled Sudoku grid
as show in Figure 16.4.

Next we will use a small helper method that given a collec-
tion returns a string containing all the elements printed one after the other
without spaces. Again, you do not need to type this method, it was loaded
with the ML-Sudoku code.

We define a new method that uses
to display the contents of a cell. Each cell displays its possi-

16.3. RENDERING THE SUDOKU GRID 217

Figure 16.4: The Sudoku board with the style sheet applied.

bility set. These are the values that may legally appear in that cell.

We make sure that the invokes the method render-
ing cell contents.

Refresh your application again, and your grid should appear as in Fig-
ure 16.5.

218 CHAPTER 16. A WEB SUDOKU PLAYER

Figure 16.5: The Sudoku grid is showing the possible values for each cell.

16.4 Adding Input

Now we will change our application so that we can enter numbers into the
cells of the Sudoku grid. We define the method that changes the
state of a cell and we extend the method to
use this new method.

16.4. ADDING INPUT 219

The above code renders a text input box within a form tag, in each cell where
there are more than one possibilities. Now you can type a value into the
Sudoku grid and press return to save it, as seen in Figure 16.6. As you
enter new values, you will see the possibilities for cells automatically be
automatically reduced.

Figure 16.6: A partially filled Sudoku grid.

Now we can also ask the Sudoku model to solve itself by modifying the
method . We first check whether the Sudoku grid is solved
and if not, we add an anchor whose callback will solve the puzzle.

220 CHAPTER 16. A WEB SUDOKU PLAYER

Note that the solver uses backtracking, i.e., it finds a missing number by trying
a possibility and if it fails to find a solution, it restarts with a different number.
To backtrack the solver works on copies of the Sudoku grid, throwing away
grids that don’t work and restarting. This is why we need to assign the result
of sending the message since it returns a new Sudoku grid. Figure 16.7
shows the result of clicking on Solve.

Figure 16.7: A solved Sudoku grid.

16.5 Back Button

Now let’s play a bit. Suppose we have entered the values 1 through 6 as
shown in Figure 16.1 and we want to replace the 6 with 7. If we press the Back
button, change the 6 to 7 and press return, we get 6 instead of 7. The problem
is that we need to copy the state of the Sudoku grid before making the cell
assignment in .

16.5. BACK BUTTON 221

If you change the definition of and try to replace 6 with 7 you
will get a stack error similar to that shown in Figure 16.8.

Figure 16.8: Error when trying to replace 6 by 7.

If you click on the debug link at the top of the stack trace and then look at
your Pharo image, you will see that it has opened a debugger. Now you can
check the problem. If you select the expression

and print it, you will get a possibility set with 6, which is the
previous value you gave to the cell. The code of the method

>> raises an error if the new value is not
among the possible values for that cell.

In fact when you pressed the Back button, the Sudoku UI was refreshed but
its model was still holding the old values. What we need to do is to indicate
to Seaside that when we press the Back button the state of the model should
be kept in sync and rollback to the corresponding older version. We do so by
defining the method which returns the elements that should be kept
in sync.

222 CHAPTER 16. A WEB SUDOKU PLAYER

16.6 Summary

While the Sudoku solver introduces some subtleties because of its back-
tracking behavior, this application shows the power of Seaside to manage
state.

Now you have a solid basis for building a really powerful Sudoku online
application. Have a look at the class . Extend the application by
loading challenging Sudoku grids that are defined by a string.

Chapter 17

Serving Files

Most web-based applications make heavy use of static resources. By “static”
we mean resources whose contents are not sensitive to the context in which
they are used. These resources are not dependent on the user or session state
and while they may change from time to time they typically don’t change
during the time span of a single user’s session. Static resources include for
example images, style sheets and JavaScript files.

Using these resources in a Seaside application need be no different from using
them in any other web application development framework: when deploy-
ing your application you can serve these resources using a web server and
reference them in your Seaside application, as described in Chapter 23.

In addition, Seaside supports a more tightly integrated file serving technique,
called FileLibrary, which has some advantages over using a separate web
server. In this chapter we will cover how to reference external resources
and how to use the integrated FileLibrary to serve them from your Smalltalk
image. Note that using FileLibrary to serve static resources is often slower
than using a dedicated web server. In Chapter 23 we explain how to serve
static files in a more efficient way using Apache.

17.1 Images

We illustrate the inclusion of static resources by displaying an external picture
within an otherwise empty component. Create a component and use the
method >> to add a URL to an image as follows:

223

224 CHAPTER 17. SERVING FILES

Figure 17.1: Including an external picture into your components.

If you have many static files that all live in the same location, it is annoying
to have to repeat the base-path over and over again. In this case you should
use >> to provide the tail of the URL.

To tell Seaside about the part of the URL that you left out in your ren-
dering code you have to go to the application configuration page (at
http://localhost:8080/config) and specify the Resource Base URL in the
server settings. Just enter // . Seaside will automatically
prepend this string to all URLs specified using >> .
This reduces your code size and can be very useful if you want to move the
resource location during deployment.

Figure 17.2: Setting the Resource Base URL of your application.

Be careful where you put the slash. Normally directories in URLs end with
a slash, that’s why we specified the resource base URL ending with a slash.
Thus, you should avoid putting a slash at the beginning of the URL fragments
you pass to .

Another interesting way to serve a picture is to use a dynamically gen-
erated picture from within your image. In Pharo it is possible to use

>> to pass a Pharo directly to the image brush.

http://localhost:8080/config

17.2. INCLUDING CSS AND JAVASCRIPT 225

That works reasonably well for simple graphics, however most visual things
in Pharo are made using morphs. Luckily it is simple to convert a morph to a
form:

You can also use >> as follows:

Figure 17.3: Displaying Pharo Morphs.

If you are using Pharo, have a look at the example implemented in the
class . It demonstrates a much more sophisticated use of

>> and presents the Pharo desktop as part of a web ap-
plication. Furthermore it allows basic interactions with your windows from
the web browser.

17.2 Including CSS and Javascript

So far, we’ve been including style information for our components by im-
plementing the method on our components. This is great for dynamic
development, but there are a number of problems with this approach:

226 CHAPTER 17. SERVING FILES

• Seaside is generating a style sheet file each time your component is
rendered. This takes time to generate.

• Each generated stylesheet has the session key embedded in its URL,
and so is seen as a unique file by your browser, and so loaded again.

• As you integrate more components in your page, each is generating its
own stylesheet, so you can end up with many resources to be down-
loaded for each page.

Once your application’s look and feel has begun to stabilise, you will want
to think about using static stylesheets. These are typically included by using

tags in the section of the XHTML document. This presents us with a
problem: by the time your component gets sent , the canvas
has already generated the section.

Fortunately, Seaside provides a hook method called
>> which is sent to all components which are

reachable directly or indirectly through children or a message –
which means basically to all visible components. This message is sent
during the generation of the body of the tag and can be extended
to add elements to this tag. The argument to is an instance
of which supports the access to document elements such as
< >, < >, < > and < >with their corresponding
messages (>> , >> , >>

and >>). It also allows you to add attributes to the
< > or < > tags using the messages >> ,

>> .

In particular, offers the possibility to add new styles or script using
the messages >> and >> .

The object returned by both and understands
which allows you to specify the URL of the stylesheet or JavaScript file. Sup-
pose we have a stylesheet being served from http://seaside.st/styles/main.css.
We could adopt this style in our document by extending as fol-
lows:

http://seaside.st/styles/main.css

17.3. WORKING WITH FILE LIBRARIES 227

Running the example should give you the following Figure 17.4:

Figure 17.4: Application with enabled style sheet.

Now we will show how you can replace the stylesheet using the FileLi-
brary.

17.3 Working With File Libraries

Since version 2.7, Seaside has included a library for serving files called FileLi-
brary. This solution is handy for rapid application development and is suitable
for deployed applications which only make use of a small number of small
files. It has the advantage that all of the resources are contained in your
Smalltalk image and can be versioned with your favorite Smalltalk version
management tools. However this also means that these resources are not
reachable where most of your operating system’s tools are accustomed to
find things.

FileLibrary has the primary advantage that it is a portable way to serve static
contents directly from Seaside without the need to setup a standalone web
server. See Chapter 23 to read about Apache configuration for static file
serving.

228 CHAPTER 17. SERVING FILES

17.3.1 Creating a File Library

Setting up a file library is easy. Here are the steps you need to follow.

1. Put your static files in a directory. The location of the directory is not
significant. From within the directory, the files can reference each other
using their file names.

2. Create a file library by subclassing . For the rest of this
text we assume its name is .

3. Add files to your file library. There are three ways to add files to your
file library:

• Programmatically.

• Via the web interface.

• By editing your directly in your image.

Adding files programmatically. You can add files programmatically by using
the class side methods and in . For
example:

Adding files via the config interface. Open the config application at
http://localhost:8080/config and click the “configure” link for file libraries as
shown in Figure 17.6. This will show which file libraries are available.

Click the configure link for as shown in Figure 17.6 right.

There you can add a file by uploading it (select the file, then click the Add
button as shown by Figure 17.7).

When you add a file to a file library, Seaside creates a method with the file
contents. If you find that there is an unusually long wait after pressing the
Add button, make sure that the system (Squeak/Pharo) isn’t waiting for
you to type your initials to confirm that you want to create a new method.

Important

Adding a file by editing the class. File libraries are just objects and “files” in
the file library are just methods so you can always add and modify FileLibrary
entries using your normal class browser but be sure to follow the method nam-
ing convention mentioned above. You’ll probably find it pretty inconvenient
to edit images within the browser though.

Adding a file to a file library either programmatically or using the config-
uration interface defines a corresponding method in the file library class,

http://localhost:8080/config

17.3. WORKING WITH FILE LIBRARIES 229

Figure 17.5: Configuring file libraries through the web interface: clicking on
files - configure.

Figure 17.6: File libraries.

230 CHAPTER 17. SERVING FILES

Figure 17.7: Adding file to MyLibrary.

with the file name determining the name of the method. The dot is removed
and the first letter of the suffix is capitalized. For example, the file main.css
becomes the method >> . This puts certain limitations
on the allowed file names. For example, the main part of the file name may
not be all digits.

Once your files have been imported into the file library they are maintained
independently from the files on your computer’s file system. If you modify
your files you will have to re-add them to the file library.

Once your files are stored in a FileLibrary they will be available to be served
through Seaside.

17.3.2 Referencing FileLibrary files by URL

How you use a file library depends on what you want to do with the files
in it. As you’ve seen in the previous sections, using image, music, style
sheets and JavaScript files requires knowing their URL. You can find the
URL of any document in your file library by sending the class

>> . For example, if you had added the file to your
library and you want to display it in a component you would write something
like:

17.4. EXAMPLE OF FILELIBRARY IN USE 231

The URL returned by is relative to the current server. It does not con-
tain the http://servername.com/ - the so-called “method and “host - portion
of the URL. Note that WAFileLibrary implements a class method called /, so
the expression / is equivalent to

.

Once you know the URL of the FileLibrary resources you can use them to
include style sheets and JavaScript in your components as we have already
discussed.

17.4 Example of FileLibrary in use

We’ve gone on long enough without a working hands-on example. To il-
lustrate how to use a file library, we will show how to add some resources
to the WebCounter application we defined in the first chapter of this book
(http://localhost:8080/webcounter) or can also use the version that comes
with Seaside (http://localhost:8080/examples/counter). First we create a new
subclass of named as follows:

Figure 17.8: An empty CounterLibrary.

We will follow the steps presented in the previous section and associate two
resources to our library. One is an icon named and the other is a

http://servername.com/
http://localhost:8080/webcounter
http://localhost:8080/examples/counter

232 CHAPTER 17. SERVING FILES

Figure 17.9: Adding files to the CounterLibrary.

CSS file named – you can download the ones from the Seaside
website we mentioned before:

seaside.png

http://www.seaside.st/styles/logo-plain.png (rename once down-
loaded).

seaside.css

http://seaside.st/styles/main.css

Pay attention that the file name of your resources does not contain non-
alphabetic characters since it may cause problems.

Important

Now we change the method – this shows how we access
resources using the .

http://www.seaside.st/styles/logo-plain.png
http://seaside.st/styles/main.css

17.5. WHICH METHOD SHOULD I USE? 233

Next we implement so that our component contains a link to our
style sheet:

This causes the look of our application to change. It now uses the CSS file we
added to our file library as shown by Figure 17.10.

Figure 17.10: Counter with the updateRoot: method defined.

Have a look at the XHTML source generated by Seaside by using your
browser’s View Source option. You will see that the links are added to
the head section of the HTML document as shown below:

17.5 Which method should I use?

You have the following choices for serving static files with your Seaside
application:

• The default answer is pretty simple: if you don’t know anything about
web servers, use .

• If you want to have your static resources versioned inside your
Smalltalk image and don’t have too many (or too large) resources,
use .

234 CHAPTER 17. SERVING FILES

• If you prefer to keep your static resources on your file system where
you can edit and version them with your favorite file-based tools but
you don’t want to run a separate web server, go read about how to serve
static content from your image in Chapter 17.

• Otherwise read Section 23.3 about Apache file serving and configura-
tion.

17.6 A Word about Character Encodings

Character encoding is an area that we programmers tend to avoid as much as
possible, often fixing problems by trial and errors. With web-development
you will sooner or later be bitten by character encoding bugs, no matter how
you try to escape them. As soon as you are getting inputs from the user and
displaying information in your web-browser, you will be confronted with
character encoding problems. However, the basic concepts are simple to
understand and the difficulty often lies in the extra layers that typically a web
developer does not have to worry about such as the web-rendering engine,
the web server and the input keyboard.

Historically the difference between character sets and character encoding
was minor, since a standard specified what characters were available as
well as how they encoded. Unicode and ISO 10646 (Universal Character
Set) changed this situation by clearly separating the two concepts. Such a
separation is essential: on one hand you have the character sets you can ma-
nipulate and on the other hand you have how they are represented physically
(encoded).

In this section we’ll present the two basic concepts you have to understand
- character sets and character encodings. This should help you avoid most
problems. Then we will tell you how these are supported in Seaside.

17.6.1 Character sets

A character set is really just that, a set of characters. These are the characters
of your alphabet. For practical reasons each character is identified by a code
point e.g. $A is identified by the code point 65.

Examples of character sets are ASCII, ISO-8859-1, Unicode or UCS (Universal
Character Set).

• ASCII (American Standard Code for Information Interchange) con-
tains 128 characters. It was designed following several constraints
such that it would be easy to go from a lowercase character to

17.6. A WORD ABOUT CHARACTER ENCODINGS 235

its uppercase equivalent. You can get the list of characters at
http://en.wikipedia.org/wiki/Ascii. ASCII was designed with the idea
in mind that other countries could plug their specific characters in it
but it somehow failed. ASCII was extended in Extended ASCII which
offers 256 characters.

• ISO-8859-1 (ISO/IEC 8859-1) is a superset of ASCII to which it
adds 128 new characters. Also called Latin-1 or latin1, it is the
standard alphabet of the latin alphabet, and is well-suited for Western
Europe, Americas, parts of Africa. Since ISO-8859-1 did not con-
tain certain characters such as the Euro sign, it was updated into
ISO-8859-15. However, ISO-8859-1 is still the default encoding of docu-
ments delivered via HTTP with a MIME type beginning with "text/".
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html
shows in particular ISO-8859-1.

• Unicode is a superset of Latin-1. To accelerate the early adoption of Uni-
code, the first 256 code points are identical to ISO-8859-1. A character
is not described via its glyph but identified by its code point, which is
usually referred to using "U+" followed by its hexadecimal value. Note
that Unicode also specifies a set of rules for normalization, collation
bi-directional display order and much more.

• UCS – the ‘Universal Character Set’ specified by the ISO/IEC 10646
International Standard contains a hundred thousand characters. Each
character is unambiguously identified by a name and an integer also
called its code point.

http://www.fileformat.info/info/charset/index.htm shows several character
sets.

Figure 17.11: The Pharo String Hierarchy.

In Pharo. Now let us see the concepts exist in Pharo. The , ,
class hierarchy is roughly equivalent to the , ,

hierarchy. The class is the abstract superclass of
which represents number with ranges between -1073741824

and 1073741823, and which represents all the other numbers.
In Pharo, the class is the abstract superclass of the classes

http://en.wikipedia.org/wiki/Ascii
http://www.utoronto.ca/webdocs/HTMLdocs/NewHTML/iso_table.html
http://www.fileformat.info/info/charset/index.htm

236 CHAPTER 17. SERVING FILES

(ISO-8859-1) and (Unicode minus ISO-8859-1). Such classes are
about character sets and not encodings.

17.6.2 Encodings

An encoding is a mapping between a character (or its code point) and a
sequence of bytes, and vice versa.

Simple Mappings. The mapping can be a one-to-one mapping between the
character and the byte that represents it. If and only if your character set has
255 or less entries you can directly map each character by its index to a single
byte. This is the case for ASCII and ISO-8859-1.

In the latest version of Pharo, the class represents a character by
storing its Unicode. Since Unicode is a superset of latin1, you can create latin1
strings by specifying their direct values. When a is composed only of
ASCII or latin1 characters, it is encoded in a (a collection of bytes
each one representing a character).

The characters () and () are
both available in ASCII and ISO-8859-1. Now dis-
plays © the copyright sign which is only available in ISO-8859-1, simi-
larly displays ü.

Other Mappings. As we already mentioned Unicode is a large superset of
Latin-1 with over hundred thousand of characters. Unicode cannot simply be
encoded on a single byte. There exist several character encodings for Unicode:
the Unicode Transformation Format (UTF) encodings, and the Universal
Character Set (UCS) encodings.

The number in the encodings name indicates the number of bits in one
code point (for UTF encodings) or the number of bytes per code point (for

17.6. A WORD ABOUT CHARACTER ENCODINGS 237

UCS) encodings. UTF-8 and UTF-16 are probably the most commonly used
encodings. UCS-2 is an obsolete subset of UTF-16; UCS-4 and UTF-32 are
functionally equivalent.

• UTF-8 (8-bits UCS/Unicode Transformation Format) is a variable length
character encoding for Unicode. The Dollar Sign () is Unicode U+0024.
UTF-8 is able to represent any character of the Unicode character sets,
but it is backwards compatible with ASCII. It uses 1 byte for all ASCII
characters, which have the same code values as in the standard ASCII
encoding, and up to 4 bytes for other characters.

• UCS-2 which is now obsolete used 2 bytes for all the characters but it
could not encode all the Unicode standard.

• UTF-16 extends UCS-2 to encode character missing from UCS-2. It is
a variable size encoding using two bytes in most cases. There are two
variants – the little endian and big endian versions:

are variant representations of the same encoded character.

If you want to know more on character sets and character encodings, we
suggest you read the Unicode Standard book, currently describing the version
5.0.

17.6.3 In Seaside and Pharo

Now let us see how these principles apply to Pharo. The Unicode introduction
started with version 3.8 of Squeak and it is slowly consolidated. You can
still develop applications with different encodings with Seaside. There is
an important rule in Seaside about the encoding: “do unto Seaside as you
would have Seaside do unto you”. This means that if you run an encoded
adapter web server such as , Seaside will give you strings in
the specified encoding but also expect from you strings in that encoding. In
Squeak encoding, each character is represented by an instance of . If
you have non-Latin-1 characters, you’ll end up with instances of .
If all your Characters are in Latin-1, you’ll have .

WAKomEncoded. takes one or more bytes of UTF-8 and maps
them to a single character (and vice versa). This allows it to support all
100,000 characters in Unicode. The following code shows how to start the
encoding adapter.

WAKom. Now what does, is a one to one mapping from bytes to
characters. This works fine if and only if your character set has 255 or less

238 CHAPTER 17. SERVING FILES

entries and your encoding maps one to one. Examples for such combination
are ASCII and ISO-8859-1 (latin-1).

If you run a non-encoded web server adapter like , Seaside will give
you strings in the encoding of the web page (!) and expect from you strings
in the encoding of the web page.

Example. If you have the character in a UTF-8 encoded page and you
run an encoding server adapter like this character is represented
by the Squeak string:

However if you run an adapter like , the same character is repre-
sented by the Squeak string:

Yes, that is a string with two Characters! How can this be? Because
(the Unicode character U+00E4) is encoded in UTF-8 with the two byte se-
quence and WAKom does not interpret that, it just serves the two
bytes.

Use UTF-8. Try to use UTF-8 for your external encodings because it
supports Unicode. So you can have access to the largest character set.
Then use ; this way your internal string will be encoded on
WideString. will do the conversion of the response/answer
between WideString and UTF-8.

Important

To see if your encoding works, go to http://localhost:8080/tests/alltests and
then to the “Encoding” test (select). There’s a link there to a
page with a lot of foreign characters, pick the most foreign text you can find
and paste it into the upper input field, submit the field and repeat it for the
lower field.

Telling the browser the encoding. So now that you decided which encoding
to use and that Seaside will send pages to the browser in that encoding, you
will have to tell the browser which encoding you decided to use. Seaside
does this automatically for you. Override in your session class (the
default is in Squeak). In Seaside 3.0 this is a configuration setting in
the application.

The charset will make sure that the generated html specifies the encodings as
shown below.

http://localhost:8080/tests/alltests

17.6. A WORD ABOUT CHARACTER ENCODINGS 239

Now you should understand a little more about character encodings and how
Seaside deals with them. Pay attention that the contents of uploaded files are
not encoded even if you use WAKomEncoded. In addition you have to be
aware that you may have other parts of your application that will have to
deal with such issues: LDAP, Database, Host OS, etc.

240 CHAPTER 17. SERVING FILES

Chapter 18

Managing Sessions

When a user interacts with a Seaside application for the first time, a new
session object is automatically instantiated. This instance lasts as long as
the user interacts with the application. Eventually, after the user has not
interacted with the session for a while, it will time-out – we say that the
session expires. The session is internally used by Seaside to remember page-
views and action callbacks. Most of the time developers don’t need to worry
about sessions.

In some cases the session can be a good place to keep information that should
be available globally. The session is typically used to keep information about
the current user or open database connections. For simple applications, you
might consider keeping that information within your components. However,
if big parts of your code need access to such objects it might be easier to use a
custom session class instead.

Having your own session class can be also useful when you need to clean-up
external resources upon session expiry, or when you need extra behavior that
is performed for every request.

In this chapter you will learn how to access the current session, debug a
session, define your own session to implement a simple login, recover from
session expiration, and how to define bookmarkable urls.

18.1 Accessing the Current Session

From within your components the current session is always available by
sending . This can happen during the rendering phase or while

241

242 CHAPTER 18. MANAGING SESSIONS

processing the callbacks: you get the same object in either case. To demon-
strate a way to access the current session, quickly add the following code to a
rendering method in your application:

This displays a link that opens a Seaside inspector on the session. Click the
link and explore the contents of the active session. To get an inspector within
your image you can use the code . In both cases you
should be able to navigate through the object.

In rare cases it might be necessary to access the current session from outside
your component tree. Think twice before doing that though: it is considered
to be extremely bad coding style to depend on the session from outside your
component tree. Anyway, in some cases it might come in handy. In such a
case, you can use the following expressions:

But again you should avoid accessing the session from outside of the compo-
nent tree.

18.2 Accessing the Session from the Debug-
ger

In older versions of Seaside, session objects could not be inspected from
the debugger as normal objects. If you tried to evaluate the
debugger would answer instead of the expected session object. This
is because sessions are only accessible from within your web application
process, and the Smalltalk debugger lives somewhere else. In Seaside 3.0 this
problem is fixed on most platforms.

If this doesn’t work for you, then you need to use a little workaround to
access the session from within the debugger. Put the following expression
into your code to open an inspector from within the web application and halt
the application by opening a debugger:

18.3. CUSTOMIZING THE SESSION FOR LOGIN 243

18.3 Customizing the Session for Login

We will now implement an extremely simple login facility to show how to
use a custom session. We will enhance the application we developed
in Chapter 13 and add a login facility.

When a user interacts with a Seaside application for the first time, an instance
of the application’s session class is created. The class is the default
session class, but this can be changed for each application, allowing you to
store key information on this class. Different parts of the system will then
be able to take advantage of the information to offer different services to the
user.

We will define our own session class and use it to store user login informa-
tion. We will add login functionality to our existing component. The login
functionality could also be supported by using a task and/or a specific login
component. The principle is the same: you use the session to store some data
that is accessible from everywhere within the current session.

In our application we want to store whether the user is logged in. Therefore
we create a subclass called of the class and we will
associate such a new session class to our hotel application. We add the
instance variable to the session to hold the identity of the user who is
currently logged in.

We define some utility methods to query the user login information.

Now you need to associate the session we just created with your existing
application; you can either use the configuration panel or register the new
application setup programmatically.

244 CHAPTER 18. MANAGING SESSIONS

Configuration Panel. To access the configuration panel of your application go
to http://localhost:8080/config/. In the list select your application (probably
called ‘miniinn’) and click on its associated configure link. You should get to
the configuration panel which lists several things such as: the library your
application uses (see Part V); and its general configuration such as its root
component (see Chapter 23).

Click on the drop-down list by Session Class – if there is only text here, press
the override link first . Among the choices you should find the class .
Select it and you should get the result shown in Figure 18.1. Now Save your
changes.

Figure 18.1: The session of miniInn is now InnSession.

Configuring the application programmatically. To change the associated
session of an application, we can set the preference using the
message >> . We can do that by redefining the
class method of the application as follows. Since this method is
invoked automatically only when the application is loaded, make sure that
you evaluate it manually after changing it.

To access the current session use the message >> . We
define the methods and in our component.

Then we define the method which, depending on the session
state, offers the possibility to either login or logout.

http://localhost:8080/config/

18.4. LIFECYCLE OF A SESSION 245

We define a dummy method to demonstrate behavior
only available for users that are logged in.

Then we redefine the method to present the new function-
ality.

Figure 18.2, Figure 18.3 and Figure 18.4 illustrate the behavior we just imple-
mented. The user may log in using the top level link. Once logged in, extra
information is available to the user.

18.4 Lifecycle of a Session

It is important to understand the lifecycle of a session to know which hooks
to customize. Figure 18.5 depicts the lifetime of a session:

1. When the user accesses a Seaside application for the first time a new
session instance is created and the root component is instantiated. Sea-
side sends the message >> to the active
component tree, just before triggering the rendering of the components.
Specializing the method enables developers to inspect

246 CHAPTER 18. MANAGING SESSIONS

Figure 18.2: With Session.

the head fields of the first request to an application, and to parse and
restore state if necessary.

2. All subsequent requests are processed the same way. First, Seaside
gives the components the ability to process the callbacks that have
been defined during the last rendering pass. These callbacks are usu-
ally triggered by clicking a link or submitting a form. Then Seaside
calls >> of all visible components. This gives
the developer the ability to modify the default URL automatically gen-
erated by Seaside. Then Seaside redirects the user to the new URL. This
redirect is important, because it avoids processing the callbacks unnec-
essarily when the user hits the Back button. Finally Seaside renders the
component tree.

3. If the session is not used for an extended period of time, Seaside au-
tomatically expires it and calls the method >> .
If the user bookmarked the application, or comes back to the expired
session for another reason, a new session is spawned and the lifecycle
of the session starts from the beginning.

18.5. CATCHING THE SESSION EXPIRY NOTIFICATION 247

Figure 18.3: With Session: Enter your name.

18.5 Catching the Session Expiry Notification

Sessions last a certain period of time if there are no requests coming in,
after which they expire. The default is 600 seconds or 10 minutes. You can
change this value to any other number using the configuration interface (see
Section 3.6.6), or programmatically using the following expression:

Depending on the type of your application you might want to increase this
number. In industrial settings 10 minutes (600 seconds) has shown to be quite
practical: it is a good compromise between user convenience and memory
usage.

When a session expires Seaside sends the message >>

to . You can override this method to clean up your session, for
example if you have open files or database connections. In our small example

248 CHAPTER 18. MANAGING SESSIONS

Figure 18.4: With Session: Starting Date and Ending Date.

this is not really necessary, but to illustrate the functionally we will now
logout the user automatically when the session expires:

Note that at the time the message is sent, there is no way to
inform the user in the web browser about the session expiry. The message

is called asynchronously by the Seaside server thread and there
is no open connection that you could use to send something to the client – in
fact the user may have already closed the browser window. We will see in the
next section how to recover if the user does try to return to the session.

18.6 Recovering from Expired Sessions

The simplest way to change the default behavior of session expiry is to
make your application bookmarkable. This involves serializing part of the

18.6. RECOVERING FROM EXPIRED SESSIONS 249

Figure 18.5: Lifetime of a session.

application state into a URL so that at any later point in time it can be retrieved,
even if the session has expired. This is also a useful feature if you want that
your application to be indexed by search engines or if you want to allow the
possibility of bookmarking certain states of the application.

Normally as a Seaside application developer we don’t worry about URLs.
This is the only section of the whole book where we do, because we want to
remember some of the application state. This is only because we want to be
able to retrieve it later in case the session expired. Again we are using the
MiniInn application as our running example.

Seaside provides the method >> as a hook method
that is called whenever the page is rendered. It allows one to modify the
automatically generated URL that is displayed in the address bar of the web
browser, so let’s override it in our class:

In the above example we add both the value of and as
a parameter to the URL. Have a look at the methods in to see other

250 CHAPTER 18. MANAGING SESSIONS

possibilities on how to modify the URL differently:

• >> Append the value with the key to the list of
parameters. The key should be a string and not start with an underscore,
such keys are reserved for internal matters by Seaside. The value will
be converted to a string.

• >> Append the argument as a new path element. If
the argument contains slashes the string is split into multiple elements.

• >> Set the fragment part of the URL. This is the part at
the very end of the URL separated by .

Note that we could also have added the currently authenticated user to
the URL. Essentially anything that can be meaningfully transformed to a
string can be appended. It is the responsibility of the developer though to
decide what application state is meaningful. As URLs are strings accessible to
your users, you should expect that they might to try to manipulate the URL
manually. Thus, it is better to avoid putting any security related information
in there. Also try to avoid putting too much information into the URL, as
some web browsers and servers have problems with URLs that are more than
2048 characters.

When running the modified application there is not much difference. If you
select a date it should appear as an URL parameter and stay as long as you
don’t change it again.

How can we now benefit from this additional information in the URL? Well, if
the session expires we can have a look at the request parameters and we might
find some information there that we can restore. To do this Seaside provides
another hook method called >> as presented
earlier in this Chapter.

When a new session is started, Seaside calls the method on
all initially visible components. Other than that, the method is never called.
This allows us to have a look at the object and check if any of our
URL parameters are present. If so, we convert the strings to a date and assign
it in our model. We successfully restored part of our application state.

To test we need a way to flush all Seaside sessions. First start a session, login
and select a start and end date. Then use the following expression to expire

18.7. MANUALLY EXPIRING SESSIONS 251

all active sessions in your image.

When clicking on any link or simply pressing the refresh button, you will
notice that the authenticated user was dropped. However, the start and end
date is still persistent and you can interact with your application from within
a new session.

More sophisticated examples of the interplay between and
are included with your Seaside distribution. Browse for

implementors of these two messages.

18.7 Manually Expiring Sessions

In some cases developers might want to expire a session manually. This is
useful for example after a user has logged out, as it frees all the memory that
was allocated during the session. More important it makes it impossible to
use the Back button to get into the previously authenticated user-account and
do something malicious.

A session can be marked for expiry by sending the message
>> to a . Note that calling will not

cause the session to disappear immediately, it is just marked as expired and
not accessible from the web anymore. At a later point in time Seaside will
call and the garbage collector eventually frees the occupied
memory.

Let us apply it to our hotel application: we change our MiniInn application
to automatically expire the session when the user logs out.

Note that expiring a session without redirecting the user to a different location
will automatically start a new session within the same application. Here we
change that behavior to make it point to the Seaside web site as follows.

If the user tries to get back to the application, he is automatically redirected
to a new session.

252 CHAPTER 18. MANAGING SESSIONS

18.8 Summary

Sessions are Seaside’s central mechanism for remembering user specific in-
teraction state. Sessions are identified using the parameter in the URL. As
an application developer there is normally no need to access or change the
session, because it is used internally by Seaside to manage the callbacks and
to store the component tree. In certain cases it might be useful to change the
behavior of the default implementation or to make information accessible
from anywhere in the application.

Pay attention that if components depend on the presence of a specific session
class, you introduce strong coupling between the component and the session.
Such sessions act as global variables and should not be overused.

Part V

Web 2.0

253

255

Web 2.0 is a buzzword that characterizes the trend to make web applications
more accessible. It is about opening up your data and services to your
customers. It is about supporting standard protocols and allowing your
application to run on many different devices, not just a web browser on a
desktop computer. It is about letting your users interact with each other. It
is about letting your application evolve with the needs of your users. That’s
why many Web 2.0 projects are constantly evolving.

In this chapter we will present the different solutions offered by Seaside
to support Web 2.0. We will extend the todo application we built in Chap-
ter 15 with Web 2.0 technology. The definition of Web 2.0 itself is still open.
Every day there are new features popping up, calling themselves the new
leader in the Web 2.0 movement. Seaside is very supportive of the Web 2.0
philosophy.

• Seaside ensures that the XHTML it produces is valid. It encourages
developers to use meaningful XHTML markup and frees them from
worrying about the final look of the application. Seaside lets designers
define the colors, fonts and layout of the page through Cascading Style
Sheets (CSS) as shown in Chapter 8.

• Seaside embraces the evolution of web applications. In contrast to file-
based web frameworks, Seaside allows one to take advantage of the full
power of the Smalltalk development environment. The ability to refac-
tor, test and navigate an application with the same set of tools makes
it extremely powerful and easy to change and adapt the application to
new needs. On-the-fly debugging is a huge time saver.

• Seaside integrates easily with other output formats. Microformats are
the easiest way to go. Just add specific classes and attributes to your
XHTML to make your application generate a valid microformat. In
Chapter 19 we demonstrate how to add an RSS (Really Simple Syndica-
tion) stream of todo items to your users.

• While the core of Seaside does not rely on JavaScript, this client side
technology might help you to increase the appeal and the usability
of your web application. AJAX (Asynchronous JavaScript and XML)
enables you to build user interactions without having to reload the
whole page with every click. Best of all, the application will feel much
more responsive. In Chapter 20 and Chapter 21 we will learn how to
extend the todo application by communicating asynchronously with
the server and adding JavaScript gimmicks without writing a single
line of JavaScript code.

• Comet takes AJAX to the next level. While traditional web servers
always wait for the client to request data, Comet allows you to actively
push changes from the server to the client. In Chapter 22 we will use
this technology to let other people observe how our todo list updates.

256

Chapter 19

Really Simple Syndication

RSS is a special XML format used to publish frequently updated content, such
as blog posts, news items or podcasts. Users don’t need to check their favorite
web site for updates. Rather, they can subscribe to a URL and be notified
about changes automatically. This is can be done using a dedicated tool called
feed reader or aggregator, but most web browsers integrate this capability as
part of their core functionality. If a web site offers an RSS feed, this is depicted
with an icon like the one in below.

Figure 19.1: The Really Simple Syndication icon.

The RSS XML format is very much like XHTML, but much simpler. As
standardised in the RSS 2.0 Specification, RSS essentially is composed of two
parts, the channel and the news item specifications. While the channel describes
some general properties of the news feed, the items contain the actual stories
that change over time. Below we see an example of such a feed. In Figure 19.2
we see how the same feed is presented within a feed reader.

257

http://cyber.law.harvard.edu/rss/rss.html

258 CHAPTER 19. REALLY SIMPLE SYNDICATION

19.1 Creating a News Feed

There is a Seaside package extension that helps us to build such feeds in a
manner similar to what we used to build XHTML for component rendering.
Let’s create a news feed for our todo items.

Define the Feed Component. The package defines a root class named
that allows you to describe both the news feed channel (title,

description, language, date of publication) and also the news items. Therefore,
the next step is to create a new subclass of named .
This will be the entry point of our feed generator. In our example, we don’t
need extra instance variables.

Register the Component as Entry Point. Next we need to register the com-
ponent at a fixed URL. The aggregator will use this URL to access the feed.
We do this by adding a class side initialize method. Don’t forget to evaluate
the code.

At this point we can begin to download our feed at
http://localhost:8080/todo.rss, however it is mostly empty except for
some standard markup as shown by the following RSS file.

http://localhost:8080/todo.rss

19.2. RENDER THE CHANNEL DEFINITION 259

Your browser may be set up to handle RSS feeds automatically, so you may
have difficulty in examining the raw source.

Note

19.2 Render the Channel Definition

Next we create the contents of the feed. To do so we need to access our model
and pass the data to the RSS renderer. As a first step we render the required
tags of the channel element.

A full list of all available tags is available in the following table.

260 CHAPTER 19. REALLY SIMPLE SYNDICATION

RSS Tag Selector Description
The name of the channel (required).
The URL to website corresponding to
the channel (required).
Phrase or sentence describing the
channel (required).
The language the channel is written
in.
Copyright notice for content in the
channel.
Email address for person responsible
for editorial content.
Email address for person responsible
for technical issues.
The publication date for the content
in the channel.
The last time the content of the chan-
nel changed.
Specify one or more categories that
the channel belongs to.
A string indicating the program used
to generate the channel.

19.3 Rendering News Items

Finally, we want to render the todo items. Each news item is enclosed within
a tag. We will display the title and show the due date as part of the
description. Also we prepend the string , if the item has been com-
pleted.

Doing so will generate the required XML structure for the item tag.

19.4. SUBSCRIBE TO THE FEED 261

At the minimum, a title or a description must be present. All the other
sub-elements are optional.

RSS Tag Selector Description
The title of the item.
The URL of the item.
Phrase or sentence describing the channel.
The item synopsis.
Includes the item in one or more categories.
URL of a page for comments relating to the
item.
Describes a media object that is attached to
the item.
A string that uniquely identifies the item.
Indicates when the item was published.
The RSS channel that the item came from.

19.4 Subscribe to the Feed

Now we have done all that is required to let users subscribe. Below you can
see how the feed is presented to the user in the feed reader when the URL
was added manually.

One remaining thing to do is to tell the users of our todo application where
they can subscribe to the RSS feed. Of course we could simply put an anchor at
the bottom our web application, however there is a more elegant solution. We
override the method >> in our Seaside component
to add a link to our feed into the XHTML head. Most modern web browser
will pick up this tag and show the RSS logo in the toolbar to allow people to
register for the feed with one click.

Note the use of the message tells the web browser that the given link
points to an RSS feed.

262 CHAPTER 19. REALLY SIMPLE SYNDICATION

Figure 19.2: The ToDo Feed subscribed.

In Firefox you may have to add the relationship property to make the rss logo
visible.

19.5 Summary

In Seaside you don’t manipulate tags directly. The elegant generation of
RSS feeds nicely shows how the canvas can be extended to produce some-
thing other than XHTML. In particular, it is important to see that Seaside is
not limited to serve XHTML but can be extended to serve SVG, WAP and
RSS.

Chapter 20

Dynamic Content with
Scriptaculous

While a simple web application requires communication with the server
for each update of the display, refresh or any action, JavaScript-enabled
applications can allow some part of the computation to be done in the client
without requiring the server to recreate and resend the complete XHTML
defining the page. This allows you, for example, to have UI updates without
forcing the user to explicitly click on a link or press a button.

JavaScript running in the web browser can also communicate with the web
server without the need to reload the whole page. This provides you with
a lightweight way to provide updates to the contents of your application’s
pages, such as stock tickers.

The use of these techniques allows you to build highly dynamic and inter-
active web applications that behave like desktop applications rather than
traditional web pages. Google’s web mail client is a great example of how
well this approach can work.

In this chapter, we give a brief description of the JavaScript frameworks
Seaside supports. Then we explain how you can add JavaScript effects to
your applications and show how you can take advantage of AJAX to support
the communication between the client side and the server.

263

264 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

20.1 Prototype and script.aculo.us

Prototype (http://www.prototypejs.org) is a free, open-source JavaScript
framework, that aims to ease JavaScript programming. The framework was
created by Sam Stephenson and enhances the JavaScript experience with utili-
ties to perform AJAX requests and to do DOM manipulations without having
to worry about web browser incompatibilities. Although the framework
is called Prototype (a reference to JavaScript’s prototype-based inheritance
model), it implements its features in a traditional class-based model.

Many of Prototype’s extensions to JavaScript are inspired by Smalltalk and
Ruby. For example, after loading the Prototype library, a JavaScript Array is
extended with methods that have familiar Smalltalk names: , ,

, and . Up until recently, these similarities make Prototype the
framework of choice to integrate with Seaside and Smalltalk. Nowadays the
JQuery (http://www.jquery.com/) framework described in Chapter 21 is a
nice alternative to the Prototype library.

The Prototype framework aims to make JavaScript programming simpler, and
it does not have any features to make the user interface richer. script.aculo.us
(http://script.aculo.us) is a free, open-source JavaScript framework, built on
top of Prototype, providing visual effects, drag and drop and several ready-
made user interface controls. The author of script.aculo.us Thomas Fuchs
summarizes: “It’s about the user interface, baby!”

Seaside provides a complete integration of Prototype and script.aculo.us
called “Scriptaculous”. This means that you can access all aspects of these
frameworks from Smalltalk by writing Smalltalk code only. Every JavaScript
class has a counterpart in the Smalltalk world and can be used without
having to know the details of the underlying JavaScript implementation.
The key feature is that Scriptaculous lets you write Smalltalk code that will
generate JavaScript snippets embedded in the XHTML stream created by
Seaside.

20.1.1 Installation

As a first step we need to make sure that the Smalltalk Scriptaculous package
is loaded. Most prebuilt images such as the one-click image already come
with this package included. Note that despite the Scriptaculous name, the
package includes the JavaScript source and integration code for both the
Prototype and the script.aculo.us frameworks.

Make sure to have the packages , ,
and loaded. For examples

http://www.prototypejs.org
http://www.jquery.com/
http://script.aculo.us

20.1. PROTOTYPE AND SCRIPT.ACULO.US 265

Figure 20.1: Scriptaculous Demo and Functional Test Suite.

and functional tests also load the test packages ,
and .

20.1.2 Adding the Library

The principle behind using JavaScript is that your application (and the
XHTML served by the server) will contain some JavaScript invocations to
JavaScript libraries. Therefore you have to mention to your application that it
has to include the associate JavaScript libraries.

Seaside 3.0 has reorganised and modularised the Javascript packages, making
it easier to load only those parts you need. Furthermore Seaside 3.0 gives you
the possibility to chose between a full version for development, a minimized
and compressed version for deployment, and a minimized and compressed
version served through the Google AJAX Libraries API high-performance
servers. In any case the end result should be the same.

Before being able to use any of the functionality provided by the Scrip-
taculous package, you need add the classes and

to our application. These are the normal file libraries
that automatically includes the necessary JavaScript sources into the XHTML
head of our application. There are two alternative ways of adding the
Javascript libraries:

http://code.google.com/apis/ajaxlibs/

266 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

• Add the library using the application configuration interface by se-
lecting and from the list and
clicking on Add.

• Add the library with the Seaside API, preferably in the
method on the class side of the root component. Don’t forget to evaluate
the method after adding or changing it.

If you fail to specify and in your
application, you will not get a Seaside error message, but you will get a
Javascript error message that is sometimes hard to diagnose, depending on
the web browser you are using.

Important

20.2 Snippets and Brushes

Adding JavaScript code to your Seaside application is not much different
from rendering plain XHTML. You need to

1. ask the rendering canvas to instantiate a Prototype or
script.aculo.us brush,

2. configure the newly created brush with a cascade of configuration
messages, and

3. add the brush to the XHTML output. This will embed the JavaScript
snippet at the desired place into the XHTML output stream.

In the following paragraphs we are going to have a in-depth look at these 3
steps and all the possibilities that Scriptaculous is providing. To directly dive
into a running example, skip this section and continue with Section 20.3. To
learn about the details you can always come back later.

20.2.1 Instantiate a Brush

The Prototype and Scriptaculous package extends the Seaside class
with the methods and that both re-

turn a factory object for JavaScript brushes. These factories are instances

20.2. SNIPPETS AND BRUSHES 267

of . These brushes are responsible for creating well defined snip-
pets of JavaScript code. A full listing of the available brushes is presented
below.

JavaScript Class Factory Selector Smalltalk Class
$ (Element)

$ (Form)

$ (Form.Element)

$$ (Selector)

Ajax.Autocompleter

Ajax.InPlaceCollectionEditor

Ajax.InPlaceEditor

Ajax.PeriodicalUpdater

Ajax.Responders

Ajax.Request

Ajax.Request

Ajax.Updater

Control.Slider

Draggable

Droppables

Effec

Event

Insertion

Sortable

Sound

For some Prototype and script.aculo.us functionality there are several aliases
available. Seaside always tries to generate the shortest possible variation,
however for reference it is often useful to know the long form as well. For ex-
ample writing is a synonym for the slightly longer version

.

268 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

20.2.2 Using a Brush

Unlike a normal XHTML brush, we have to explicitly add the JavaScript
snippet to the XHTML output stream. There are essentially four different
places a JavaScript snippet can be added: (1) right at the current position in
the XHTML output stream into a tag, (2) into a method that will be
automatically evaluated when the page has completely loaded, (3) to a DOM
element, or (4) as an event handler to a DOM element.

1. Adding to a script tag. You can add the brush right at the current place
into the XHTML output stream. This is done by creating a script tag using an
expression such as . This technique is simple
and straightforward, however it has the disadvantage that the JavaScript
code will be evaluated right away when the web browser parses the file.
This might happen even before the whole page is read in the web browser
and might cause JavaScript errors, as there are no guarantees that the DOM
elements you use are already available. In most cases this is not the preferred
way to go.

2. Adding to a list of load-scripts. You can add the brush to a list of load
scripts. These load scripts will be evaluated after the page has finished load-
ing. This solution is usually preferred over the previous one. The following
expression is an example:

3. Adding to a DOM element. Often JavaScript brushes need to know the
ID of the element they are supposed to operate on. For example if we want to
apply an effect to an element we need to pass the ID of that particular element
to the JavaScript brush. Luckily there is an easy way to do this automatically
and at the same time add the JavaScript brush to the list of load scripts. Every
XHTML brush understands the message which will (1) ensure that
tag has an unique ID, (2) pass the ID of the tag to the JavaScript brush, and (3)
add the JavaScript brush to the list of load scripts. Here’s an example:

4. Adding as a DOM event handler. So far the JavaScript code is executed
unconditionally when it is encountered or after the page has loaded. Luckily
one can assign JavaScript snippets to events on XHTML DOM nodes. Similar
to the technique above, a JavaScript snippet that has no specific ID will
operate on its owning XHTML element.

The most common events are and . For example,

20.2. SNIPPETS AND BRUSHES 269

will execute the JavaScript code when the div element is clicked. You can
find a full list of DOM events in the table below. Keep in mind that not all
events are supported by all XHTML tags. For example the event
will never be triggered on a div tag, since it only applies to form elements that
can be changed. The support and handling of some of the events (foremost
among these are , , , , and) differ
significantly among the web browser implementations.

DOM Event Seaside Selector Description
onblur When the element that is in focus,

loses the focus.
onchange When a select input element has a

selection made or when a text input
element has a change in the text.

onclick When the mouse button is clicked
over an element.

ondblclick When the mouse button is double
clicked over an element.

onfocus When an element receives focus ei-
ther by the mouse or by tabbing nav-
igation.

onkeydown When a key is pressed down over an
element.

onkeypress When a key is pressed and released
over an element.

onkeyup When a key is released over an ele-
ment.

onload When the user agent finishes loading
a window.

onmousedown When the mouse button is pressed
over an element.

onmousemove When the mouse is moved while it
is over an element.

onmouseout When the mouse is moved away
from an element.

onmouseover When the mouse is moved onto an
element.

onmouseup When the mouse button is released
over an element.

onreset When a form is reset.
onselect When a user selects some text in a

text field.
onsubmit When a form is submitted.
onunload When the user agent removes a doc-

ument from a window.

270 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

20.2.3 Configure a Brush

There is no point in listing all possible configuration messages that can
be sent to brushes. However, both underlying JavaScript frameworks
have excellent documentation that can be directly mapped to the Smalltalk
world. Use the table above to find out the JavaScript class name of the
item in question and look it up on either http://www.prototypejs.org/api or
http://wiki.github.com/madrobby/scriptaculous/. Some of the documenta-
tion available on these sites is also part of the class and method comments in
your Smalltalk image.

20.3 Adding an Effect

Now we will demonstrate some applications of the principles just mentioned.
It is straightforward, for example to add an effect to the heading of the ToDo
application. To highlight the title when clicked, let us modify the method

as follows.

Before we do something more sophisticated, let’s experiment a bit with this
code. The first thing to try is to look at the generated source code (by using
Toggle halos and pressing the source link). Obviously Seaside automatically
transformed the JavaScript snippet that we specified and assigned it to the
heading tag:

Nice! Let’s experiment a bit with this effect. For example we can change the
default yellow highlight color to a flashing blue:

http://www.prototypejs.org/api
http://wiki.github.com/madrobby/scriptaculous/

20.3. ADDING AN EFFECT 271

In this case Seaside generates the following JavaScript expression:

You might also want to try some other effects such as >> or
>> . These are fun to play with, but not particularly useful

for our example. Let’s do something slightly more useful and display some
help text or a copyright notice when the heading is clicked. You can see the
result in Figure 20.2. Note that we extracted the rendering of the title and
help text into a separate method and that we improved the style-sheet as
well.

Figure 20.2: The todo application with help text faded in.

272 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

20.3. ADDING AN EFFECT 273

This code requires some explanation:

• First we extract the heading code from into its own
method . This makes it easier for us to change its
behavior.

• In we first ask Seaside to generate a new unique ID.
In this case it would be possible to use our own ID string, however
this is considered bad practice. If you want to use the component in a
different context, the ID might conflict with existing code. Also when
hardcoding IDs it is, for exactly the same reason, not possible to have
two instances of the same component visible on a page. We also add
some class information to the heading tag, to allow our CSS to cause
the cursor to change when the mouse moves over the heading.

• Next we create an effect called >> and assign it
to the event of the heading. Since we don’t want to toggle the
appearance of the heading itself (which would be the default), we pass
it the generated ID. Two other interesting toggle-effects we could have
used are >> and >> .

• Last but not least we add the div element we would like to toggle on and
off. Obviously this is the element with our automatically generated ID,
so we assign it here. Since the div element should not be visible in the
beginning we hide it with an inline style. Moreover we assign the CSS
class , so that we are able to change its look from the style-sheet.

If we have a look at the running ToDo application, it works as proposed.
However there is one thing we might want to improve: whenever we have
a full refresh, for example when clicking on a link or button, the help text
disappears again. The reason is that we only specified client side behavior:
whenever the heading is clicked the JavaScript code is executed that has been
generated by Seaside. And the JavaScript code doesn’t talk back to the server,
it just toggles the visibility of a DOM node on the client. Luckily there is
AJAX that enables us to talk back to the server, and this is exactly what we
are going to do in the next section.

274 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

20.4 AJAX: Talking back to the Server

AJAX is an acronym for Asynchronous JavaScript and XML. The fact that it
is asynchronous means that additional data is passed to, or requested from
the web server in the background, without the user waiting for it to arrive.
JavaScript obviously names the programming language that is used to trig-
ger the request. Fortunately the data being transmitted by an AJAX request
doesn’t have to be in XML. It can be anything that can be sent through the
HTTP protocol. The reason for the “XML” in the name is that in most web
browsers the internal implementation of this functionality can be found in an
object called . Thankfully the Prototype framework and its in-
tegration into Seaside makes it a cakewalk to use in your applications.

20.4.1 Defining a Callback

Our goal is to get notified whenever the heading is clicked. We add
to the click handler, where is a Seaside

callback block, like the one we use for an anchor. We add the snippet as
another click handler to the heading and add an instance variable to remember
the visibility of our help text. This time we only hide the div tag with an
inline style, if the element should be invisible.

Add the instance variable to the class, and then add the
following:

Don’t forget to start a new session before playing with the new functionality,
otherwise the instance variable won’t be initialized. Have a look at the

20.4. AJAX: TALKING BACK TO THE SERVER 275

generated source code. Seaside quietly combines the two AJAX snippets in
the click handler of the tag:

As you can see, Seaside takes care of a lot of low level details for us. When we
try the application it is actually quite hard to see that it works any differently
than before; certainly for the end user it looks exactly the same as before.
Behind the scenes it’s a different story: in the background our additional
JavaScript code triggers a request that goes to the server and evaluates our
callback block. You can put a logging statement

or a into that block to see that it really evaluates the code.

Another very useful tool to observe how AJAX requests are passed between
your web browser and Seaside is Firebug, a Firefox extension. We will have a
look at this tool in the next section in great detail.

20.4.2 Serializing a Form

An annoying behavior of our application is that the user has to click save
to submit changes in the todo list. This is not really user-friendly and also
dangerous, because it is too easy to forget to hit the save button after toggling
the checkboxes. With AJAX we can improve this, and let the browser worry
about saving our changes. Let’s use AJAX to automatically submit the form
whenever a checkbox is clicked:

http://www.getfirebug.com

276 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

Once you’ve made this change, load the application in your browser and
click on one of the checkboxes. Without pressing save, refresh your browser
window, and you should see the new value has ‘stuck’.

Again we are using the request object, but this time instead of a callback we
tell it to trigger a form using >> . This method expects a
DOM ID or DOM node of a form as an argument. We could use the same
trick that we used previously and let Seaside generate a unique ID and
assign it to the form and to our JavaScript snippet. This technique has the
disadvantage that we introduce a new dependency between the method that
renders the form and the one that renders the checkbox, which might not be
desired.

walks up the DOM tree and returns the first form it encounters. In our case
this is the surrounding form of our checkbox. The starting point of this lookup
is the current DOM node (our checkbox) since we didn’t specify a different
element using >> . If we only used >> , we would
have got the parent element of the checkbox, which in this example is the div
element. There are some other methods defined in that navigate
the DOM tree in other directions: >> , >> , and

>> .

Serializing your data. Once the form element has been found in the DOM,
we then want to specify what to do with it:

Here, the says we want the page to ‘serialize’ the form, that is,
to convert the DOM representation of the form (and all its included fields)
into a string that can be passed back to the server when required. We pass this
serialised version into the method of the object, which causes the
required JavaScript code to be generated in the page in your browser.

Because all of this happens as an argument to , the
script will be generated into the attribute of the checkbox, giving
you something like the following:

So the effect of this code is that when you click on the checkbox, its
event gets fired. This creates an Ajax request that is sent back to your server
with your serialized form. The Scriptaculous code in Seaside will then process

20.4. AJAX: TALKING BACK TO THE SERVER 277

all the callbacks defined in your form, using the data it retrieved from the
serialized form.

Obviously the save button is not needed in our example any more and we can
remove it, but you could decide to keep the button so that your application
would continue to work for people who have JavaScript disabled. Since we
still have the button, our application can be used with and without JavaScript
support.

20.4.3 Updating XHTML

The most important feature of AJAX is the ability to update parts of a page,
without having the browser request and parse a whole new page from scratch.
This is important since in most web applications only small parts of a page
change with each user interaction.

If you look carefully at your todo list page in the browser, you’ll notice that the
colour of your todo items doesn’t change when you mark them as completed.
It would be nice if we could change the colour of a todo item depending on
its state and give the user visual feedback. Let’s make the following change
to our code:

278 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

We asked Seaside for a unique ID using . We store this ID in
an instance-variable and assign it to the unordered list in
to be able to refer to it in as a target of an AJAX update
action.

In we replaced the method with an , which
understands many of the same messages as a , but can also update
the page once the form’s callbacks have been processed. Since we still want
the server to process the changes to the form, we keep the line that triggers
the form. To allow the update to happen, we need to give the updater two
new pieces of information.

First, we pass the ID of the DOM element that we want it to update. When
the update happens, that whole section of your page will be removed, and
replaced by some new content that you must specify.

Second, in order to specify the new content, we create a callback block which
will be triggered to render. Notice that we pass a new renderer to
the callback block; the block uses this renderer to render the list of items. Also
notice that the checkbox has two callbacks now: one responsible for the state
of the checkbox, the other one responsible to update the HTML.

It is important that you use only the renderer passed as argument to the
AJAX callback block. Do not to use the canvas of the outer context.

is invalid at the time the AJAX callback is triggered since it already has
been sent out to the web browser when the full page request was processed.

Important

You may have a look at the classes and its subclasses and
. You will notice that they have many common messages they

understand.

If you play with the application you will see that the state of the checkboxes
is submitted now. You can observe that the colors of the individual items
change as you click the checkboxes, this is because the updater re-renders the
listing with the changed items.

20.4. AJAX: TALKING BACK TO THE SERVER 279

20.4.4 Behind the curtains

Now it is time to explain a bit the logic behind AJAX. Below you see a
sequence diagram of the interaction between the web browser and the server
during an AJAX updater action.

Figure 20.3: A full request (1) and an AJAX request (2) updating part of the
page.

1. Full Request. Every web application, even a completely AJAX driven
one, starts out with a full request. The web browser sends off a request to
the desired URL, in our case / . The request is processed by the web
server and passed to the Seaside dispatcher, which passes it on to the correct
session and triggers the components to render. Eventually Seaside calls

that returns the fully rendered page back to the web browser.
As soon as the web browser receives the response it starts to parse the XHTML.
During the parsing the browser may load some additional resources such as
images, style-sheets or JavaScript files, and eventually displays the result to
the user.

2. AJAX Request. What happens when the user triggers an AJAX up-
dater?

1. In case of an AJAX update action it is the JavaScript engine of the web

280 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

browser that sets off the request. It is important to note that this request
is made asynchronously (note the different arrow in the diagram), so
the web browser remains fully functional while the AJAX request is
processed by the server. Also note, that this means the JavaScript
statement following the AJAX updater is immediately executed. The
JavaScript engine does not block until the server returns a response.

2. Similar to the full request, Seaside receives the request and determines
the correct session to handle it. Instead of calling of
the root page to generate a complete XHTML page, Seaside evaluates
the callback block. In our case the callback block sends the message

, that renders the list of todo items. The partial response
is then passed back to the web browser using .

3. Finally the JavaScript engine gets notified that a response is ready to
be processed (remember, the request was sent asynchronously). The
XHTML snippet is parsed and inserted at a specific location in the DOM
tree.

So far we only had a look at the AJAX requestor and updater. The requestor
is used to serialize forms and trigger events on the server. The updater goes
one step further. It allows one to update a specified DOM node with newly
rendered content. There are two powerful AJAX features that we are going to
look at now, the periodical updater and the evaluator.

Periodical Updater. The periodical updater is an updater that
periodically performs a normal AJAX update action. This is commonly used
by all sorts of polling mechanisms. Note that in Chapter 22 we will have a
look at a different way to continuously update contents on a web page, that
doesn’t use polling. We can add the following code snippet to any application
to continuously display the current time:

Note that in this example we don’t need to specify an ID, since we assign the
script directly to a DOM element. In this case Seaside automatically connects
the updater with the owning XHTML element. If we wanted to update a
different DOM element, we would have to specify the ID of this element
using . We set the update frequency to every second. This is more a period
than a frequency, but that’s what it is called in the Prototype framework.
The callback block is then evaluated every second and renders the current
time.

Evaluator. The evaluator is the most complicated, but also most
powerful AJAX mechanism. Instead of updating a specific DOM element,

20.4. AJAX: TALKING BACK TO THE SERVER 281

it injects JavaScript code into the browser of the client. This is extremely
powerful and allows one to update multiple DOM elements and play effects
in one request. Again the evaluator looks very similar to the normal updater,
but instead of passing a XHTML canvas into the callback block it gives you a
script object where you insert JavaScript snippets. To see some sophisticated
examples of its use have a look at or that come with
the Scriptaculous package. Both widgets update multiple parts of the page
and change several CSS classes of the widget at the same time.

20.4.5 Wrap Up

Before using AJAX you have to make several decisions. First you must decide
which AJAX strategy you want to use.

• >> – The requestor does not send anything back to
the client. It solely sends a request and pushes data to the server.

• >> – The updater updates a single part of the page.
You need to provide the ID of the DOM element to update and a callback
block that expects one parameter to render the partial XHTML on.

• >> – The periodical updater is an updater that is
periodically executed. Additionally you need to specify an update
frequency.

• >> – The evaluator injects new JavaScript code into
the web browser. Its callback block expects one parameter that will
accept new JavaScript snippets.

After having chosen the AJAX strategy you might want to specify additional
options and declare state that should be transmitted to the server. The most
common ones are:

• >> – Serialize a complete form and trigger all its
associated callbacks. Note that the callbacks of submit buttons are
ignored to preserve consistency, use the callback to trigger specific code
evaluation.

• >> – Serialize a form ”element” such as a
text input field and triggers its associated callback. Note that this does
not work for all form elements. For example, check-boxes depend
internally on other hidden form elements. Submit-button callbacks are
ignored.

• >> – Serialize the result of evaluating the value
as a JavaScript expression on the client and pass it as an argument into
the callback block.

282 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

Furthermore you might want to register some events to get notified about the
state of the AJAX action. The most common events are listed below.

• >> – Invoked when a request completes and its status
code is undefined or belongs to the 200 family.

• >> – Invoked when a request completes and its status
code exists but is not in the 200 family.

• >> – Invoked at the very end of a request’s life-cycle,
once the request completed, status-specific callbacks were called, and
possible automatic behaviors were processed.

The above events and some other AJAX options can also be globally set using
. This is useful to define an error handler once for the whole

page in case the session expires. The following code snipped displays an
error message and triggers a full refresh whenever that happens:

20.5 Drag and Drop

The script.aculo.us library comes with sophisticated support for drag and
drop. You can define DOM elements to be draggable and (other) DOM
elements to accept drags. script.aculo.us provides a something called sortables
which are very easy to use. They enable you to specify XHTML elements
whose children can be sorted. As seen in the figure below, we are going to
use sortables to enable end-users to reorder their todo items.

To implement sortable todo items we need to change two parts of the appli-
cation. First we need to assign a passenger to every list-item. Think of every
item in our todo list being represented by an XHTML list-item and that we
have to tell Seaside how to make that mapping so that it can automatically
track the order of the items:

20.5. DRAG AND DROP 283

Figure 20.4: Reorder the items in the todo list.

In our example this is the unordered list, that should be made sortable. We
attach the sortable script to the list and assign an >>

handler that uses an AJAX request to serialize the changed order of list-items
and triggers the associated Seaside callback.

There are a number of other options available on the sortable.

• >> – Set it to or to con-
strain dragging to be in the horizontal or vertical direction only.

284 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

• >> – If set to true, the dragged element will appear
faded and a clone will stay at the old place, instead of directly dragging
the original element.

• >> – Restrict the selection of child elements to those
with the given CSS class.

• >> – Sets the kind of tag (of the child elements of the
container) that will be made sortable. The default is (as it is in our
example), you have to provide the XHTML tag if you use something
other than an ordered or unordered list.

For more advanced uses of drag and drop have a look at the examples that
come bundled with Seaside. demonstrates a single sortable
list. demonstrates two sortable lists side by side, where
you can reorder the individual items as well as move items from one side to
the other. demonstrates a small shop, where you drag
items into a cart, and from to cart to a trash bin. This example also shows
how to combine drag and drop operations with graphical effects to give users
feedback about their actions.

Note that drag and drop operations are not yet that common in the context
of web applications. End users might not discover them unless you give
them an explicit indication that they can drag and drop parts of your
user-interface, for instance you can try adding the following to your
method:

Note

20.6 JavaScript Controls

script.aculo.us comes with a collection of JavaScript widgets bundled that
can be used from Seaside. In this section we are going to add an in-place
editor to the ToDo application that allows us to edit the title of the todo item
right in the list with the checkboxes by simply clicking on the item, as seen
below.

To get the in-place editor up and running we only have to change the method
by replacing

with

20.6. JAVASCRIPT CONTROLS 285

Figure 20.5: In-place item editor.

Here we add a XHTML element to specify exactly what part we want
to turn editable. Then we need to specify two callback blocks: the first
one for >> to store the edited value
back into the todo item, and the second one for >>

to update the changed item. Furthermore we specify in this example a
>> button to be used to cancel editing. We

could also write or here, to put a link or to disallow cancelling
altogether.

Your complete method should now look like this:

286 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

In its current state, the in-place editor is fully functional. There is a small glitch
in the visual presentation, because script.aculo.us temporarily introduces a

element into the DOM tree that causes two ugly line-breaks. We can fix
that by adding the following style to our style-sheet:

The in-place editor supports a wide variety of options and events. We are
going to point out the most important ones. To see all possibilities, check out
the class .

• >> – The text of the button or link that
cancels editing.

• >> – The color to be used to highlight
the editable area when the user hovers the mouse over it.

• >> – or , if the ok command
should be displayed as a button or a link. if there should be
neither and the editor can only be closed by pressing the enter key.

• >> – The text of the submit button that submits
the changed value to the server.

• >> – The number of rows the input field should
use, anything greater than 1 uses a multiline text area for input instead
of a text-input.

• >> – Set this to to automatically
submit the editor when it loses focus.

There are several other JavaScript controls available. Similar to the
we’ve seen above, there is an .

The in-place collection editor displays a drop down list, instead of a text
input field, when the editing is triggered. You can see a combined example

20.7. DEBUGGING AJAX 287

when browsing . The and its example
shows how to add autocompletion functionality to a

text-input or text-area field. This allows users to start typing something while
the JavaScript library will asynchronously ask the server for possible tokens
that are then offered to the user within a drop-down list as possible com-
pletion matches. Another interesting control is that is demoed in

. The slider offers a sophisticated scroll-bar implementation that
is otherwise missing in XHTML.

20.7 Debugging AJAX

For now we have a fully functional todo application. However, before we
continue to improve the application further, we would like to have an in-
depth look at how to debug an AJAX application. The challenge here is that
there are many different technologies being combined together.

On one side we have Smalltalk and Seaside, on the other hand you have the
web browser and JavaScript. We assume that you are familiar with the tools
available in Smalltalk to debug code, to set breakpoints, to inspect objects or
to log output. These tools behave the same way when you are using AJAX.
What should you do, when the error does not happen in Smalltalk but on the
JavaScript side? What should you do if the browser shows an error message?
How can you investigate the situation if the browser does not do what you
expect?

Figure 20.6: Firebug: Web development evolved.

There are tools available for most modern web browsers to help you to debug
JavaScript code and to inspect XHTML DOM nodes. Here we list some of the
most popular tools:

288 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

Firefox Firebug
Opera Dragonfly Introduction to dragonfly
WebKit (Safari, Chromium) Web Inspector

Drosera Debugger
Microsoft Internet Explorer Developer Toolbar

Script Debugger

In this section we are going to concentrate on using Firebug, an extremely
powerful plugin for the Firefox browser.

Launching Firebug. While viewing the todo application, open the Firebug
console. There are two ways to do this: by clicking on Tools > Firebug > Open
Firebug; or by clicking on the Firebug icon on the status bar – this will be a
green checkmark or a ‘bug’ icon depending on your version of Firebug. If you
have a big screen you might want to detach Firebug from the main window,
to have more space for your application.

Console. Click on the Console tab. This may prompt you to enable it before
proceeding; if this is the case, you should also reload your page. Now click in
the todo application on the checkboxes, and observe how the asynchronous
requests are logged in the console. By clicking on the log entries you can
further inspect the header fields, and the contents of the request and response
objects. Note that this tool is indispensable for observing how AJAX requests
are sent, since there is no other way to observe it on the client side.

Another interesting feature of the console is the ability to display custom
information. For example you can temporarily replace the code that renders
the checkbox with the following code:

Note that we are using the operator to concatenate multiple script snip-
pets. Of course this also works with other JavaScript snippets, not just with
logging statements. So we display the strings Before AJAX and After AJAX
right before and after the updater is executed. Furthermore we added an-
other logging statement to the event handler of the updater.
Clicking on a checkbox produces the 3 logging statements in the sequence
you see below. This demonstrates nicely that the AJAX request is really pro-
cessed asynchronously: the text After Update appears last in the list of log
messages.

http://www.mozilla.com/firefox
http://www.getFirebug.com
http://www.opera.com
http://www.opera.com/dragonfly/
http://dev.opera.com/articles/view/introduction-to-opera-dragonfly/
http://webkit.org
http://webkit.org/blog/41/introducing-the-web-inspector
http://webkit.org/blog/61/introducing-drosera
http://www.microsoft.com/windows/downloads/ie/getitnow.mspx
http://www.microsoft.com/downloads/details.aspx?familyid=e59c3964-672d-4511-bb3e-2d5e1db91038
http://www.microsoft.com/downloads/details.aspx?familyid=2f465be0-94fd-4569-b3c4-dffdf19ccd99

20.7. DEBUGGING AJAX 289

Figure 20.7: The console shows the AJAX requests and responses exchanged
between Seaside and the web browser.

Figure 20.8: Logging to the Firebug console.

290 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

Logging. The logging facility only works when using Firebug or the Safari
Web Inspector. It might cause JavaScript errors and completely break your
code if you try to execute the logging statements within other browsers.
Other browsers do not provide the necessary interface to emit log state-
ments.

Important

HTML. Another useful tool is the Firebug HTML tab. The view here is
somehow similar to what you see in the source view of the Seaside halos. In
Firebug however, you always see the up-to-date DOM tree, even if it has been
transformed by JavaScript. For example, if you click a checkbox in the todo
application, you will see which parts of the DOM tree change. Make sure that
you choose Firebug to highlight and expand changes in the options, so that
you don’t miss an update operation of your JavaScript library.

In the same window, it is also possible to modify the XHTML nodes and
instantly see the effect on the page. You can create, delete and edit attributes
and see how the visual appearance of the page changes. If you are looking
for the XHTML node of a specific part in your application, click on Inspect (or
the box-and-pointer icon in recent versions) and select a checkbox in our todo
application. Firebug will display the code that defines this control.

Figure 20.9: The inspector displays an up-to-date view on the DOM tree.
Changes are automatically highlighted.

CSS. The CSS tab in Firebug is another valuable tool, that graphic designers
find particularly useful. There you will see all the CSS rules that are used on
the current page and you can edit and configure them on the fly.

Script. The Script tab is more interesting for programmers. Here you can find
the JavaScript files that are used by your application. You can set breakpoints

20.8. SUMMARY 291

and step through the code. If you encounter a JavaScript error, you will notice
that the Firebug icon in the status bar turns red. This means that you will
find a detailed error description in the console. If you click the description,
you end up in the debugger investigating the exact cause of the problem.
Again, you are able to look at (and change) variables and step through the
code.

DOM. The DOM tab shows the complete object graph of the JavaScript
engine. You can use it to walk through the objects that the web browser and
the JavaScript libraries offer you.

Net. Last but not least the net tab displays a list of all the files your web ap-
plication depends on. These files consist of html files, style-sheets, JavaScript
files, and images and other resources. The tab gives detailed information
about how long it took to download the data, which is essential information
if you want to optimize your application.

This section has only given you a brief overview of the features available
in Firebug to help you inspect and debug your applications. Visit the Fire-
bug website at http://getfirebug.com/ for more information on how to take
advantage of all the capabilities of this tool.

20.8 Summary

As you have seen, introducing JavaScript functionality can allow you to
greatly improve the user experience of your applications. Seaside offers a
tight integration of JavaScript and AJAX functionality into the core of the
framework. It allows you to define JavaScript behaviour using standard
Smalltalk, and hides the necessary details from you.

http://getfirebug.com/

292 CHAPTER 20. DYNAMIC CONTENT WITH SCRIPTACULOUS

Chapter 21

jQuery

jQuery is one of the most popular open-source JavaScript frameworks today.
jQuery was created by John Resig and focuses on simplifying HTML docu-
ment traversing, event handling, animating, and AJAX interactions for rapid
web development.

There is a huge collection of plugins available that extend the base framework
with new functionality. One of the most popular of these plugins is jQuery
UI. It provides additional abstractions over low-level interaction and anima-
tion, advanced effects and high-level themeable widgets for building highly
interactive web applications.

jQuery and jQuery UI are both well integrated into Seaside 3.0. This allows
you to access all aspects of the library from Smalltalk by writing Smalltalk
code only. The Smalltalk side of the integration is automatically built from
the excellent jQuery documentation, so you can be sure that the integration is
up-to-date and feature-complete.

21.1 Getting Ready

Make sure to have the packages Javascript-Core, JQuery-Core and JQuery-UI-
Core loaded. For examples and functional tests also load the test packages
Javascript-Tests-Core, JQuery-Tests-Core and JQuery-Tests-UI.

In order to use the libraries in your applications, you will need to load them
in the Seaside web configuration application. You will notice that the core
JQuery and JQueryUI libraries come in three forms which may be installed
interchangeably. The versions have the full human-readable
Javascript, and so are ideal for inspection and debugging during development;

293

http://jquery.com
http://plugins.jquery.com/
http://jqueryui.com/
http://jqueryui.com/
http://docs.jquery.com

294 CHAPTER 21. JQUERY

Figure 21.1: jQuery Demo and Functional Test Suite.

the versions are minified and gzipped to about 1/10th of the size
of the development libraries, and so are much faster-loading for end users;
and the versions link to copies of the libraries hosted by Google –
as many sites reference these versions, your users may already have them
cached, and so these can be the fastest loading versions.

JQuery Full
JQuery Compressed
JQuery Google
JQuery UI Full
JQuery UI Compressed
JQuery UI Google

For many of the most popular jQuery plugins there are ready-made
Smalltalk wrappers in the Project JQueryWidgetBox on SqueakSource avail-
able.

Advanced

21.2 jQuery Basics

jQuery has a simple but powerful model for its interactions. It always follows
the same pattern depicted in Figure 21.2.

http://www.squeaksource.com/JQueryWidgetBox

21.2. JQUERY BASICS 295

Figure 21.2: jQuery Lifecycle in Smalltalk.

To instantiate a you ask a factory object for a new instance
by sending the message . In most cases the factory object is your

, but it can also be a .

While the is conceptually a Javascript class, it is implemented as
a Smalltalk instance. returns an instance of .

1. Creating Queries To create a we specify a CSS selector
that queries for certain DOM elements on the your web-page. For example, to
select all HTML div tags with the CSS class one would write:

This expression returns a object that represents all HTML tags
matching the given CSS query . There is also a slightly shorter
form that does exactly the same:

You find more details on creating queries in Section 21.2.1.

2. Refining Queries If you browse the class , you will see
that you can add more elements or filter out elements before applying the
jQuery action. For example, to select the siblings of the currently selected
elements you would write:

296 CHAPTER 21. JQUERY

You find more details on refining queries in Section 21.2.2.

3. Performing Actions Once you have identified the elements, you can
specify the actions you wish to perform. These actions can delete, move,
transform, animate or change the contents of the element. For example, to
remove the elements we selected earlier we write:

There are over 180 actions provided by jQuery; these can be investigated by
browsing the class in Smalltalk, and by visiting the jQuery
documentation at http://api.jquery.com/.

You find more details on performing actions in Section 21.2.3.

21.2.1 Creating Queries

If you’ve already used jQuery (or followed the link to the documentation), you
will already be familiar with the syntax for specifying CSS queries to select
DOM elements. >> exposes this same interface, but
there are also a number of shortcut forms available to you. All the constructor
methods return an instance of .

$("div.hint") Normally a jQuery instance is setup with a CSS selector. You
can either use the long form (1) or take the shortcut (2). Of course, both forms
are absolutely equivalent, in practice you will mostly encounter the shorter
second form:

$("#foo") Often you want to create a query with an element ID. Again we
have different possibilities to instantiate that query. (1) and (3) use a normal
CSS selector for element IDs. (2) uses the selector, and (4) uses a shortcut
using a symbol. Note that the forth form only works for symbols, if you pass
a string it will be interpreted as a CSS selector.

http://api.jquery.com/

21.2. JQUERY BASICS 297

$("*") The CSS selector to match all elements in the page is . Again you
have several equivalent possibilities to achieve the same in jQuery. The first
two use a CSS selector, while the last one uses a convenience method:

$(this) If you want to refer to the currently active DOM element from an
event handler you can use or .

Note that the you call here is not the one implemented in the Smalltalk
class , but a custom one implemented on the instance side of

. Similar to all other constructor methods it returns an instance of
.

$("<div></div>") Furthermore, jQuery provides the possibility to
create new HTML code on the fly, that inserted into an existing element.
Again we have different equivalent possibilities to do this. The first one uses
a raw HTML string, with Seaside we want to avoid this in most cases. The
second and third variation uses a block with a new renderer that we can use
with the normal Seaside rendering API.

$(function() { alert(’Hello’); }) Last but not least there is the case of the
syntax allows you to specify some action that should happen once the page is
ready. This is done by attaching

21.2.2 Refining Queries

After you made an initial query you can refine the result with additional
operations. All existing operations are described in this section:

Siblings Get a set of elements containing all of the unique siblings of each
of the matched set of elements.

298 CHAPTER 21. JQUERY

Next Siblings Get a set of elements containing the unique next siblings of
each of the given set of elements.

Or, find all sibling elements after the current element.

Or, find all following siblings of each element up to but not including the
element matched by the selector.

Previous Siblings Get a set of elements containing the unique previous
siblings of each of the matched set of elements.

Or, find all sibling elements in front of the current element.

Or, find all previous siblings of each element up to but not including the
element matched by the selector.

Children Get a set of elements containing all of the unique immediate
children of each of the matched set of elements.

Find all the child nodes inside the matched elements (including text nodes),
or the content document, if the element is an iframe.

Searches for all elements that match the specified expression.

21.2. JQUERY BASICS 299

Parents Get a set of elements containing the unique parents of the matched
set of elements.

Or, find all following siblings of each element up to but not including the
element matched by the selector.

Or, find all the ancestors of each element in the current set of matched ele-
ments, up to but not including the element matched by the selector.

Get a set of elements containing the closest parent element that matches the
specified selector, the starting element included.

21.2.3 Performing Actions

There is a wide variety of actions that come supported with jQuery. jQuery
UI and thousands of other plugins add even more. In this section we present
some of the most common actions provided by the core framework.

Classes The following examples add, remove or toggle the CSS class
given as the first argument. These methods are commonly used

to change the appearance of one or more HTML elements for example to
visualize a state change in the application.

Also you can query if a particular class is set:

300 CHAPTER 21. JQUERY

Styles Similarly you can change the style of one or more HTML elements.
By providing a dictionary you can change multiple CSS styles at once:

Alternatively you can use a dictionary-like protocol to read and write specific
style properties:

Note that in most cases it is preferred to use CSS classes instead of hardcoding
your style settings into the application code.

Attributes While the above methods change the and attribute
of one or more DOM elements, there are also accessor methods to change
arbitrary HTML attributes. By providing a dictionary of key-value pairs you
can change multiple attributes at once:

Alternatively you can use a dictionary-like protocol to read and write at-
tributes:

Replace Content A common operation on DOM elements is to change their
contents, for example to update a view or to display additional information.
To set the HTML contents of matched elements you can use the following
construct that will replace the contents with < ></ >:

Alternatively you can set the text contents of each element in the set of
matched elements:

Last but not least you can set the value. This is especially useful for form
fields, that require different ways to set the current contents (input fields
require you to change the attribute value, text areas require you to change the
contents). The following code takes care of the details automatically:

21.3. ADDING JQUERY 301

Insert Content Alternatively to replacing the contents you can append new
contents. inserts content before each element in the set of matched
elements; inserts content to the beginning of each element in the set
of matched elements; inserts content to the end of each element in
the set of matched elements; and inserts content after each element in
the set of matched elements.

Note that, as with , the argument can be any renderable object: a string,
a Seaside component, or a render block as in the given examples.

Animations Showing or hiding DOM elements is one of the most common
operations. While this is typically done by adding or removing a CSS class,
jQuery provides a simpler way. The action makes sure that the matching
DOM elements are visible. If a duration is given as a first parameter, the
elements are faded-in:

The same functionality is available to hide one or more DOM elements with
:

21.3 Adding jQuery

After creating a jQuery object on the Smalltalk side it is time to investigate on
how to add them to the Seaside application.

The standard way of doing so in jQuery is to keep all the Javascript function-
ality unobtrusive in a separate Javascript file. This is possible with Seaside,
but not the suggested way. In Seaside we try to encapsulate views and
view-related functionality in components. Furthermore we keep compo-
nents independent of each other and reusable in different contexts, what
does not work well with sharing unobtrusive Javascript code. Addition-
ally, the unobtrusiveness comes into the way when we want to define AJAX
interactions.

302 CHAPTER 21. JQUERY

Attaching to Element

Execute at Load-Time

• Forget about $(document).ready(...)

• Seaside has its own mechanism there

21.4 Ajax
Loading

No Query

Generators

Triggering Callbacks

21.5 How To

21.5.1 Click and Show

21.5. HOW TO 303

21.5.2 Replace a Component

21.5.3 Update Multiple Elements

21.5.4 Open a Lightbox

304 CHAPTER 21. JQUERY

21.6 Enhanced ToDo Application

jQuery is an increasingly popular Javascript library. Let’s port the the ToDo
application to use jQuery for the Javascript functionality, instead of Scriptacu-
lous.

First, we’ll implement the heading highlight effect with jQuery UI. Then
we’ll move on to implementing a couple of interesting effects and eye-candy
possible with jQuery. Drag and drop is easy to implement, but we’ll need to
do something special to get the "in place" editing to work in jQuery.

If you have already worked through enhancing the ToDo application with
Prototype and Scriptaculous, then the jQuery version will seem very familiar
- we are still working with JavaScript underneath the covers after all.

21.6.1 Adding an Effect

We’ll go ahead and factor the method to add a method
to handle rendering the heading and just make modifications to the new
method.

The method leverages the jQuery UI library to add the
highlight effect to the header of our component.

We create a query using that selects the heading DOM
element. Next we send to get a instance. Then finally we
send >> which highlites the background color.

Altering the highlight color is left as an exercise for the reader.

21.6. ENHANCED TODO APPLICATION 305

Now for something a little more fun - let’s add some help test that appears
when you click on the heading; and it won’t just "appear", it will slide open
at a rate that we determine.

We do this by rendering a new < > element that contains the help text, and
changing the of the header to apply our new cool effect to the new
element. We also need some new CSS to help us out with this.

We need to add the CSS (the same as in the SU example).
Note

306 CHAPTER 21. JQUERY

21.6.2 Callbacks Redux

21.6. ENHANCED TODO APPLICATION 307

21.6.3 Drag and Drop

21.6.4 Summary

308 CHAPTER 21. JQUERY

Chapter 22

Comet

HTTP is unidirectional by design. It is always the client (web browser) that
submits or requests information. The web server just waits at the other
end and processes whatever requests it receives. For many applications it
would be beneficial if the server could propagate events to the clients as they
happen. For example a chat application would like to push new messages to
all connected users, or our todo application would like to push updates of
the model to other people working on the same list.

Even today, the most common solution to this problem is to use polling. That
is, the client regularly queries the server for new information. The only way
to decrease the latency is to increase the polling frequency, which causes a
significant load on the server. In practice one would like to avoid both a high
server load and high latency.

In March 2006 Alex Russell coined the term Comet in a blog post to describe an
alternative approach: one where the server keeps its connection to the client
open, and continues to send updates to the client through that connection.
The idea that Alex describes in Comet was previously known by a variety of
terms like ‘reverse AJAX’, ‘HTTP push’, ‘server streaming’, etc, but Alex’ post
popularised the concept.

Comet was incorporated into Seaside only a few months after it was intro-
duced.

22.1 Inside Comet

Before we dive into a comet application, let us have a look at precisely how
Comet works. The figure depicts the basic interaction between the web

309

http://alex.dojotoolkit.org/2006/03/comet-low-latency-data-for-the-browser/

310 CHAPTER 22. COMET

browser and the Seaside server in a Comet setup. The first round-trip between
the web browser and Seaside is a normal HTTP request that returns a full
XHTML page. This first page includes a small JavaScript snippet, that is
executed once the page has finished loading. This starts a new asynchronous
connection to the server. This connection now persists for a much longer time,
essentially as long as the web browser is listening. This connection can then
be used by the server to send data to the web browser at any time.

Figure 22.1: Comet enables the server to push data to the client, without that
the client has to poll the server for fresh content.

When using Comet, keep in mind that HTTP was not designed to push data
from the server to the client. Comet is a hack, even if the details are hidden
in Seaside. Luckily the implementation works on all modern web browsers,
but there is no guarantee that these tricks will continue to work with the next
generation of web browsers. It should be noted that upcoming generations of
web browsers will very likely support this type of inverse communication,
and there is work on an emerging Comet standard.

Enough ranting, let’s give it a quick try.

22.2 Getting Started

The Seaside Comet functionality comes packaged in the package named
Comet. Most prebuilt images come with this package preloaded. Point your

22.2. GETTING STARTED 311

browser to http://localhost:8080/comet/counter, which is a simple Comet
based counter application.

Figure 22.2: Comet requires a server adapter that supports streaming of the
response.

Most likely the first time you try to use a Comet application you will end
up with an error message as seen above. What does Streaming-server required
mean? On most Smalltalk platforms Seaside does not stream responses by
default. This means that the response is sent to the client only after the
complete body is generated. Obviously this does not work for Comet, since
we need to continually send data to the client.

The default server adapter on Squeak does not support streaming and nei-
ther does Swazoo. Instead, you need to use a special wrapper around
Comanche, called . Evaluate

to start the server. Note that we are using a different port number here,
to avoid a conflict with the normal server that continues to work on port

.

If you try to access your application again (with the new port number), you
will be able to see the counter application. Open multiple browser windows,
preferably with different browsers and using different machines. As you can
see below, clicking on the links in one application propagates immediately to
the other windows. Note that every window has its own Seaside session, it is
just the global count variable that is synced with all the currently connected
sessions.

Let’s have a look at the implementation and study the differences from our
first counter implementation at the beginning of this book.

http://localhost:8080/comet/counter

312 CHAPTER 22. COMET

Figure 22.3: The counter application synchronized along different web
browsers.

22.3 The Counter Explained

is a subclass of :

It has an method to register it as an application.

22.3. THE COUNTER EXPLAINED 313

There are two JavaScript libraries included here. The first is
which is the jQuery library that we saw in Chapter 21.

The second library is the Comet JavaScript library . does
not depend on functionality provided by the jQuery library, but we will use
some of that functionality later to update the value of the counter.

Unlike the counter application we saw in previous chapters, the Comet
counter requires global state. That is, the model is not part of the compo-
nent which is local to a single session but global to all sessions so that it
is shared among all users. To do this, we keep the model – an instance of

– on the class side of the component. Furthermore
we need a dedicated pusher object – an instance of – that is respon-
sible for managing the communication channel between the server and many
clients.

Its worth re-emphasizing that the pusher requires global state so that all
browsers connecting to the page share the same model. Thus we store the
pusher and its model on the class-side.

Important

The method is unremarkable. First we render the current
count in a heading we give the ID . Then we have two anchors with
JavaScript actions attached to the click event, that call the methods
and . Finally, we append a small script to the bottom of the compo-
nent that connects the pusher we defined on the class side to this session and
component.

314 CHAPTER 22. COMET

Where does all the magic happen now? Where are all the connected compo-
nents updated? Obviously this must happen in the methods and

, which both call the method .

Nothing surprising happens in and , both methods just del-
egate the action to their model. The interesting thing happens in right
after the model has been changed. As you can see, we tell the pusher that we
want to push a script to the client. We do this by sending a block to the method

that gives us a script object. This script updates the element with
the ID to the current count of the element. The pusher ensures that the
script is automatically sent to all connected components.

22.4 Summary

In this chapter we saw how we can use bleeding edge Web 2.0 technology in
Seaside. The Comet technology circumvents the common restrictions of the
asymmetric HTTP protocol, and allows one to change a website by initiating
the update event from the server. Keep in mind that Comet is a browser hack
and that you might run into scalability problems quickly. The Web Hypertext
Application Technology Working Group proposes a standard as part of the HTML
5 draft recommendation. Rest assured that as soon as major web browsers
implement an official standard for server push, Seaside will be among the
first to support the new technology.

Part VI

Advanced Topics

315

317

This part presents some aspects that you face when you deploy Seaside appli-
cations for real. It presents how to configure and deploy an application.

While Seaside keeps as much state on the server side as possible, it supports
the creation and integration of REST web services as well. This part covers
how to write a REST API and integrate it with an existing application.

Although Seaside does not offer a built-in persistency framework, the issue
of how to manage your data is a common concern when building web ap-
plications. This part also covers a selection of approaches to managing data
persistency in Smalltalk, and how these work with Seaside.

Finally, we present Magritte, which is a metadata framework with Seaside
integration: using Magritte allows you to generate forms on the fly without
hard-coding HTML or generating XML files.

318

Chapter 23

Deployment

At some point you certainly want to go public with your web application.
This means you need to find a server that is publicly reachable and that can
host your Seaside application. If your application is successful, you might
need to scale it to handle thousands of concurrent users. All this requires
some technical knowledge.

In Section 23.1 we are going to have a look at some best practices before
deploying an application. Then in Section 23.2 we introduce Seaside-Hosting,
a simple and free hosting service for non-commercial Seaside applications.
Next, in Section 23.3 we present how to setup your own server using Apache.
Last but not least, in Section 23.4, we demonstrate ways to maintain a de-
ployed image.

23.1 Preparing for Deployment

Because Smalltalk offers you an image-based development environment,
deploying your application can be as simple as copying your development
image to your server of choice. However, this approach has a number of draw-
backs. We will review a number of these drawbacks and how to overcome
them.

Stripping down your image. The image you have been working in may
have accumulated lots of code and tools that aren’t needed for your final
application; removing these will give you a smaller, cleaner image. How
much you remove will depend on how many support tools you wish to
include in your deployed image.

319

320 CHAPTER 23. DEPLOYMENT

Alternatively, you may find it easier to copy your application code into a pre-
prepared, ‘stripped-down’ image. For Pharo we have had good experiences
using the Pharo Core or Pharo Kernel images.

Preparing Seaside. The first task in preparing Seaside for a server image is
to remove all unused applications. To do this go to the configuration appli-
cation at http://localhost:8080/config and click on remove for all the entry
points you don’t need to be deployed. Especially make sure that you remove
(or password protect) the configuration application and the code browser (at
http://localhost:8080/tools/classbrowser), as these tools allow other people
to access and potentially execute arbitrary code on your server.

Disable Development Tools. If you still want the development tools loaded,
then the best way is to remove from the shared
configuration called "Application Defaults". You can do this by evaluating
the code:

You can always add it back by evaluating:

Alternatively you can use the configuration interface: In the configuration of
any application select Application Defaults from the list of the Assigned parents
in the Inherited Configuration section and click on Configure. This opens an
editor on the settings that are common to all registered applications. Remove

from the list of Root Decoration Classes.

Password Protection. If you want to limit access to deployed applications
make sure that you password protect them. To password protect an applica-
tion do the following:

1. Click on Configure of the particular entry point.

2. In the section Inherited Configuration click select
from the drop down box and click on Add. This will will add the
authentication settings below.

3. Set login and password in the Configuration section below.

4. Click on Save.

If you want to programmatically change the password of the Seaside config-
ure application, adapt and execute the following code:

http://www.pharo-project.org/
http://code.google.com/p/pharo/wiki/PharoKernel
http://localhost:8080/config
http://localhost:8080/tools/classbrowser

23.1. PREPARING FOR DEPLOYMENT 321

Figure 23.1: Configure an application for deployment.

Alternatively you can use the method >>

to do all that for you when registering the application:

Next we have a look at the configuration settings relevant for deployment.
Click on Configure of the application you are going to deploy. If you don’t un-
derstand all the settings described here, don’t worry, everything will become
clearer in the course of the following sections.

Resource Base URL. This defines the URL prefix for URLs created with
>> . This setting avoids you having to duplicate the

322 CHAPTER 23. DEPLOYMENT

base-path for URLs to resource files all over your application. You will find
this setting useful if you host your static files on a different machine than the
application itself or if you want to quickly change the resources depending
on your deployment scenario.

As an example, let’s have a look at the following rendering code:
. If the resource base URL setting

is set to http://www.seaside.st/styles/, this will point to the image at
http://www.seaside.st/styles/logo-plain.png. Note that this setting only
affects URLs created with >> , it does not affect the
generated pages and URLs otherwise.

Set it programmatically with:

Server Protocol, Hostname, Port and Base Path. Seaside creates absolute
URLs by default. This is necessary to properly implement HTTP redirects. To
be able to know what absolute path to generate, Seaside needs some addi-
tional information and this is what these settings are about. These settings
will be useful if you are deploying Seaside behind an external front-end
web-server like Apache.

Figure 23.2: Configuration options for absolute URLs.

Have a look at Figure 23.2 to see visually how these settings affect the URL.
Server Protocol lets you change between and (Secure HTTP). Note
that this changes only the way the URL is generated, it does not implement
HTTPS – if you want secure HTTP you need to pass the requests through
a HTTPS proxy. Server Hostname and Server Port define the hostname and
port respectively. In most setups, you can leave these settings undefined, as
Seaside is able to figure out the correct preferences itself. If you are using an
older web server such as Apache 1 you have to give the appropriate values
here. Server Path defines the URL prefix that is used in the URLs. Again, this
only affects how the URL is generated, it does not change the lookup of the
application in Seaside. This setting is useful if you want to closely integrate
your application into an existing web site or if you want to get rid or change
the prefix / of your applications.

http://www.seaside.st/styles/
http://www.seaside.st/styles/logo-plain.png

23.2. SEASIDE-HOSTING 323

Again, if you want to script the deployment, adapt and execute the following
code:

23.2 Seaside-Hosting

To deploy an application on a public server, Seaside-Hosting
(http://www.seasidehosting.st) is undoubtedly the easiest way to get
started. Seaside-Hosting is a free hosting service for Seaside applications
sponsored by netstyle.ch GmbH and ESUG. The highest-profile example of a
website running on Seaside-Hosting is www.seaside.st itself. Furthermore
the portal and management application of Seaside-Hosting is hosted in
itself.

Figure 23.3: Seaside-Hosting Portal.

Before getting started you need to be aware of some key conditions that apply
when using Seaside-Hosting:

http://www.seasidehosting.st
http://www.netstyle.ch
http://www.esug.org
http://www.seaside.st

324 CHAPTER 23. DEPLOYMENT

• Seaside-Hosting is for non-commercial applications only. If you plan to
make money with your application, you need to look somewhere else.

• Seaside-Hosting only provides hosting for Seaside applications that are
developed in Pharo.

• Seaside-Hosting does not provide access to any external databases
or to the underlying operating system. Many sites are hosted on the
same machine and therefore there are some restrictions to avoid people
harming the servers and other hosted applications.

The advantage, on the other hand, is that you can put your application online
within minutes. There is no need for you to worry about the server, about
installing a web server, about serving static files or about getting a domain
name. You upload the application and you are online instantly. For up-
to-date information on Seaside-Hosting, please check out the FAQ on the
web-site.

Get an account. To get started with Seaside-Hosting register for a free ac-
count. In the process you will be able to choose a domain name of the form

, where you can choose freely. Click on
the link in the confirmation mail to validate your e-mail address.

Upload an image. Next, upload your required image and changes files through
the web interface or use FTP as described in the Filesystem section of the portal.
When using the file upload through the web, you are also able to upload a zip
archive of your files and automatically decompress them on the server.

If you have static files to serve, such as style sheets, javascript files, images or
other resources that are not part of the uploaded image, you can put these
into the folder / . Make sure to set the setting Resource Base Path to

// / so that you can easily refer to
these files from within your application.

Starting your application. To start your application go to Status, select the
image you uploaded, choose the server adapter and click on Start. This will
launch a new Squeak VM on the server running your image. Your application
should now be reachable from the world wide web. Point your browser to

// /< > to test the application.
Note that even if you started a server on a different port in your image (for
example port 8080), Seaside-Hosting conveniently serves your application on
the default port. So when browsing your application there is no need to type
a port number.

Configure Path. As a last step you might want to make your application
be served from the root of your domain-name, so that people only have
to type // /. In the Seaside configuration
interface select your preferred application as default entry point. Then go

23.3. DEPLOYMENT WITH APACHE 325

to the configuration of this application and change the base-path to /. The
application is now reachable without typing a path.

Getting your own domain. It is possible to use your own top level domain
name on Seaside-Hosting. Go to Status and select Server Alias from the toolbar.
You’ll be asked for the new domain name and then instructions are given on
how to update the DNS entry to point to Seaside-Hosting. This can be done
through the registrar of the domain name. The Seaside application is now
reachable through and your own personal domain.

An annoyance of Seaside-Hosting is that whenever you want to update your
web-application you need to upload an image. This is especially an issue if
you have a slow internet connection and your images are relatively big. To
avoid this issue you might want to look at the class that
is normally installed at / / . It is a simple web interface
to the Monticello versioning system and allows one to remotely update and
load packages into a running image. Try it out locally first, to see if it suits
your needs. Again, make sure to password protect the application, if you
plan to use it in a public deployment.

23.3 Deployment with Apache

In this section we discuss a typical server setup for Seaside using Debian
Linux as operating system. Even if you are not on a Unix system, you might
want to continue reading, as the basic principles are the same everywhere.
Due to the deviation of different Linux and Apache distributions, the instruc-
tions given here cannot replace the documentation for your particular target
system.

23.3.1 Preparing the Server

Before getting started you need a server machine. This is a computer with a
static IP address that is always connected to the Internet. It is not required
that you have physical access to your machine. You might well decide to host
your application on a virtual private server (VPS). It is important to note that
you require superuser-level access to be able to run Smalltalk images. The
ability to execute PHP scripts is not enough.

We assume that your server already has a working Linux installation. In the
following sections we use Debian Linux 5.0 (Lenny), however with minor
adjustments you will also be able to deploy applications on other distribu-
tions.

326 CHAPTER 23. DEPLOYMENT

Before starting with the setup of your application, it is important to make
sure that your server software is up-to-date. It is crucial that you always
keep your server up to the latest version to prevent malicious attacks and
well-known bugs in the software.

To update your server execute the following commands from a terminal. Most
commands we use in this chapter require administrative privileges, therefore
we prepend them with sudo (super user do):

23.3.2 Installing Apache

Next we install Apache 2.2, an industry leading open-source web server.
Depending on your requirements you might decide to install a different web
server. Lighttpd, for example, might be better suited in a high performance
environment.

Some people prefer to use one of the web servers written in Smalltalk. This
is a good choice during development and prototyping, as such a server is
easy to setup and maintain. We strongly discourage to use such a setup for
production applications due to the following reasons:

• The web server is something accessible from outside the world and
therefore exposed to malicious attacks. Apache is a proven industry
standard used by more than 50% (depending on the survey) of all of
today’s web sites.

• To listen on port 80, the standard port used by the HTTP protocol, the
web server needs to run as root. Running a public service as root is a
huge security issue. Dedicated web servers such as Apache drop their
root privileges after startup. This allows them to listen to port 80 while
not being root. Unfortunately this is not something that can be easily
done from within the Smalltalk VM.

• Smalltalk is relatively slow when reading files and processing large
amounts of data (the fact that everything is an object is rather a dis-
advantage in this case). A web server running natively on the host
platform is always faster by an order of magnitude. A standalone web
server can take advantages of the underlying operating system and
advise it to directly stream data from the file-system to the socket as
efficiently as possible. Furthermore web servers usually provide highly
efficient caching strategies.

23.3. DEPLOYMENT WITH APACHE 327

• Most of today’s Smalltalk systems (with the exception of GemStone)
are single threaded. This means that when your image is serving files,
Seaside is blocked and cannot produce dynamic content at the same
time. On most of today’s multi-core systems you get much better per-
formance when serving static files through Apache running in parallel
to your Seaside application server.

• External web servers integrate well with the rest of the world. Your web
application might need to integrate into an existing site. Often a web
site consists of static as well as dynamic content provided by different
technologies. The seamingless integration of all these technologies is
simple with Apache.

Let’s go and install Apache then. If you are running an older version you
might want to consider upgrading, as it makes the integration with Seaside
considerably simpler, although it is not strictly necessary.

Ensure the server is running and make it come up automatically when the
machine boots:

23.3.3 Installing the Squeak VM

Depending on the Smalltalk dialect you are using, the installation of the VM
is different. Installing Squeak on a Debian system is simple. Install Squeak by
entering the following command on the terminal:

Note that installing and running Squeak does not require you to have the
X Window System installed. Just tell the installer not to pull these depen-
dencies in, when you are asked for it. Squeak remains runnable headless
without a user-interface, this is what you want to do on most servers any-
way. Up-to-date information on the status of the Squeak VM you find at
http://www.squeakvm.org/unix/.

Now you should be able to start the VM. Typing the command executes
a helper script that allows one to install new images and sources in the current
directory, and run the VM. The VM itself can be started using the
command.

http://www.squeakvm.org/unix/

328 CHAPTER 23. DEPLOYMENT

You can find additional help on starting the VM and the possible command
line parameters in the man pages:

In the next section we are going to look at how we can run the VM as a
daemon.

23.3.4 Running the VMs

Before we hook up the Smalltalk side with the web server, we need a reliable
way to start and keep the Smalltalk images running as daemon (background
process). We have had positive experience using the daemontools, a free
collection of tools for managing UNIX service written by Daniel J. Bernstein.
Contrary to other tools like , , , or , the
are reliable and easy to use. Adding a new service means linking a directory
with a script that runs your VM into a centralized place. Removing the service
means removing the linked directory.

Type the following command to install daemontools. Please refer to of-
ficial website (http://cr.yp.to/daemontools.html) for additional informa-
tion.

On the server create a new folder to carry all the files of your Seaside appli-
cation. We usually put this folder into a subdirectory of / and name it
according to our application / / , but this is up to you. Copy the
deployment image you prepared in Section 23.1 into that directory. Next we
create a script in the same directory:

Again, we are using Squeak in this example. You need to check out the
documentation of your Smalltalk VM, if you are running with a different
dialect. Let’s have a quick look at the different parts of the script.

http://cr.yp.to/daemontools.html

23.3. DEPLOYMENT WITH APACHE 329

On lines 3 to 7 we define some generic settings. is the user of the
system that should run your Smalltalk image. If you don’t set a user here,
the web service will run as root, something you must avoid. Make sure
you have the user specified here on your system. is the default
user for web services on Debian systems. Make sure that this is not a user
with root privileges. defines the full path to the Squeak VM. If you have
a different installation or Smalltalk dialect, you again need to adapt this
setting. defines the parameters passed to the Squeak VM. If you
use a different environment, you need to consult the documentation and
adapt these parameters accordingly. The first parameter limits
the dynamic heap size of the Squeak VM to 256 MB and makes Squeak
VMs run more stably. disables the sound plugin, something
we certainly don’t need on the server. makes the VM run
headless. This is crucial on our server, as we presumably don’t have any
windowing server installed.

The last four lines of the script actually start the VM with the given parameters.
Line 11 changes the user id of the Squeak VM, and line 12 actually runs the
Squeak VM.

To test the script mark it as executable and run it from the command line. You
need to do this as superuser, otherwise you will get an error when trying to
change the user id of the VM.

The VM should be running now. You can verify that by using on of the UNIX
console tools. In the following example we assume that the image has a web
server installed and is listening on port 8080:

You might want to change the URL to point to your application. As long
as you don’t get an error message like
everything is fine. You can install curl using

Troubleshooting the VM. You may encounter some common problems at
this point. One of these problems is that the VM is unable to find or read the
image, change or source files. Make sure that all these files are in the same
directory and that their permissions are correctly set so that the user

330 CHAPTER 23. DEPLOYMENT

can actually read them. Also ensure that the image has been saved with the
web server running on the correct port.

Squeak and Pharo both display an error message when the or
file cannot be found or accessed. Unfortunately this message is

not visible from the console, but only pops up virtually in the headless
window of the VM. The modal dialog prevents the VM from starting up
the server and thus the image remains unreachable. To solve the problem
make sure that and files are in the same directory as
the image-file and that all files can be read by the user . Another
possibility (if you really do not want to distribute the files) is to disable the
missing files warning using:

Important

A valuable tool to further troubleshoot a running but otherwise not respond-
ing VM is , an utility that lists opened files and sockets by process. You
can install it using . Use a different terminal to type the
following commands:

With the first line, we find out the process id of the running Squeak VM.
lists all the open files and sockets of process . Since we are

only interested in the sockets Squeak is listening on we grep for the string
. In this case we see that a web server is correctly listening on port 8080

(webcache) and that another service is listening on port 5900. In fact the latter
is the RFB server, which we will discuss in Section 23.4.2.

In the original terminal, press Ctrl+C to stop the VM.

Starting the service. Go to / and link the directory with your run-
script in there, to let daemontools automatically start your image.

Go to / / (on other distributions this might be /) and link
the directory with your run-script in there, to let daemontools automatically
start your image.

You can do an to see if the new service is running correctly:

23.3. DEPLOYMENT WITH APACHE 331

The output of the command tells you that the service is up and run-
ning for 8 seconds with process id 4165. From now on daemontools makes
sure that the image is running all the time. The image gets started auto-
matically when the machine boots and – should it crash – it is immediately
restarted.

Stopping the service. To stop the image unlink the directory from /
and terminate the service.

Note that only unlinking the service doesn’t stop it from running, it is just
taking it away from the pool of services. Also note that terminating the
service without first unlinking it from the service directory will cause it to
restart immediately. daemontools is very strict on that and will try to keep all
services running all the time.

As you have seen starting and stopping an image with daemontools is simple
and can be easily scripted with a few shell scripts.

23.3.5 Configuring Apache

Now we have all the pieces to run our application. The last remaining
thing to do is to get Apache configured correctly. In most UNIX distribu-
tions this is done by modifying or adding configuration files to / / .
On older systems the configuration might also be in a directory named
/ / .

The main configuration file is situated in , or on older
systems. Before we change the configuration of the server and add the Seaside
web application, have a look at this file. It is usually instructive to see how
the default configuration looks like and there is plenty of documentation in
the configuration file itself. On most systems this main configuration file
includes other configuration files that specify what modules (plug-ins) are
loaded and what sites are served through the web server.

Loading Modules. On Debian the directory / / /

contains all the available modules that could be loaded. To make them
actually available from your configuration you have to link () the files
to / / / . We need to do that for the proxy and rewrite
modules:

332 CHAPTER 23. DEPLOYMENT

If you are running an older version you might need to uncomment some lines
in the main configuration file to add these modules.

Adding a new site. Next we add a new site. The procedure here is very
similar to the one of the modules, except that we have to write the configu-
ration file ourselves. / / / / contains configuration
directives files of different virtual hosts that might be used with Apache 2.
/ / / / contains links to the sites in / that
the administrator wishes to enable.

Step 1. In / / / / create a new configuration file
called as follow.

The file defines a default virtual host. If you want to have different virtual
hosts (or domain names) to be served from the same computer replace the

in the first line with your domain name. The domain name that should
be used to generate absolute URLs is specified with . The setting

enables Seaside to figure out the server name automat-
ically, but this setting is not available for versions prior to Apache 2. In
this case you have to change the Seaside preference ‘hostname’ for all your
applications manually, see Section 23.1

enables the rewrite engine that is used in the line below. The
last line actually does all the magic and passes on the request to Seaside. A
rewrite rule always consists of 3 parts. The first part matches the URL, in
this case all URLs are matched. The second part defines how the URL is
transformed. In this case this is the URL that you would use locally when
accessing the application. And finally, the last part in square brackets defines
the actions to be taken with the transformed URL. In this case we want to
proxy the request, this means it should be passed to Squeak using the new
URL. We also tell Apache that this is the last rule to be used and no further
processing should be done.

23.3. DEPLOYMENT WITH APACHE 333

Step 2. Now link the file from / / / / and restart
Apache:

If the domain name is correctly setup and pointing to your ma-
chine, everything should be up and running now. Make sure that you set the
‘server base path’ in the application configuration to /, so that Seaside creates
correct URLs.

Troubleshooting the Proxy. On some systems the above configuration
may not suffice to get Seaside working. Check the error_log and if you
get an error messages in the Apache log saying

just remove the file / / / from the
configuration.

23.3.6 Serving files with Apache

Most web applications consist of serving static files at one point or the other.
These are all files that don’t change over time, as opposed to the XHTML
of the web applications. Common static files are style sheets, Javascript
code, images, videos, sound or simply document files. As we have seen in
Chapter 17 such files can be easily served through the image, however the
same drawbacks apply here as those listed in Section 23.3.

The simplest way to use an external file server is to overlay a directory tree
on the hard disk of the web server over the Seaside application. For example,
when someone requests the file http://www.appname.com/seaside.png the
server serves the file / / / / . With Apache this can be
done with a few additional statements in the configuration file:

http://www.appname.com/seaside.png

334 CHAPTER 23. DEPLOYMENT

The added part starts line 9 with the comment
. Line 9 and following mark a location on the local harddisc

to be used as the source of files. So when someone requests the file
http://www.appname.com/seaside.png Apache will try to serve the file
found at / / / / . For security reasons, the default
Apache setup forbids serving any files from the local hard disk, even if the
filesystem permissions allow the process to access these files. With the lines
between and we specify that Apache can serve all files
within / / / . There are many more configuration options avail-
able there, so check out the Apache documentation.

The next thing we have to do is add a condition in front of our rewrite rule.
As you certainly remember, this rewrite rule passes (proxies) all incoming
requests to Seaside. Now, we would only like to do this if the requested
file does not exist on the file-system. To take the previous example again, if
somebody requests http://www.appname.com/seaside.png Apache should
check if a file named / / / / exists. This is the mean-
ing of the line 16 where is a variable representing the
file looked up, here the variable is bound to .
Furthermore, the cryptic expression means that the following rewrite rule
should conditionally be executed if the file specified does not exist. In our case,
assuming the file / / / / exists, this means that the
rewrite rule is skipped and Apache does the default request handling. Which
is to serve the static files as specified with the directive. Most
other requests, assuming that there are only a few files in / / / ,
are passed on to Seaside.

A typical layout of the directory / / / might look like this:

A shortcut icon, which most graphical web browsers
automatically make use of. The icon is typically dis-
played next to the URL and within the list of book-
marks.
A robots exclusion standard, which most search en-
gines request to get information on what parts of the
site should be indexed.

/ A subdirectory of resources used by the graphical
designer of your application.

/ / All the CSS resources of your application.
/ / All the external Javascript files of your application.

http://www.appname.com/seaside.png
http://www.appname.com/seaside.png

23.3. DEPLOYMENT WITH APACHE 335

23.3.7 Load Balancing Multiple Images

There are several ways to load balance Seaside images, one common way
is to use that comes with Apache. Compared to other
solutions it is relatively easy to set up, does not modify the response and
thus has no performance impact. It requires to only load one small additional
package to load into Seaside. Additionally provides some
advanced features like a manager application, pluggable scheduler algorithms
and configurable load factors.

When load balancing multiple Seaside images care must be taken that all
requests that require a particular session are processed by the same image,
because unless GemStone is used session do not travel between images. This
has to work with and without session cookies. This is referred to as sticky
sessions because a session sticks to its unique image.
does this by associating each image with an route name. Seaside has to ap-
pend this route to the session id. reads the route from
the request and proxies to the appropriate image. This has the advantage
that does not have to keep track of all the sessions and
does not have to modify the response. Additionally the mapping is de-
fined statically in the the Apache configuration and is not affected by server
restarts.

First we need to define our cluster of images. In this example we use two
images, the first one on port 8881 with the route name "first" the second on
port 8882 with route name "second". We can of course choose other ports and
route names as long as they are unique:

Next we need to define the actual proxy configuration, which is similar to
what we do with a single Seaside image behind an Apache:

Note that we configure to be the session id for the URL and the
cookie.

Finally, we can optionally add the balancer manager application:

http://httpd.apache.org/docs/2.2/mod/mod_proxy_balancer.html

336 CHAPTER 23. DEPLOYMENT

As well as an optional application displaying the server status:

Putting all the parts together this gives an apache configuration like the
following:

The rest can be configured from within Seaside. First we need to load the
package from http://www.squeaksource.com/ajp/. Then
we need to configure each image individually with the correct route name.
It is important that this matches the Apache configuration from above. The
easiest way to do this is evaluate the expression:

in the image on port 8881 and

in the image on port 8882.

This is it, the cluster is ready to go. If enabled the server manager can be found
at http://localhost/balancer-manager, see Figure 23.4, and the server status
can be queried on http://localhost/server-status. Note that before going to

http://www.squeaksource.com/ajp/
http://localhost/balancer-manager
http://localhost/server-status

23.3. DEPLOYMENT WITH APACHE 337

Figure 23.4: Apache Load Balancer Manager.

production these two admin applications need to be properly protected from
unauthorized access.

23.3.8 Using AJP

AJPv13 is a binary protocol between Apache and Seaside. It was originally de-
veloped for Java Tomcat but there is nothing Java specific about it. Compared
to conventional HTTP it has less overhead and better support for SSL.

Starting with version Apache 2.2 the required module mod_proxy_ajp is
included with the default setup making it much simpler to use. The configu-
ration looks almost the same as the one we saw in Section 23.3.5. The only
difference is that you need to replace with , and that the
protocol in the URL of the rewrite rule is instead of .

The adapted configuration looks like this:

http://httpd.apache.org/docs/2.2/mod/mod_proxy_ajp.html

338 CHAPTER 23. DEPLOYMENT

On the Smalltalk side you need to load the packages
and directly with Monticello from

http://www.squeaksource.com/ajp. More conveniently you can also
use the following Metacello script:

At that point you need to add and start the on the correct
port from within your image (8003 in this example) and your web application
is up and running with AJP.

23.4 Maintaining Deployed Images

If you followed all the instructions up to now, you should have a working
Seaside server based on Seaside, Apache and some other tools. Apache is
handling the file requests and passing on other requests to your Seaside
application server. This setup is straightforward and enough for smaller
productive applications.

As your web application becomes widely used, you want to regularly provide
fixes and new features to your users. Also you might want to investigate and
debug the deployed server. To do that, you need a way to get our hands on
the running Smalltalk VM. There are several possibilities to do that, we are
going to look at those in this section.

23.4.1 Headful System

Instead of running the VM headless as we did in Section 23.3.4, it is also
possible to run it headful as you do during development. This is common
practice on Windows servers, but it is rarely done on Unix. Normally servers
doesn’t come with a windowing system for performance and security reasons.
Managing a headful image is straightforward, so we will not be discussing
this case further.

23.4.2 Virtual Network Computing

A common technique is to run a VNC server within your deployed image.
VNC (Virtual Network Computing) is a graphical desktop sharing system,

http://www.squeaksource.com/ajp

23.4. MAINTAINING DEPLOYED IMAGES 339

which allows one to visually control another computer. The server constantly
sends graphical screen updates through the network using a remote frame
buffer (RFB) protocol, and the client sends back keyboard and mouse events.
VNC is platform independent and there are several open-source server and
client implementations available.

Figure 23.5: Starting the RFB Server in Pharo.

Pharo comes with a VNC client and server implementation, which can op-
tionally be loaded. It is called Remote Frame Buffer (RFB). Unfortunately the
project is not officially maintained anymore and the latest code is broken
in Pharo, however you can get a working version from http://source.lukas-
renggli.ch/unsorted/.

Install the RFB package, define a password and start the server. Now you are
able to connect to the Pharo screen using any VNC client. Either using the
built-in client from a different Pharo image, or more likely using any other
native client. Now you are able to connect to the server image from anywhere
in the world, and this even works if the image is started headless. This is
very useful to be able to directly interact with server images, for example to
update code or investigate and fix a problem in the running image.

23.4.3 Deployment Tools

Seaside comes with several tools included that help you with the management
of deployed applications. The tools included with the Pharo distribution of
Seaside includes:

http://source.lukas-renggli.ch/unsorted/
http://source.lukas-renggli.ch/unsorted/

340 CHAPTER 23. DEPLOYMENT

Configuration http://localhost:8080/config
System Status http://localhost:8080/status
Class Browser http://localhost:8080/tools/classbrowser
Screenshot http://localhost:8080/tools/screenshot
Version Uploader http://localhost:8080/tools/versionuploader

Configuration. The Seaside configuration interface is described throughout
this book, especially in the previous sections so we are not going to discuss
this further.

System Status. The System status is a tool that provides useful information on
the system. It includes information on the image (see Figure 23.6), the virtual
machine, Seaside, the garbage collector and the running processes.

Figure 23.6: System Status Tool.

Class Browser. The class browser provides access the source code of the
system and allows you to edit any method or class while your application is
running.

Screenshot. The screenshot application provides a view into your image,
even if it runs headless. Clicking on the screenshot even allows you to open
menus and to interact with the tools within your deployed image.

Version Uploader. The version uploader is a simple interface to Monticello.
It allows you to check what code is loaded into the image and gives you the
possibility to update the code on the fly.

http://localhost:8080/config
http://localhost:8080/status
http://localhost:8080/tools/classbrowser
http://localhost:8080/tools/screenshot
http://localhost:8080/tools/versionuploader

23.4. MAINTAINING DEPLOYED IMAGES 341

If you plan to use any of these tools in a deployed image make sure that
they are properly secured from unauthorized access. You don’t want that
any of your users accidentally stumble upon one of them and you don’t
want to give hackers the possibility to compromise your system.

Important

23.4.4 Request Handler

Another possibility to manage your headless images from the outside is to
add a request handler that allows an administrator to access and manipulate
the deployed application.

The technique described here is not limited to administering images, but
can also be used for public services and data access using a RESTful API.
Many web applications today provide such a functionality to interact with
other web and desktop application.

Advanced

To get started we subclass and register it as a new entry
point:

The key method to override is . If the URL is ac-
cessed, then the registered handler receives passed into this
method and has the possibility to produce a response and pass it back to the
web server.

The most generic way of handling this is to provide a piece of code that can
be called to evaluate Smalltalk code within the image:

342 CHAPTER 23. DEPLOYMENT

The first few lines of the code fetch the request parameter with the name code
and store it into the temp . Then we call the compiler to evaluate the
code and store it into . The last few lines generate a textual response
and send it back to the web server.

Now you can go to a web server and send commands to your image by navi-
gating to an URL like: http://localhost:8080/manager?code=SystemVersion
current. This will send the Smalltalk code to the image,
evaluate it and send you back the result.

Alternatively you might want to write some scripts that allow you to directly
contact one or more images from the command line:

If you install a request handler like the one presented here in your appli-
cation make sure to properly protect it from unauthorized access, see Sec-
tion 23.1.

Chapter 24

REST Services

Seaside is not built around REST services by default, to increase programmer
productivity and make to development much more fun. In some cases, it
might be necessary to provide a REST API to increase the usability and inter-
operability of a web application though. Luckily Seaside provides a Seaside
REST package to fill the gap and to allow one to mix both approaches.

In this chapter, we show how to integrate web applications with Seaside REST
services. We start with a short presentation of REST. Then we define a simple
REST service for the todo application we implemented in Chapter 15. We
finish this chapter by inspecting how HTTP requests and responses work. We
want to thank Olivier Auverlot for providing us with an initial draft of this
chapter in French.

24.1 REST in a Nutshell

REST (Representational State Transfer) refers to an architectural model for the
design of web services. It was defined by Roy Fielding in his dissertation on
Architectural Styles and the Design of Network-based Software Architectures.
The REST architecture is based on the following simple ideas:

• REST uses URIs to refer to and to access resources.

• REST is built on top of the stateless HTTP 1.1 protocol.

• REST uses HTTP commands to define operations.

This last point is essential in REST architecture. HTTP commands have precise
semantics:

• GET lists or retrieves a resource at a given URI.

343

http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

344 CHAPTER 24. REST SERVICES

• PUT replaces or updates a resource at a given URI.

• POST creates a resources at a given URI.

• DELETE removes the resources at a given URI.

Seaside takes a different approach by default: Seaside generates URIs auto-
matically, Seaside keeps state on the server, and Seaside does not interact
well with HTTP commands. While the approach of Seaside simplifies a lot of
things in web development, sometimes it is necessary to play with the rules.
REST is used by a large number of web products and adhering to the REST
standard might increase the usability of an application.

REST applications with Seaside can take two shapes: The first approach
creates or extends the interoperability of an existing application by adding
a REST API. Web browsers and other client applications can (programmat-
ically) access the functionality and data of an application server, see Fig-
ure 24.1.

Figure 24.1: First architecture: adding REST to an existing application.

A second approach consists of using REST as the back-end of an application
and make it a fundamental element of its architecture. All objects are exposed
via REST services to potential clients as well as to the other parts of the
application such as its Seaside user-interface, see Figure 24.2.

This second approach offers a low coupling and eases deployment. Load-
balacing and fail-over mechanisms can easily be put in place and the applica-
tion can be distributed over multiple machines.

With Seaside and its Rest package you can implement both architectures. In
this chapter we are going to look at the first example only, that is we will
extend an existing application with a REST API.

24.2. GETTING STARTED WITH REST 345

Figure 24.2: Second architecture: REST centric core.

24.2 Getting Started with REST

To get started load the package , and if you are on
Pharo . All packages are available from the

repository and you can load then easily with the follow-
ing Gofer script:

Recent Seaside images already contain the REST packages preloaded.

24.2.1 Defining a Handler

We are going to extend the todo application from Chapter 15 with a REST API.
We will first build a service that returns a textual list of todo items.

Our REST handler, named , should be declared by defining a
Seaside class which inherits from . This way we indicate
to Seaside that is a REST handler. The todo items will be ac-
cessed through the same model as the existing todo application:

346 CHAPTER 24. REST SERVICES

. This means we do not need to specify additional state in our handler
class.

With Seaside-REST, we do not subclass from that is reserved to
the generation of stateful graphical components, but you should subclass
from WARestfulHandler.

Note

Last we need to initialize our hander by defining a class-side initialization
method. We register the handler at the entry point so that it is
reachable at http://localhost:8080/todo-api. Don’t forget to call the method
to make sure the handler is properly registered.

24.2.2 Defining a Service

The idea behind Seaside-REST is that each HTTP request triggers a method of
the appropriate service implementation. All service methods are annotated
with specific method annotations or pragmas.

It is possible to define a method that should be executed when the handler
receives a GET request by adding the annotation < > to the method. As
we will see in Section 24.3, a wide range of other annotations are supported
to match other request types, content types, and the elements of the path and
query arguments.

To implement our todo service, we merely need to add the following method
to that returns the current todo items as a string:

The important thing here is the method annotation < >, the name of the
method itself does not matter. The annotation declares that the method is
associated with any GET request the service receives. Later on we will see
how to define handlers for other types of requests.

http://localhost:8080/todo-api

24.3. MATCHING REQUESTS TO RESPONSES 347

In a web browser enter the URL http://localhost:8080/todo-api. You should
get a file containing the list of existing todo items of your applications. If the
file is empty verify that you have some todos on your application by trying
it at http://localhost:8080/todo. In case of problems, verify that the server
is working using the Seaside Control Panel. If everything works well you
should obtain a page with the list of todo items. To verify that our service
works as expected we can also use cURL or any other HTTP client to inspect
the response:

By default Seaside tries to convert whatever the method returns into a re-
sponse. In our initial example this was enough, but in many cases we want
more control over how the response is built. We gain full control by ask-
ing the request context to respond with a custom response. The following
re-implementation of the method has the same behavior as the previous
one, but creates the response manually.

24.3 Matching Requests to Responses

In the initial example we have seen how to define a service that catches all
GET requests to the handler. In the following sections we will look at defining
more complicated services using more elaborate patterns. In Section 24.3.1
we are going to look at matching other request types, such as POST and PUT.
In Section 24.3.2 we are going to see how to serve different content types
depending on the requested data. In Section 24.3.3 we will see how to match
path elements and in Section 24.3.4 how to extract query parameters.

http://localhost:8080/todo-api
http://localhost:8080/todo

348 CHAPTER 24. REST SERVICES

24.3.1 HTTP Method

Every service method must have a pragma that indicates the HTTP method
on which it should be invoked.

If we would like to add a service to create a todo item with a POST request,
we could add the following method:

We use the message to access the body of the request. The code
creates a new todo item and sets its title. It then replies with a simple
message.

To give our new service a try we could use cURL. With the option we
define the data to be posted to the service:

If we list the todo items as implemented in the previous section we should
see the newly created entry:

Similarly Seaside supports the following request methods:

Request Method Method Annotation Description
GET < > lists or retrieves a re-

source
PUT < > replaces or updates a

resource
POST < > creates a resource
DELETE < > removes a resource
MOVE < > moves a resource
COPY < > copies a resource

24.3. MATCHING REQUESTS TO RESPONSES 349

24.3.2 Content Type

Using HTTP and Seaside-REST, we can also specify the format of the data
that is requested or sent. To do that we use the header of the HTTP
request. Depending on it, the REST web service will adapt itself and provide
the corresponding data type.

We will take the previous example and we will modify it so that it serves the
list of todo items not only as text, but also as JSON or XML. To do so define
two new methods named and . Both methods will be a GET
request, but additionally we annotate them with the mime type they produce
using < >. This annotation specifies the type of the
data returned by the method. A structured format like XML and JSON is
friendly to other applications that would like to read the output.

While in the examples above we (mis)use the JSON and XML builders that
come with our Seaside image. You might want to use any other framework
or technique to build your output strings.

By specifying the accept-header we can verify that our implementation serves
the expected implementations:

350 CHAPTER 24. REST SERVICES

If the accept-header is missing or unknown, our old textual implementation
is called. This illustrates that several methods can get a get annotation and
that one is selected and executed depending on the information available in
the request. We explain this point later.

Similarly the client can specify the MIME type of data passed to the server
using the content-type header. Such behavior only makes sense with PUT
and POST requests and is specified using the < >

annotation. The following example states that the data posted to the server is
encoded as JSON.

We can test the implementation with the following cURL query:

24.3.3 Request Path

URIs are a powerful mechanism to specify hierarchical information. They
allow one to specify and access to specific resources. Seaside-Rest offers a
number of methods to support the manipulation of URIs. Some predefined
methods are invoked by Seaside when you define them in your service.

The method we implemented in Section 24.2.2 is executed when the URI
does not contain any access path beside the one of the application.

24.3. MATCHING REQUESTS TO RESPONSES 351

If we define services with methods that expect multiple arguments, the argu-
ments get mapped to the unconsumed path elements. In the example below
we use the first path element to identify a todo item by title, and then perform
an action on it using the second path element:

Now we can query the model like in the following examples:

24.3.4 Query Parameters

So far we used the request type (Section 24.3.1), the content type (Sec-
tion 24.3.2) and the request path (Section 24.3.3) to dispatch requests to meth-
ods. The last method which is also the most powerful one, is to dispatch on
specific path elements and query parameters.

Using the annotation < > we can define flexible masks to extract el-
ements of an URI. The method containing method is triggered when the
path matches verbatim. Variable parts in the path definition are enclosed in
curly braces and will be assigned to method arguments. Variable
repeated parts in the path definition are enclosed in stars and will
be assigned as an array to method arguments.

352 CHAPTER 24. REST SERVICES

The following example implements a search listing for our todo application.
Note that the code is almost exactly the same as the one we had in our initial
example, except that it filters for the query string:

The method is executed when the client sends a GET request which starts with
the path / and contains the query parameter . The expression

makes sure that the method argument is bound to that
request argument.

Give it a try on the console. With the right query string only the todo items
with the respective substring are printed:

24.3.5 Conflict Resolution

Sometimes there are several methods which Seaside-REST could choose for a
request, here’s how it finds the "best" one:

1. Exact path matches like / take precedence over partial
/ or or wildcard ones .

2. Partial path matches like / or take precedence
over wildcard ones .

3. Partial single element matches take precedence over multi element
matches .

4. Exact mime type matches like / take precedence over partial
/ or / , wildcard / and missing ones.

5. Partial mime type matches like / or / take precedence over
wildcard ones / or missing ones.

6. If the user agent supplies quality values for the Accept header, then that
is taken into account as well.

24.4. HANDLER AND FILTER 353

24.4 Handler and Filter

So far, our REST service did not interact much with the existing Seaside
todo application (other than through the shared model). Often it is however
desired to have both – the application and the REST services – served from
the same URL.

To achieve this we have to subclass instead of
. The simply wraps a Seaside application.

That is, it handles REST requests exactly as the , but it can
also delegate to the wrapped Seaside application.

To update our existing service we rename to and
change its superclass to . Now the class definition should
look like:

A filter cannot be registered as a an independent entry point anymore, thus
we should remove it from the dispatcher to avoid errors:

Instead we attach the filter the todo application itself. On the class-side of
we adapt the method to:

After evaluating the initialization code, the is now executed when-
ever somebody accesses our application. The process is visualized in Fig-
ure 24.3. Whenever a request hits the filter (1), it processes the annotations
(2). Eventually, if none of the annotated methods matched, it delegates to the
wrapped application by invoking the method noRouteFound: (3).

Unfortunately – if you followed the creation of the REST API in the pre-
vious sections – our service hides the application by consuming all
requests to http://localhost:8080/todo. We have two possibilities to fix the
problem:

1. We remove the method so that automatically calls
that eventually calls the application.

2. We add a new service that captures requests directed at our web appli-
cation and explicitly dispatches them to the Seaside application. For

http://localhost:8080/todo

354 CHAPTER 24. REST SERVICES

Figure 24.3: Request handling of WARestfulFilter and WAApplication.

example, the following code triggers the wrapped application whenever
HTML is requested:

This change leaves the existing API intact and lets users access our web
application with their favorite web browser. This works, because browser
request documents with the mime-type / by default. Of course, we
can combine this technique with any other of the matching techniques we
discussed in the previous chapters.

24.5 Request and Response

Accessing and exploring HTTP requests emitted by a client is an important
task during the development of a REST web service. The request gives access
to information about the client (IP address, HTTP agent, ...).

To access the request we can add the expression
anywhere into Seaside code. This works inside a as well

as inside a .

When the method is executed, you get an inspector on the current request as
shown in Figure 24.4.

The following example uses the expression that
returns the present in the inspected HTTP client request.

24.5. REQUEST AND RESPONSE 355

Figure 24.4: Inspecting a request.

In the case of the transmission of a form (corresponding to the application/x-
www-form-urlencoded MIME type), we can access the submitted fields using
the message .

It is also possible to customize the HTTP response. A common task is to set
the HTTP response code to indicate a result to the client.

For example we could implement a delete operation for our todo items as
follows:

The different status codes are implemented on the class side of WARequest.
They are grouped in five main families with numbers between 100 and 500.
The most common one is status code (200) and

(404).

356 CHAPTER 24. REST SERVICES

24.6 Advices and Conclusion

This chapter shows that while Seaside provides a powerful way to build
dynamic application using a stateful approach, it can also seamlessly in-
tegrate with existing stateless protocols. This chapter illustrated that an
object-oriented model of an application in combination with Seaside can be
very powerful: You can develop flexible web interfaces as composable Seaside
components, and you can easily enrich them with an API for interoperability
with REST clients. Seaside provides you with the best of all worlds: the power
of object-design, the flexibility and elegance of Seaside components, and the
integration of traditional HTTP architectures.

A piece of advice:

• Do not use cookies with a REST service. Such service should respect
the stateless philosophie of HTTP. Each request should be independent
of others.

• During the development, organize your tagged methods following the
HTTP commands: (GET, POST, PUT, DELETE, HEAD). You can use
protocols to access them faster.

• A good service web should be able to produce different types of contents
depending on the capabilities of the clients. Been able to produce
different formats such as plain text (text/plain), XML (text/xml), or
JSON (text/json) increases the interoperability of your web services.

You should now have a better understanding of the possibilities offered by
Seaside-REST and be ready to produce nice web services.

Chapter 25

Some Persistency
Approaches

One important question when building applications is how to save their data.
This question is not directly linked to Seaside, but we want to provide some
possible solutions to help you get started. Several solutions exist to save
your data. We will present some of the ones that are available in Squeak and
that are based on open-source software. We will cover multiple solutions
based on image snapshots, active record-like behavior, and object-oriented
databases. We will not cover in detail Object-Relational mapping solutions
such as GLORP (an open-source object-relational mapper). The book “An
Introduction to Seaside” by Michael Perscheid et al. presents a nice introduc-
tion to GLORP and we point the interested reader to this book. Cincom offers
WebVelocity (see Chapter 3) to support the definition of web applications us-
ing Seaside and scaffolding of applications. For the persistency, WebVelocity
uses GLORP. There are some efforts to support OpenDBX in Squeak. The list
of support will certainly grow and we may extend it as well.

The purest definition of “persistence” is capturing the state of memory to
secondary storage (disk) so that work on the meaningful object model may
continue later; and this is the primary purpose of any persistence framework.
Another useful purpose, however, is to accommodate very large models
that cannot fit entirely in RAM. Capable persistence frameworks manage
large models by paging portions of the model into RAM as necessary for
consumption or updates, and paging it out to make room for other parts of
the model. One job of an object-database is to do this as transparently to the
developer as possible.

Of course, Smalltalk vendors offer specific solutions for persistency ranging
from object-relational mapping to object-oriented databases. GemStone is an

357

http://www.swa.hpi.uni-potsdam.de/seaside/tutorial
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial

358 CHAPTER 25. SOME PERSISTENCY APPROACHES

object database that natively runs Seaside (see Chapter 4). The GemStone
approach offers a robust and scalable object-oriented environment for Seaside.
With GemStone you don’t have to think about persistency at all, the fact that
objects are persistent in an industrial strength database is part of the language.
GemStone offers GLASS, a 4 GiB persistent image that just magically solves
most of your persistency problems. GLASS can be a really important option
for persistency when you really need to scale in the Seaside world; however,
it requires a 64 bit server and introduces the small additional complexity of
changing to a different Smalltalk and learning its class library.

A little note. Most applications don’t need to scale. They need to be robust
and solve client problems. Most real world applications are written to run
small businesses. In all likelihood, scaling is not and probably won’t ever
be your problem. We might like to think we’re writing the next YouTube or
Twitter, but odds are we’re not. You can make a career just replacing spread
sheets with simple applications that make people’s lives easier without ever
once hitting the limits of a single Squeak image (such was the inspiration
for DabbleDB), so don’t waste your time scaling (yet). Spend your time on
solving client problems and building robust software. If scaling ever becomes
a problem, be happy, it’s a nice problem and your clients will pay for it.

In contrast to other “web frameworks” Seaside does not provide a ready-
made persistency solution for you. We consider this to be an advantage,
Seaside lets you choose the database technology that fits your needs the best
and concentrates on what it is strong at, web application development.

In this chapter we will present several persistency solutions of various degrees
of scalability and simplicity. First we will describe some simple image-based
and object serialization solutions. Then we present SandstoneDB which offers
an Active Record-style API (even if it does not offer transactional semantics,
concurrent accesses) and use the image as a persistency. Finally we present
Magma: an object-oriented database based on a write-barrier. This approach
is similar to the one of GOODS.

25.1 Image-Based Persistence

While a Smalltalk image should not really be used as an artifact of code man-
agement (you should use Monticello packages, change-sets, Store packages
to manage your code elements and build your image from packages), it can
be used to store objects. With some precaution you can use the image as
a simple and powerful object-oriented database. Therefore you can delay
the need to hook up a database during much of your development and of-
ten your deployment. The point is to find the adequate solution for your
problem.

25.1. IMAGE-BASED PERSISTENCE 359

On his blog Ramon Leon advocates that not all applications need a relational-
database back-end, and he explains some of the advantages of a lighter-
weight approach at http://onsmalltalk.com/simple-image-based-persistence-
in-squeak/.

Understanding the right level of database is important since it will lower the
stress on the development. This is why solutions like Prevayler based on the
Command design pattern have emerged over the years. Such approaches
mimic the notion of the Smalltalk image, even if they offer a better store
granularity.

Not directly using a relational database will also ease the evolution of your
application which in case of the prototyping phase will certainly do. In
addition, working with full objects all the way down is more productive. So
let’s have a look at image storage mechanisms.

The simplest approach is the following: you save your image. Now if the
image crashes because for example your disc is full, you are in trouble. The
second level is to perform several backups. Later on you can switch to an
object-oriented database approach such as GOODS, Magma or GemStone.
Of course saving an image does not work well if you have to share data
between different applications not running in the same image. So you get the
simplicity and the limits of simplicity too.

Saving an image. The expression saves
an image, i.e., all the objects that are accessible in your system. Now based
on that we can build a small utility class. Let us define as a class
for saving the image.

Now the question is when do we save our data. For the ToDo application,
each time an item is changed, added or removed would be a possibility.
Having an explicit save button is another solution. We let you decide for your
application.

On a Mac Book pro with around ten applications running in parallel, it takes
about 1100 ms to save the Seaside image which highly depends on the size
of the image. Therefore, this will have an influence on choice. For two lines
of code, this is a good tradeoff. Now we will use the solution proposed by
Ramon Leon to improve the robustness on crashes of the approach.

http://onsmalltalk.com/simple-image-based-persistence-in-squeak/
http://onsmalltalk.com/simple-image-based-persistence-in-squeak/

360 CHAPTER 25. SOME PERSISTENCY APPROACHES

Backing Up images. Using the image itself as a database is not free of prob-
lems. An average image is well over 30 megabytes, saving it takes a bit
of time, and saving it while processing http requests is a risk you want to
avoid. In addition you want to avoid having several processes saving the
image.

ReferenceStream provides a solution to serialize objects to disk. On every
change you just snapshot the entire model. Note that this isn’t as crazy as
it might sound, most applications just don’t have that much data. If you’re
going to have a lot of data, clearly this is a bad approach, but if you’re already
thinking about how to use the image for simple persistence because you
know your data will fit in ram, here’s how Ramon Leon does it.

We define a simple abstract class that you can subclass for each project. With
a couple of lines you get a Squeak image-based persistent solution which is
fairly robust and crash proof and more than capable enough to allow you just
to use the image without the need for an external database.

All the methods that follow are class-side methods. First, we’ll need a method
to fetch the directory where rolling snapshots are kept. Note that we use the
name of the class as the directory entry.

The approach here is simple, a subclass should implement to
return the root object to be serialized. Therefore we often just return an array
containing the root collection of each domain class.

The subclass should also implement which will re-
store those repositories back to wherever they belong in the image for the
application to use them.

Should the image crash for any reason, we want the last backup to be fetched
from disk and restored. So we need a method to detect the latest version of the
backup file, which we will tag with a version number in when saving.

25.1. IMAGE-BASED PERSISTENCE 361

Once we have the file name, we’ll deserialize it with a read-only reference
stream.

This requires you extend the class with
as follows. This way you do not have to remember to

close your streams.

Now we can provide a method to actually restore the latest backup. Later, we
will make sure this happens automatically.

We provide a hook with a default value representing the number of old
versions.

Now we define a method that suppresses the older versions so
that we do not fill up the disc with more data than needed.

Note that you can change this strategy and keep more versions.

362 CHAPTER 25. SOME PERSISTENCY APPROACHES

Serializing Data. Now we are ready to actually serialize the data. Since
we want to avoid multiple processes to save our data at the same time, we
will invoke within a critical section, figure out the next version
number, and serialize the data (using the method), ensure
to flush it to disk before continuing. Let’s define the method
as follows.

So far so good, let’s automate it. In Squeak, we can register classes so that
their method is called when the image is quit and when
the image is booting. Using this mechanism, we can make sure that when the
image is saved a backup is automatically performed and will be automatically
restored at startup time. This way if your computer crashes, relaunching the
image will automatically load the latest backup.

We’ll add a method to schedule the subclass to be added to the start up and
shutdown sequence. Note that you must call this for each subclass, not for
this class itself. This method also initializes the lock and must be called before

since this is cleaner. To achieve this behavior, we use the
and messages as follows:

So on shutdown, if the image is actually going down, we just save the current
data to disk by specializing the method .

And on startup we can restore the last backup by specializing the method
.

25.1. IMAGE-BASED PERSISTENCE 363

Now, if you want a little extra snappiness and you’re not worried about
making the user wait for the flush to disk, we’ll add little convenience method
for saving the repository on a background thread.

Now for the ToDo application. We create as a subclass of
the class .

We make sure that the persistency is enabled by specializing the class
method as follows:

Now the list of items is the only root of our object model so we specify it as
entry point for the store in the method.

Since we need a way to change the current list of todo items we extended the
class with the method that is defined as follows:

We modify the method of the to offer the
possibility of saving.

364 CHAPTER 25. SOME PERSISTENCY APPROACHES

The expression lets you restore the latest
backup.

This solution offers a simple persistency mechanism that is more robust
and easier than just saving an image. It works for those small projects
where you really don’t want to bother with a real database. Just sprinkle
a few or ’s
around your application code whenever you feel it is important, and you’re
done.

On the one hand, saving the image is easy, but on the other it saves all the
data. Let us now take a look at other approaches that can select what is
saved.

25.2 Object Serialization

A variation on the same principle is to simply serialize your data when it
changes. Here is a 6 method long solution. There are several frameworks
available: SIXX saves objects in XML format, ReferenceStream (SmartRef-
Stream) in Pharo, BOSS (Binary object storage system) in VisualWorks, and
ObjectDumper in GNU Smalltalk allow one to serialize objects in a binary
format. These frameworks support cyclic references.

To illustrate this simple method, we show how Conrad, the conference regis-
tration system for ESUG (http://www.squeaksource.com/Conrad), applies
such an approach. The root of the model is . Whenever the
application changes something in the model it calls >>

which saves the complete model. At start up we make sure that the latest
version is always loaded.

The method >> loads a specific version.
>> and >> make

sure that always the latest version is loaded.

Since Conrad only manages one conference, it uses an singleton that can be
accessed using the message and reset using the message .

25.2. OBJECT SERIALIZATION 365

Afterwards we make sure that at image start up, the latest version is loaded.
To do so, we specialize the class method which is invoked when the
image is starting up.

Now we save the data, by creating a reference stream in which we add date
and time information for tracing purposes.

We illustrated the principles using but it would be the same
with another object serializer.

Again with 6 methods you get a working and robust solution that has some
limits: first this is the responsibility of the developer to track when to save
the objects, second, saving all the data each time one single element changes
is not optimal and works for small models. Third with large data, saving
subpart can be tedious because you may reload parts and you may have to
swap the one in the image with the one loaded.

366 CHAPTER 25. SOME PERSISTENCY APPROACHES

25.3 Sandstone: an Active-Record Image-based
Approach

SandstoneDB has been developed by Ramon Leon. SandstoneDB is a
lightweight Prevayler style embedded object database with an ActiveRe-
cord API. It is available for Pharo and GNU Smalltalk. SandstoneDB doesn’t
require a command pattern and works for small apps that a single Pharo
image can handle. SandstoneDB is a simple, fast, configuration free, crash
proof, easy to use object database that doesn’t require heavy thinking to use.
It allows you to build and iterate prototypes and small applications quickly
without having to keep a schema in sync. SandstoneDB is a simple object
database that uses to serialize clusters of objects to disk (com-
pared to the above approach it can save the model in increments, not the
whole model when only something small changes).

The idea is to make a Squeak image durable and crash proof and suitable for
use in small office applications. SandstoneDB and Seaside give what the Rails
and ActiveRecord guys have, simple fast persistence that just works, simply.
It also gets the additional benefit of no mapping and no SQL queries, instead
we use plain Smalltalk iterators.

With Sandstone, data is kept in RAM for speed and on disk for safety. All
data is reloaded from disk on image startup. Since objects live in memory,
concurrency is handled via optional record level critical sections rather than
optimistic locking and commit failures. It’s up to the developer to use critical
sections at the appropriate points by using the critical method on the record.
Saves are atomic for an ActiveRecord and all its non-ActiveRecord children,
for example, an order and its items. There is no atomic save across multiple
ActiveRecords. A record is a cluster of objects that are stored in a single file
together.

Contrary to the image-based persistence schema described at the beginning of
this chapter, SandstoneDB is more like an OODB. It slices out part of the object
graph and commits just that record and its children to a single temp file. Once
successfully written it’s renamed into place to make the commit as atomic as
possible. First the new record is written to a file named objectid.new, then the
current record which is named objectid.obj is renamed to objectid.obj.version,
and the change is finally committed by renaming objectid.new to objectid.obj.
The recovery process takes this into account and can tell at what point the
crash occurred by what the file names are and recovers appropriately. There’s
a recovery process that runs on image startup to finish partial commits and
clean up failed commits that may have happened during a crash. Since
commits on objects are explicit, there’s no need to for any kind of change
notification or change tracking.

About Aggregate. The root of each cluster is an ActiveRecord. It makes

25.3. SANDSTONE: AN ACTIVE-RECORD IMAGE-BASED APPROACH367

ActiveRecord a bit more object-oriented by treating it as an aggregate root
and its class as a repository for its instances.

A good example of an aggregate root object is an class, while its
class just be an ordinary Smalltalk object. A is an aggregate root
while a is an ordinary Smalltalk object. and would
be ActiveRecords. This allows you to query for and but not for

and , which is as it should be, those items don’t make
much sense outside the context of their aggregate root and no other object in
the system should be allowed to reference them directly, only aggregate roots
are referenced by other ActiveRecords. This will cause the entire cluster to be
committed atomically by calling .

To start. To use SandstoneDB, just subclass and save your
image to ensure the proper directories are created, that’s it, there is no further
configuration. The database is kept in a subdirectory matching the name of
the class in the same directory as the image. Following the idea of Prevayler
all data is kept in memory, then written to disk on save or commit and on
system startup, all data is loaded from disk back into memory. This keeps the
image small. Like Prevayler, there’s a startup cost associated with loading
all the instances into memory and rebuilding the object graph, however once
loaded, accessing your objects is blazing fast and you don’t need to worry
about indexing or special query syntaxes like you would with an on disk
database. This of course limits the size of the database to whatever you’re
willing to put up with in load time and whatever you can fit in RAM.

25.3.1 The SandstoneDB API

SandstoneDB has a very simple API for querying and iterating on the classes
representing the repository for their instances:

Class Query API. The API looks a lot like the standard Smalltalk collection
protocol slightly renamed to make it clear these queries could potentially be
more expensive than just a standard collection.

• and allow one to access an instance of the receiver
based on its ID. Here is an example of use.

368 CHAPTER 25. SOME PERSISTENCY APPROACHES

• iterates over all the instances of the class but does a copy in case the
do modifies the collection.

• returns the first instance satisfying the predicate, as do
and . returns all the instances

that match a predicate. Here is an example of .

• returns all the instances of the class.

Instance API. There’s a simple API for the instance side:

• returns a UUID string in base 36 which uniquely identifies the in-
stance.

• and return the timestamps of the creation and last
update of the instance.

• returns the version of the instance. The version is increased for
each save. It is useful in critical sections to validate you’re working on
the version you expect.

• returns all instance variable’ s as a single string for
easy searching.

Instance Actions. Here is the list of actions you can perform on a
record.

• saves the instance but is not thread safe.

• grabs or creates a Monitor for thread safety.

• is just a in a session.

• is similar to but you can pass a block if you have other
work you want done while the object is locked.

• rolls back to the last saved version.

• deletes the instance.

• is a hook that subclasses can override to specify validation
action and throw exceptions to prevent saves.

Here are some trivial examples of using an .

25.3. SANDSTONE: AN ACTIVE-RECORD IMAGE-BASED APPROACH369

The framework offers some hooks that you can override on record life cycle
events. But pay attention to invoke the superclass methods.

•

•

•

•

•

•

There is also a testing method you might find useful: answers true prior
to the first successful commit.

25.3.2 About Concurrency

Transactions are a nice to have feature, however, they are not a must have
feature. Starbucks doesn’t use a two phase commit and MySql became the
most popular open source database in existence long before they added
transactions as a feature.

In SandstoneDB, concurrency is handled by calling either or
and it’s entirely up to the programmer to put critical sections around the
appropriate code. You are working on the same instances of these objects
as other threads and you need to be aware of that to deal with concurrency
correctly. You can wrap a around any chunk of code to ensure you
have a write lock for that object like so...

While saves the instance within a critical section, lets you
decide when to call , in case you want other actions inside the critical
section of code to do something more complex than a simple implicit save.
When you’re working with multiple distributed systems, like a credit card
processor, transactions don’t really cut it anyway so you might do something
like save the record, get the authentication, and if successful, update the
record again with the new authentication.

370 CHAPTER 25. SOME PERSISTENCY APPROACHES

Here is another example of the use of a use of the method.

Only subclass for aggregate roots where you need to be able
to query for the object, for all other objects just use ordinary Smalltalk objects.
You do not need to make every one of your domain objects into ActiveRecords,
choosing your model carefully gives you natural transaction boundaries since
the commit of a single ActiveRecord and all ordinary objects contained within
is atomic and stored in a single file. There are no real transactions so you
cannot atomically commit multiple ActiveRecords.

That’s about all there is to using it, there are some more things going on
under the hood like crash recovery and startup but if you really want to know
how that works, read the code. It is similar to the approaches we presented
before. SandstoneDB is available on SqueakSource and is MIT licensed and
makes a handy development and prototyping or small application database
for Seaside.

The limits or disadvantages of SandstoneDB are that you have to inherit from
SDActiveRecord, and it goes against clean domain separation. It makes it
harder to reuse your domain code. Now you can define SDActiveRecord as a
trait and use this trait in your domain code without being forced to change
your inheritance hierarchy. Another disadvantage is that SandstoneDB is
designed for small projects that are satisfied with one single image. Sand-
stoneDB neither provides distributed object access (there is always just one
image that accesses the data) nor transactional semantics (two concurrent pro-
cesses could create fatal conflicts in the data structures, unless the developer
uses propre concurrency control himself).

OO purists wouldn’t want domain objects to be linked to a persistency frame-
work. You can see this in the design of most OODBs available, it’s considered

25.4. MAGMA: AN OBJECT-ORIENTED DATABASE 371

a sin to make you inherit from a class to obtain persistence. The typical usage
pattern is to create a connection to the OODB server which basically presents
itself to you as a persistent dictionary of some sort where you put objects
into it and then commit any unsaved changes. They will save any object and
leave it up to you what your object should look like, intruding as little as
possible on your domain, so they say. In Pharo and Squeak, one possible
solution explored by SqueakSave (a new framework to save objects in Squeak)
is to turn the root class into a trait (trait are compiled-time
group of methods) and to apply the trait to your classes. Behind the scenes
there’s some voodoo going on where this persistent dictionary tries to figure
out what’s actually been changed either by having installed some sort of
write barrier that marks objects dirty automatically when they get changed,
comparing your objects to a cached copy created when they were originally
read, or sometimes even explicitly forcing the programmer to manually mark
the object dirty. The point of all of this complexity is to minimize writes to
the disk to reduce IO and keep things snappy. This is what we will see next
with Magma.

25.4 Magma: an Object-Oriented Database

Magma is an open-source object-oriented database developed entirely in
Smalltalk. Magma provides transparent access to a large-scale shared per-
sistent object model. It supports multiple users concurrently via optimistic
locking. It uses a simple transaction protocol, including nested transactions,
supports collaborative program development via live class evolution, peer-
to-peer model sharing and Monticello integration. Magma supports large,
indexed collections with robust querying, runs with pretty good performance
and provides performance tuning mechanisms. Magma is fault tolerant and
includes a small suite of tools. Magma can either work locally or on a remote
Magma server. This means, multiple images can access the same database
concurrently.

Magma provides safe access and management to multiple, large, intercon-
nected models over the network, by multiple users, simultaneously. In keep-
ing with the simplicity of the other frameworks, it “just works” out of the
box with comparably little API and learning curve. Developers will appre-
ciate there is no need to inherit from a special superclass and no need to
signal changed-notifications anywhere. There are a lot of options but the
defaults will work fine without any consideration. Servers running when the
image is closed and reopened are automatically restarted, connected clients
are automatically reconnected. Recovery from hardware failures also occurs
automatically, guaranteeing integrity.

372 CHAPTER 25. SOME PERSISTENCY APPROACHES

25.4.1 How it works

A running Magma server is never required to deal with actual instances of the
domain, it is really nothing more than a buffer server. The persistent model
is encapsulated into serialized object buffers that are relationally-linked by
their (object-id). Here is the entire class hierarchy:

Every single Magma repository consists of many thousands (millions, billions,
etc.) of these buffers written to various object files (note that each Magma
repository is physically stored in its own directory of files, you should not
remove these Magma-generated files via the OS, or add any additional files).
This first-class representation of the buffers allows the Magma server to
dance over any part of the domain with agility, rapidly supplying request-
ing clients with object-answers to their requests by way of the “Ma client
server” supporting package, the high-performance client-server framework
for Squeak.

After receiving the chunk of buffers from the server, Magma clients translate
them into the domain instances, constructing the model and attaching it
correctly to the existing cached model. Of course the model is rendered
exactly true to its original shape, cycles and all. The “edges” of the cached
domain model are terminated by Proxy instances which will automatically
mutate that portion of the model if the program ventures there.

This constant conversion to and from the MaObjectBuffer instance format
does mean Magma runs more slowly for a single-user than the all-in-memory
frameworks. At least until the model grows beyond 100MB. At that point,
every single save in the all-in-memory is writing out another 100MB, but
Magma will automatically determine only the objects that changed and write
out only those changes. Even further, the level of performance can be main-
tained indefinitely as the size of the model or number of users increases, by
adding additional servers as necessary. Magma constantly monitors and
captures extensive performance statistics, allowing developers to fine-tune
their programs to maximize use of the available resources.

Magma is a safe place to maintain a Squeak object model important to you
or your organization. It supports full-backup and DR replication for rapid
failover, out of the box. The generic structure of the storage is simple, well
documented, has remained compatible across many Squeak versions and will
continue to do so

25.4. MAGMA: AN OBJECT-ORIENTED DATABASE 373

In Magma you have to specify the root of the world that you want to store
and Magma identifies the changes that should be saved. Now we will have a
look at how to use Magma to save our ToDo application.

25.4.2 Getting Started

You can install Magma using SqueakSource as indicated from
http://wiki.squeak.org/squeak/2657. You basically get three pack-
ages, the client, the server and the tests. Typically you will load the server
package, since the client package contains the code to connect to a remote
server and the server package contains the client and server code.

To start we will work with a local repository. Later we describe the simple
steps to do to get a remote server. Note that the difference between the two
setups is quite small. We will define a small class to group all the operations
to set up and manage a connection as well as accessing the session.

Setting up the Database. The first action is to set up the database using the
message . We have to give a file location and a root of the object
graph we want to store in this location.

Here the controller will create a repository in the path{/tmp/todo} folder and
it takes the singleton of the class since it contains all the items of our
application. It is often the case that you specify a dictionary where you can
define multiple roots of your application. We will use such code in the class
that will manage the storage of our application.

We define the class method which returns the file location of our reposi-
tory as well as the method . Then we create the repository by execut-
ing .

http://wiki.squeak.org/squeak/2657

374 CHAPTER 25. SOME PERSISTENCY APPROACHES

We define an accessor method for the session and we define a
using the path specified before and connect to the session using the
method . Note here that we send the message

>> to the session since we are in local mode.

We make sure that the session will be correctly set in the singleton method by
sending the instance message we previously defined.

We also define the method which disconnects and closes the session.
Note that the method >> deals with the fact
that we are in local or remote mode.

The following method illustrates how we could access the session root
object.

We finally provide a class method to commit changes to the database using
the method >> .

Now we are ready to test. We will create a repository, add an item to the list
and commit the changes and release the connection.

Now using these messages we can decide when we will store the data. For
example we modify the method >> and wrap the change
of the current item into a so that the resulting objects get stored.

25.4. MAGMA: AN OBJECT-ORIENTED DATABASE 375

Magma will detect the changes from the root object and save them if we wrap
the action inside .

Note that the Magma tutorial available at
http://wiki.squeak.org/squeak/2689 proposes ways to avoid modify-
ing the domain objects to make them persistent.

25.4.3 Running Remotely

If you want to use Magma in remote server mode you have to execute the
following piece of code in a second image. This code launches the server. You
have to specify where the repository will be located and the port used for the
connection.

Do not close the inspector since you will use it to send the message
to stop the server. If you accidently close the inspect window you can execute
something like this:

To connect to the server, we will have to specify the port and possibly the
address. The following methods show how to define a connection to the port
51001 on localhost.

http://wiki.squeak.org/squeak/2689

376 CHAPTER 25. SOME PERSISTENCY APPROACHES

We just showed superficially the functionality offered by Magma. Magma
offers much more such as optimized and large collections. We sug-
gest you read the documentation of Magma that you can find at:
http://wiki.squeak.org/squeak/2665.

25.5 GLORP: an Object-Relational Mapper

GLORP which stands for Generic Lightweight Object-Relational Persistence,
is a meta-data driven object-relational mapper. GLORP is open-source (LGPL)
and you can find more information at http://www.glorp.org/. GLORP is non-
intrusive in the sense that the object model does not have to store foreign keys
in objects and that you can map an arbitrary domain model to an arbitrary
relational model.

GLORP allows you to manipulate databases with a low-level interface. You
can create databases, create sessions, add/remove rows, select a row and
so on. However this interface is low-level and GLORP offers a high-level
interface. When you are using the higher-level API, GLORP watches for
dirty objects (i.e., objects whose state has been changed since the transaction
began), and then automatically writes those objects to the RDBMS when you
commit the transaction. The required SQL is automatically generated and
you don’t need to ever explicitly write any SQL yourself, or otherwise need to
explicitly manipulate the rows yourself. In addition GLORP preserves object
identity when objects are fetched several times from the database. GLORP
uses a clever object cache.

GLORP uses meta-data to define the mapping between the objects and the
relational database. The meta-data is a declarative description of the cor-
respondence between an object and its database representation. It is used
to drive reads, writes, joins, and anything else that is needed. SQL code
should not ever have to be explicitly created, as it is autogenerated through
the mappings (i.e., through the meta-data). In GLORP queries are expressed
in terms of objects and composable expressions.

We will not cover GLORP in this book. We suggest reading the book An
Introduction to Seaside by Michael Perscheid et al. as well as the GLORP
documentation.

http://wiki.squeak.org/squeak/2665
http://www.glorp.org/
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial
http://www.swa.hpi.uni-potsdam.de/seaside/tutorial

Chapter 26

Magritte: Meta-data at
Work

Many applications consist of a large number of input dialogs and reports
that need to be built, displayed and validated manually. Often these dialogs
remain static after the development phase and cannot be changed unless a
new development effort occurs. For certain kinds of application domains
such as small businesses, changing business plans, modifying workflows, etc.,
it usually boils down to minor modifications to domain objects and behavior,
for example new fields have to be added, configured differently, rearranged
or removed. Performing such tasks is tedious.

Magritte is a meta-data description framework. With Magritte you describe
your domain objects and among other things you can get Seaside components
and their associated validation for free. Moreover Magritte is self-described,
enabling the automatic generation of meta-editors which can be adapted for
building end-user customizations of application.

In this chapter we describe Magritte, its design and how to customize it. Now
be warned, Magritte is a framework supporting meta-data description. As any
framework, mastering it takes time. It is not a scaffolding engine, therefore
Magritte may imply some extra complexity and you have to understand
when you want to pay for such complexity.

26.1 Basic Principles

In this section we present the key principles. With such knowledge you can
get 80% of the power of Magritte without knowing all its possible customiza-

377

378 CHAPTER 26. MAGRITTE: META-DATA AT WORK

tions. The key idea behind Magritte is the following: given one object with a
set of values, and a description of this information, we will create automati-
cally tools that treat such information and for example automatically create
Seaside components. Figure 26.1 shows that a person address’, John’s address,
instance of the class Address, is described by a description object which is
attached to the class Address. A program (i.e., database query, generic UI,
seaside component builder) will interpret the value of the instance by using
its descriptions.

Figure 26.1: An object is described by a description which is defined on its
class.

Here are the basic description assumptions:

• An object is described by adding methods named (naming
convention) to the class-side of its class. Such description methods
create different description entities. The following class method
creates a string description object that has a label ’Street’, a priority and
two accessors street and street: to access it.

Note that there is no need to have a one to one mapping between the instance
variables of the class and the associated descriptions.

• All descriptions are automatically collected and put into a container
description when sending to the object (see Figure 26.2).

• Descriptions are defined programmatically and can also be queried.
They support the collection protocol (, ...).

Obtaining a component. Once an object is described, you can
obtain a Seaside component by sending to the object the message

26.1. BASIC PRINCIPLES 379

Figure 26.2: Describing an Address.

>> . For example to get a component for an address:
.

It is often useful to decorate the component with buttons like cancel and Ok.
This can be done by sending the message >> to
the component. Note that you can also change the label of the validating
form using and passing an array of associations whose
first element is the message to be sent and the second the label to be dis-
played.

A Magritte form is generally wrapped with a form decoration via
>> . Magritte forms don’t directly work on your

domain objects. They work on a memento of the values pulled from your
object using the descriptions. When you call , the values are validated us-
ing the descriptions, and only after passing all validation rules are the values
committed to your domain object by the momentos via the accessors.

A description container is an object implementing collection behavior
(, , , , ...). Therefore you can send the nor-
mal collection messages to extract the parts of the descriptions you want. You
can also iterate over the description or concatenate new ones. Have a look at
the protocol.

You can also use the message >> with aModel
to build or select part of a description and get a component on a given

380 CHAPTER 26. MAGRITTE: META-DATA AT WORK

model. The following code schematically shows the idea: two descriptions are
assembled and a component based on these two descriptions is built.

26.2 First Example

Let us go over a simple but complete example. We want to develop an
application to manage person, address and phone number as shown in Fig-
ure 26.3.

Figure 26.3: Our adress.

We define a class with four instance variables and their corresponding
accessors.

Then we add the descriptions to the class as follows: the street name
and the place are described by a string description, the PLZ is a number with
a range between 1000 and 9999, and since the canton is one of the predefined
canton list (our address is for Switzerland so far), we describe it as a single
option description.

26.2. FIRST EXAMPLE 381

Now we can start manipulating the descriptions. Inspect the description
object of the address object:

Now we can iterate over the descriptions and get the values associated with
the descriptions of our address model:

Executing the second code snippet outputs the following in the Tran-
script:

382 CHAPTER 26. MAGRITTE: META-DATA AT WORK

Creating a Seaside Editor. Now we are ready to create a Seaside component
automatically in a similar manner.

The method sent to the address object automatically builds a Sea-
side component for us. The resulting editor is displayed in Figure 26.4.

Figure 26.4: Address example1 asComponent.

To enable validation and add buttons to save and cancel the editing process
is a matter of adding a decoration. The message decorates
the component with the necessary rendering and behavior.

26.3. DESCRIPTIONS 383

Figure 26.5: Same Magritte generated component with buttons and validation.

As a result we get a complete address editor, as seen in Figure 26.5.

In summary Magritte is really easy to use with Seaside. You put your descrip-
tions on the class-side according to a naming-convention. You can then ask
your model objects for their descriptions by sending the message
or alternatively you directly ask Magritte to build a Seaside editor for you by
sending the message .

26.3 Descriptions

Descriptions, as we have seen in the above examples, are naturally organized
in a description hierarchy. A class diagram of the most important descriptions
is shown in Figure 26.6. Different kinds of descriptions exist: simple type-
descriptions that directly map to Smalltalk classes, and some more advanced
descriptions that are used to represent a collection of descriptions, or to model
relationships between different entities.

Descriptions are central to Magritte and are connected to accessors and con-
ditions that we present below.

1. Type Descriptions. Most descriptions belong to this group, such as
the , the , the , the

, the , etc. All of them describe a
specific Smalltalk class; in the examples given, this would be Color,
Date, Number and all its subclasses, String, and Boolean and its two
subclasses True and False. All descriptions know how to perform basic
tasks on those types, such as to display, to parse, to serialize, to query,
to edit, and to validate them.

384 CHAPTER 26. MAGRITTE: META-DATA AT WORK

Figure 26.6: Description hierarchy.

Figure 26.7: Descriptions are a composite and connected via accessors.

2. Container Descriptions. If a model object is described, it is often neces-
sary to keep a set of other descriptions within a collection, for example
the description of a person consists of a description of the title, the
family name, the birthday, etc. The class and its
subclasses provide a collection container for other descriptions. In fact
the container implements the whole collection interface, so that users
can easily iterate (), filter (,), transform ()
and query (, ,) the containing descrip-
tions.

3. Option Descriptions. The describes an entity,
for which it is possible to choose up to one item from a list of objects.
The describes a collection, for which it is
possible to choose any number of items from a predefined list of objects.
The selected items are described by the referencing description.

4. Relationship Descriptions. Probably the most advanced de-
scriptions are the ones that describe relationships between ob-
jects. The models a one-to-one rela-
tionship; the models a one-to-many
relationship using a Smalltalk collection. In fact, these two de-
scriptions can also be seen as basic type descriptions, since the

describes a generic object reference and
the describes a collection of object refer-
ences.

26.4. EXCEPTIONS 385

26.4 Exceptions

Since actions on the meta-model can fail. In addition, objects might not match
a given meta-model. Finally it is often important to present to the end users
readable error messages. Magritte introduces an exception hierarchy which
knows about the description, the failure and a human-readable error message
as shown in Figure 26.8.

Figure 26.8: Exceptions.

26.5 Adding Validation

Descriptions can have predicates associated with them to validate the input
data. Magritte calls such validation conditions associated with a description.
A condition is simply a block that returns true or false. A simple one is the
single field condition which is passed the pending value directly and can be
attached directly to your descriptions. It is as simple as the following block
which checks the length of the value once the blanks are removed.

There are advantages to having your rules outside your domain objects,
especially if you’re taking advantage of Magritte as an Adaptive Object
Model where users can build their own rules. It also allows the mementos to
easily test data for validity outside the domain object and gives you a nice
place to hook into the validation system in the components. Still you have to
pay attention since it may weaken your domain model.

Multiple Field Validation. When we did the Mini-reservation example in
previous chapters we wanted the starting date to be later than today. With
Magritte we can express this point as follows:

386 CHAPTER 26. MAGRITTE: META-DATA AT WORK

Now to add a validation criterion that depends on several field values, you
have to do a bit more than that because you cannot from one description
access the other. Suppose that we want to enforce that the endDate should
be after the startDate. We cannot add that rule to the endDate description
because we cannot reference the startDate value. We need to add the rule in a
place where we can ensure all single field data exists but before it’s written to
the object from the mementos.

We need to add a rule to the objects container description like this

This simply intercepts the container after it is built, and adds a multi field
validation by accessing the potential value of those fields. You get the me-
mento for the object, and all the field values are in its cache, keyed by their
descriptions. You simply read the values and validate them before they have
a chance to be written to the real business object. Multi field validations are
a bit more complicated than single field validations but this pattern works
well.

26.6 Accessors and Mementos

Accessors. In Smalltalk data can be accessed and stored in different ways.
Most common data is stored within instance variables and read and written
using accessor methods, but sometimes developers choose other strategies,
for example to group data within a referenced object, to keep their data
stored within a dictionary, or to calculate it dynamically from block closures.
Magritte uses a strategy pattern to be able to access the data through a
common interface, see Figure 26.9.

By far the most commonly used accessor type is the . It can
be instantiated with two selectors: a zero argument selector to read, and a one

26.6. ACCESSORS AND MEMENTOS 387

Figure 26.9: Accessors in Magritte.

argument selector to write. For convenience it is possible to specify a read
selector only, from which the write selector is inferred automatically.

The is used to add and retrieve data from a dictionary
with a given key. This access strategy is mainly used for prototyping as
it allows one to treat dictionaries like objects with object-based instance
variables.

When a memento writes valid data to its model, it does so through accessors
which are also defined by the descriptions. subclasses allow you
to define how a value gets written to your class.

Mementos. Magritte introduces mementos that behave like the original
model and that delay modifications until they are proven to be valid. When
components read and write to domain objects, they do it using memen-
tos rather than working directly on the objects. The default memento is

. The mementos give Magritte a place to store invalid form
data prior to allowing the data to be committed to the domain object. It also
allows Magritte to detect concurrency conflicts. By never committing invalid
data to domain objects, there’s never a need to roll anything back. So memen-
tos are good since editing might turn a model (temporarily) invalid, canceling
an edit shouldn’t change the model and concurrent edits of the same model
should be detected and (manually) merged. is a class factory
that you can specialize to specify your own memento. But normally you
should not need that.

Figure 26.10: Mementos (simplified version).

388 CHAPTER 26. MAGRITTE: META-DATA AT WORK

26.7 Custom Views

Components control how your objects display. Some descriptions have an
obvious one to one relationship with a UI component while others could
easily be shown by several different components. Figure 26.11 shows some
components. For example, an would be represented by a
text area, but a could be a checkbox, or a drop down
with true and false, or a radio group with true and false.

Each description defaults to a component, but allows you to override and
specify any component you choose, including any custom one you may write
using the message >> .

Figure 26.11: Some Magritte specific widgets.

You can also define your own view by following the steps:

• Create a subclass of .

• Override and/or as necessary.

• Use your custom view together with your description by using the
accessor .

• Possibly add your custom view to its description into
.

26.8 Custom Descriptions

In some cases it might happen that there is no description provided to use
with a class. If your domain manipulates money (amount and currency) or

26.9. SUMMARY 389

URLs (scheme, domain, port, path, parameters) you may want to define your
own descriptions (or load an extension package that already provides these
descriptions) to take advantage of Magritte.

Extending Magritte is simple, create your own description but remember that
Magritte is described within itself so you have to provide certain informa-
tion.

• Create a subclass of .

• On the class-side override: to return false, to return the
name of the description. On the instance-side override: to return
the base-class, to enable visiting and
to validate.

• Create a view, if you want to use it for UI building.

We suggest you have a look at existing descriptions. In addition, carefully
choosing the right superclass can already provide you part of what you
are looking for. Parsing, printing and (de)serialization is implemented by
the following visitors: , , and

.

26.9 Summary

While Magritte is really powerful, using a meta-data system will add an-
other indirection layer to your application, so this is important to understand
how to use such power and when to just use normal development tech-
niques. A good and small example to learn from is the Conrad conference
management system developed to manage the ESUG conference available
at http://www.squeaksource.com/Conrad.html. Here Magritte is used to
describe the different forms and all the data. The Pier content management
system is a more complex example of using Magritte, it can be downloaded
at http://www.piercms.com.

http://www.squeaksource.com/Conrad.html
http://www.piercms.com

390 CHAPTER 26. MAGRITTE: META-DATA AT WORK

Index

AJAX, 255
anchors, 111
Announcement, 173
Avi Bryant, 1, 4

callback:
callback:, 127, 135

Cmsbox, 5
Comet, 255
componentClass:

componentClass:, 388
consumes:, 350
Contact, 128, 135
convenience methods, 127
copy, 348

delete, 348
download, 137

Form, 224
form:

form:, 136
forms, 123

buttons, 125–127
check˜boxes, 133, 134
date˜input, 135, 137
drop-down menus, 128
list boxes, 128
lists, 131
radio˜buttons, 131, 132
text areas, 123
text input fields, 123

get, 346, 348

halo, 100

JavaScript, 255
JQueryClass, 296

all, 297

expression:, 296
html:, 297
id:, 296
new, 297
ready:, 297
this, 297

JQueryInstance, 296
children, 298
children:, 298
closest, 299
closest:, 299
contents, 298
find:, 298
next, 298
next:, 298
nextAll, 298
nextAll:, 298
nextUntil:, 298
parent, 299
parent:, 299
parents, 299
parents:, 299
parentsUntil:, 299
previous, 298
previous:, 298
previousAll, 298
previousAll:, 298
previousUntil:, 298
siblings, 297
siblings:, 297

Julian Fitzell, 1, 3, 4

lists
ordered, 96, 98

Lukas Renggli, 4

MAContainer
asComponentOn:, 379

Microformats, 255

391

392 INDEX

move, 348

Object
asComponent, 379
asString, 89
displayString, 90
printOn:, 90
renderOn:, 90

on:of:
==on:of:==, 127
on:of:, 126, 127, 134

Philippe Marshall, 4
Pier, 5
post, 348
produces:, 349
Prototype, 264
PTAjax, 278

callback:value:, 281
onComplete:, 282
onFailure:, 282
onSuccess:, 282
triggerForm:, 276, 281
triggerFormElement:, 281

PTElement, 267, 276
down, 276
id:, 276
next, 276
previous, 276
up, 276

PTEvaluator, 267, 280
PTEvent, 267
PTFactory

autocompleter, 267
draggable, 267
droppable, 267
effect, 267
element, 267
evaluator, 267, 281
event, 267
form, 267
formElement, 267
inPlaceCollectionEditor, 267
inPlaceEditor, 267
insertion, 267
periodical, 267, 281
request, 267, 281
responders, 267
selector, 267

slider, 267
sortable, 267
sound, 267
updater, 267, 281

PTForm, 267
PTFormElement, 267
PTInsertion, 267
PTPeriodical, 267, 280
PTRequest, 267, 278
PTResponders, 267, 282
PTSelector, 267
PTUpdater, 267, 278
put, 348

RemoveChild, 174
rendering

lists, 96, 98
tables, 96, 98
text, 81

request context, 347
resourceUrl:

resourceUrl:, 224
response, 347
REST, 343

COPY, 348
DELETE, 344, 348
GET, 343, 348
MOVE, 348
POST, 344, 348
PUT, 344, 348

RRComponent, 258
RRRssRenderCanvas

author, 261
category, 260, 261
comments, 261
copyright, 260
description, 260, 261
enclosure, 261
generator, 260
guid, 261
language, 260
lastBuildDate, 260
link, 260, 261
managingEditor, 260
pubDate, 260, 261
source, 261
title, 260, 261
webMaster, 260

RSS, 255, 257

INDEX 393

script.aculo.us, 264
SqueakSource, 6
style sheets, 99
SUAccordion, 281
SUAutocompleter, 267, 287
SUAutocompleterTest, 287
SUDraggable, 267
SUDroppable, 267
SUEffect, 267

pulsate, 271
switchOff, 271
toggleAppear, 273
toggleBlind, 273
toggleSlide, 273

SUInPlaceCollectionEditor, 267,
286

SUInPlaceEditor, 267, 286
callback:, 285
cancelControl:, 285
cancelText:, 286
highlightColor:, 286
okControl:, 286
okText:, 286
rows:, 286
submitOnBlur:, 286
triggerInPlaceEditor:, 285

SUInPlaceEditorTest, 287
SUSlider, 267, 287
SUSliderTest, 287
SUSortable, 267

constraint:, 283
ghosting, 284
handle:, 284
onUpdate:, 283
tag:, 284

SUSortableDoubleTest, 284
SUSortableTest, 284
SUSound, 267
SUTabPanel, 281

tables, 98

upload, 137
urlOf:

urlOf:, 231, 232

value:
value:, 127, 135

WAAnchorTag, 113

callback:, 113
resourceUrl:, 321
url:, 112, 113
with:, 113

WAAnswerHandler, 168
WAAuthConfiguration, 320
WACheckboxTag, 134, 135

callback: aBlock, 135
on: aSymbol of: anObject,

135
onTrue: aBlock onFalse: aBlock,

135
value: aBoolean, 135

WAComponent, 81, 151
addDecoration:, 168
addValidatedForm, 379
answer, 145
answer:, 205, 208
call:, 147
children, 206
chooseFrom:, 151
chooseFrom:caption:, 151
chooseFrom:default:, 151
chooseFrom:default:caption:,

152
confirm:, 119, 120, 151
inform:, 149, 151
initialRequest:, 245, 250
onAnswer:, 147, 153, 166
renderContentOn:, 44, 81, 82
request:, 118, 151
request:default:, 151
request:label:, 151
request:label:default:, 151
session, 241, 244
show:, 153
states, 152, 221
style, 99, 105
updateRoot:, 226, 233, 261
updateUrl:, 246, 249

WACurrentSession, 242
WADateInput, 135, 137

callback: aBlock, 137
options: anArray, 137
with: aDate, 137

WADecoration
decoratedComponent, 172

WADelegation, 168

394 INDEX

WADevelopmentConfiguration,
320

WAFile, 138
WAFileLibrary, 228, 231

addAllFilesIn:, 228
addFileAt:, 228

WAFormDecoration, 168, 170, 171
WAFormDialog, 151, 171, 178
WAFormTag, 124

with:, 124
WAGenericTag

class:, 105
class:if:, 106

WAHeadingTag, 92
WAHtmlCanvas

anchor, 112, 113
listItem:, 97
orderedList, 97
orderedList:, 97
render:, 90
tableHeading:, 98
text:, 89

WAHtmlRoot, 226
addScript:, 226
addStyles:, 226
bodyAttributes, 226
headAttributes, 226
javascript, 226
meta, 226
stylesheet, 226
title, 226

WAImageTag
document:, 225
form:, 224, 225
resourceUrl:, 224
url:, 223

WAInputDialog, 178
WAListTag, 97
WAMessageDecoration, 168
WARadioButtonTag, 131, 132

callback:, 132
callback: aBlock, 133
group: aRadioGroup, 133
selected:, 132
selected: aBoolean, 133

WARenderCanvas, 81, 266
cancelButton, 205
checkbox, 134
form, 124

radioButton, 131, 132
radioGroup, 132
submitButton, 125, 203, 205
textInput, 124, 125

WARequest, 250, 354
WARequestContext, 242
WARequestHandler, 341

handleRequest:, 341
WAResponse, 355
WARestfulFilter, 353
WARestfulHandler, 345
WAScreenshot, 225
WASelectTag, 129, 131

callback: aBlock, 131
list: aCollection, 131
on: aSymbol of: anObject,

131
selected: anObject, 131
size: anInteger, 131

WASession, 243
expire, 251
unregistered, 246, 247

WASubmitButton, 126
callback: aBlock, 126
on: aSymbol of: anObject,

126
value: aString, 126

WASubmitButtonTag, 124
WATagBrush, 269

onBlur:, 269
onChange:, 269
onClick:, 269
onDoubleClick:, 269
onFocus:, 269
onKeyDown:, 269
onKeyPress:, 269
onKeyUp:, 269
onLoad:, 269
onMouseDown:, 269
onMouseMove:, 269
onMouseOut:, 269
onMouseOver:, 269
onMouseUp:, 269
onReset:, 269
onSelect:, 269
onSubmit:, 269
onUnload:, 269

WATask, 177, 180
go, 177

INDEX 395

WATextInputTag, 124, 125
callback: aBlock, 126
on: aSymbol of: anObject,

126
value: aString, 126

WAToolDecoration, 320
WAUrl, 249

addField:value:, 250
addToPath:, 250
fragment:, 250

WAValidationDecoration, 168, 171
WAVersionUploader, 325
WAWindowDecoration, 168, 169
WebSudoku, 213

XHTML, 255

Yesplan, 5

Seaside is the open source framework of choice for developing
sophisticated and dynamic web applications. Seaside uses the power
of objects to master the web. With Seaside web applications is as
simple as building desktop applications. Seaside lets you build
highly dynamic and interactive web applications.

Seaside supports agile development through interactive debugging
and unit testing. Seaside is based on Smalltalk, a proven and robust
language implemented by different vendors. Seaside is now
available for all the major Smalltalk including Pharo, Squeak, GNU
Smalltalk, Cincom Smalltalk, GemStone Smalltalk, and VA Smalltalk.

Dynamic Web Development with Seaside, intended for developers, will
present the core of Seaside as well as advanced features such as Web
2.0 support and deployment. In this book you will learn how to
design your own components and glue them together to build and
deploy powerful and reusable web applications.

Dynamic Web Development with Seaside is endorsed by ESUG, the
European Smalltalk User Group. To learn more about Smalltalk and
ESUG, see www.esug.org. This book is sponsored by Inceptive.be,
Cincom Systems, GemStone Systems, and Instantiations.

Square Bracket Associates

3341197839529

ISBN 978-3-9523341-1-9
90000

	Introduction
	What is Seaside?
	Seaside Applications
	What is Smalltalk?
	One-Click Image

	Structure of the Book
	Formatting Conventions
	About the Online Book
	Acknowledgments

	I Getting Started
	Pharo Smalltalk
	Using the One Click Image
	Of Mice and Menus

	What is a Smalltalk Image?
	The Comanche Server
	A First Seaside Component
	Defining a Category
	Defining a Component
	Defining the Code
	Rendering a Counter
	Registering as a Seaside Application
	Automatically Registering a Component
	Adding Behavior
	Adding a Class Comment

	Saving your Package to Monticello
	Summary

	Cincom Smalltalk
	Loading Seaside into VisualWorks
	Seaside Operations Menu
	Seaside Settings
	Persistence
	Developing in VisualWorks
	Basic Tools
	Packages and Categories
	Name Spaces
	Additional Components

	Developing a First Component
	Create a Package
	Create a Name Space
	Define a Component
	Editing Generated Methods
	Rendering the Counter
	Registering the Application
	Adding Behavior
	Rendering the Behavior

	GemStone/S
	Using the GLASS Virtual Appliance
	A First Seaside Component
	Defining a Component
	Defining Some Methods
	Rendering a counter
	Registering the Application
	Adding Behavior

	Keeping Up With the Latest Features

	GNU Smalltalk
	Creating a GNU Smalltalk image with Seaside loaded
	Operating the GNU Smalltalk virtual machine remotely
	Developing in GNU Smalltalk
	Developing your first component

	VA Smalltalk
	Loading Seaside into VA Smalltalk
	Starting VA Smalltalk Seaside
	Seaside Server Control Panel Menu Options
	Adding a Server Adaptor
	Starting a Server Adaptor
	A Simple Seaside Example

	Developing Your First Seaside Component
	Defining a Component
	Adding Some Methods
	Rendering a Counter
	Registering the Counter Component
	Adding Behavior to the Counter

	II Fundamentals
	Rendering Components
	Rendering Hello World
	Fun with Seaside XHTML Canvas
	More Fun with the Seaside Canvas
	Rendering Objects
	Brush Structure
	Learning Canvas and Brush APIs
	Rendering Lists and Tables
	Style Sheets
	Summary

	CSS in a Nutshell
	CSS Principles
	CSS Selectors
	Tag Selector
	Class Selector
	Pseudo Class Selector
	Reference or ID Selector

	Composed Selectors
	Summary

	Anchors and Callbacks
	From Anchors to Callbacks
	Callbacks
	About Callbacks
	Contact Information Model
	Listing the Contacts
	Adding a Contact
	Removing a Contact
	Creating a mailto: Anchor
	Summary

	Forms
	Text Input Fields and Buttons
	Convenience Methods
	Drop-Down Menus and List Boxes
	Radio Buttons
	Check Boxes
	Date Inputs
	File Uploads
	Summary

	III Using Components
	Calling Components
	Displaying a Component Modally
	Example of call/answer
	Call/Answer Explained
	Component Sequencing
	Answer to the Caller
	Don't call while rendering
	A Look at Built-In Dialogs
	Handling The Back Button
	Show/Answer Explained
	Transforming a Call to a Show

	Summary

	Embedding Components
	Principle: Component Children
	Example: Embedding an Editor
	Components All The Way Down
	Intercepting a Subcomponent's Answer
	A Word about Reuse
	Decorations
	Visual Decorations
	Behavioral Decorations

	Component Coupling
	Summary

	Tasks
	Sequencing Components
	Hotel Reservation: Task vs. Component
	Mini Inn: Embedding Components
	Summary

	Writing good Seaside Code
	A Seaside Program Checker
	Slime at Work
	Summary

	IV Seaside In Action
	A Simple ToDo Application
	Defining A Model
	Defining the View
	Rendering and Brushes
	Adding Callbacks
	Adding a Form
	Calling Other Components
	Answer
	Embedding Child Components
	Summary

	A Web Sudoku Player
	Sudoku Solver
	Sudoku Component
	Rendering the Sudoku Grid
	Adding Input
	Back Button
	Summary

	Serving Files
	Images
	Including CSS and Javascript
	Working With File Libraries
	Creating a File Library
	Referencing FileLibrary files by URL

	Example of FileLibrary in use
	Which method should I use?
	A Word about Character Encodings
	Character sets
	Encodings
	In Seaside and Pharo

	Managing Sessions
	Accessing the Current Session
	Accessing the Session from the Debugger
	Customizing the Session for Login
	Lifecycle of a Session
	Catching the Session Expiry Notification
	Recovering from Expired Sessions
	Manually Expiring Sessions
	Summary

	V Web 2.0
	Really Simple Syndication
	Creating a News Feed
	Render the Channel Definition
	Rendering News Items
	Subscribe to the Feed
	Summary

	Dynamic Content with Scriptaculous
	Prototype and script.aculo.us
	Installation
	Adding the Library

	Snippets and Brushes
	Instantiate a Brush
	Using a Brush
	Configure a Brush

	Adding an Effect
	AJAX: Talking back to the Server
	Defining a Callback
	Serializing a Form
	Updating XHTML
	Behind the curtains
	Wrap Up

	Drag and Drop
	JavaScript Controls
	Debugging AJAX
	Summary

	jQuery
	Getting Ready
	jQuery Basics
	Creating Queries
	Refining Queries
	Performing Actions

	Adding jQuery
	Ajax
	How To
	Click and Show
	Replace a Component
	Update Multiple Elements
	Open a Lightbox

	Enhanced ToDo Application
	Adding an Effect
	Callbacks Redux
	Drag and Drop
	Summary

	Comet
	Inside Comet
	Getting Started
	The Counter Explained
	Summary

	VI Advanced Topics
	Deployment
	Preparing for Deployment
	Seaside-Hosting
	Deployment with Apache
	Preparing the Server
	Installing Apache
	Installing the Squeak VM
	Running the VMs
	Configuring Apache
	Serving files with Apache
	Load Balancing Multiple Images
	Using AJP

	Maintaining Deployed Images
	Headful System
	Virtual Network Computing
	Deployment Tools
	Request Handler

	REST Services
	REST in a Nutshell
	Getting Started with REST
	Defining a Handler
	Defining a Service

	Matching Requests to Responses
	HTTP Method
	Content Type
	Request Path
	Query Parameters
	Conflict Resolution

	Handler and Filter
	Request and Response
	Advices and Conclusion

	Some Persistency Approaches
	Image-Based Persistence
	Object Serialization
	Sandstone: an Active-Record Image-based Approach
	The SandstoneDB API
	About Concurrency

	Magma: an Object-Oriented Database
	How it works
	Getting Started
	Running Remotely

	GLORP: an Object-Relational Mapper

	Magritte: Meta-data at Work
	Basic Principles
	First Example
	Descriptions
	Exceptions
	Adding Validation
	Accessors and Mementos
	Custom Views
	Custom Descriptions
	Summary

