
Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

190

Chapter 6 - Design of applications with graphical user interfaces

Overview

In this chapter, we shift our attention temporarily to applications with graphical user interfaces
(GUIs). Since our focus is on principles of user interfaces, our applications will be very simple and we will
concentrate on implementation rather than design. More complicated examples will be presented later.

VisualWorks applications rely on a three-part structure GUI ↔ application model ↔ domain
model. The GUI is what the user sees and interacts with, the domain model is the collection of classes
modeling the objects in the problem world, and the application model is the link between the GUI and the
domain model. The application model converts GUI events such as keyboard input to domain model
calculations and communicates changes of values in the domain model back to GUI components. This
initiates updates of the user interface. Since all application models have much common behavior,
VisualWorks provides class ApplicationModel with the shared functionality and all applications define their
application models as subclasses of ApplicationModel.

The operation of VisualWorks GUI components is based on the separation of the display (view),
the user interaction (control), and the object responsible for the displayed data (model). This separation is
called the model-view-controller or MVC paradigm.

The implementation of the model uses a special object called the value holder. Value holders
encapsulate a value and keep track of their ‘dependents’. When the value of a value holder changes, it
automatically broadcasts a notification to all its dependents and they respond appropriately. This
dependency provides a mechanism for linking the view part of GUI widgets to their models.

An important concept of the ApplicationModel is that it provides several ‘hooks’ - methods that are
always executed when the application opens or closes the application. By re-defining these methods in your
application model subclass, you can control the start-up and closing of your application.

6.1. Example of application development: An application selector

The main purpose of this chapter is to show how to develop an application with a graphical user
interface (GUI). In this section, we will present the principles of VisualWorks applications, give the
specification of a very simple problem, and outline the solution. Details of implementation will be presented
in the following sections.

Principles of VisualWorks applications

Before we can start designing an application, we must understand how VisualWorks views an
application. VisualWorks application architecture is based on the view that a typical application has a
graphical user interface (GUI) that allows user interaction, a domain model - a collection of objects
representing the entities from the problem world, and an application model that connects the GUI with the
domain model (Figure 6.1). (VisualWorks also provides means to create headless applications with no user
interface but in this book, we will deal only with headfull applications with a GUI.)

ATM

Holds description of
GUI and its links to

domain model
objects; supports their

communication.

Client

Account

Portfolio

GUI

domain model
classes

application model
classCANCEL REPEAT

QUIT ENTER

NAME: TOMEK
ACCOUNT: 37af
BALANCE: $3.41
DEPOSIT: $0.78

visible to user



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

191

Figure 6.2. Typical VisualWorks applications consist of a graphical user interface (GUI), an application
model, and a domain model. Very simple applications don’t have a domain model, headless applications

don’t have a GUI and an application model.

Here is how an application implemented as a GUI-Application Model-Domain Model triad works:

1. User executes a message to open the application.
2. The windows open and the following sequence is repeated until the user terminates execution:

a.  The user creates an input event, for example clicks a mouse button over a check box widget.
b.  The widget sends a message to the application model.
c.  The application model informs appropriate objects in the domain model, for example, requesting

recalculation of the balance of a client’s account.
d.  Domain model objects perform the necessary processing and inform the application model of their

changes.
e.  The application model notifies the appropriate GUI components of the change.
f.   Affected GUI components request the new values and redisplay themselves.

Application Selector Specification

We are to develop a program to allow the user to choose and run selected applications. The user
interface will be as in Figure 6.1 - a window with a group of buttons labeled with the names of examples, a
Help button, a Run button, and a Quit button. When the window initially opens, the Text View on the right
instructs the user to select an application by clicking its button. Doing so displays a brief description of the
selection. When the user then clicks Run, the selected application opens. Clicking Help opens a help
window with general information, and Quit closes the window and ends execution.

Figure 6.1. Desired user interface of Application Selector program. Button assistant has just been clicked.

Design



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

192

Our application is so simple that we don’t need any domain model - the applications activated by
the buttons already exist, and we don’t need any data beyond the string displayed in the Text View (Figure
6.1). We will thus restrict ourselves to the GUI and the application model, a class to be called
ApplicationSelector.

What about the GUI classes themselves? Do we have to define classes to draw the buttons and the
Text View, to respond to mouse clicks, to draw the window, to redraw a piece of a window when it is
uncovered after having been obscured by another window, and so on?  Fortunately, we don’t because all
these functions are included in the library. In this example, the only class that we will have to design is
class ApplicationSelector.

Designing a class means deciding its functionality, defining the information that it holds in its
instance variables, and selecting its place in the class hierarchy. The decision as to where to put
ApplicationSelector in the class hierarchy is simple: If we want to benefit from the built in functionality of
VisualWorks application support, ApplicationSelector must be a subclass of ApplicationModel. We will
explain the principles of ApplicationModel later but for now, we will use it as a black box. The place of
ApplicationSelector in the class hierarchy will thus be as follows:

Object ()
Model ('dependents')

ApplicationModel ('builder')
ApplicationSelector (???)

where the question marks represent the instance variables of ApplicationSelector that still remain to be
determined.

What are the responsibilities of ApplicationSelector? It must

• open the window
• respond to example buttons by displaying explanatory text in the Text View
• know which example is currently selected so that it can be run when the user clicks the Run button
• respond to Help and Quit buttons
• hold information needed to display the text view and the help window.

ApplicationSelector thus needs an instance variable to hold a reference to the name of the currently
selected example (we will call it currentSelection) and possibly some additional instance variables to hold
information for the GUI widgets. We will see which additional variables will be needed when we learn
more about the widgets. A more detailed account of the desired functionality can now be stated as follows:

• Clicking an example button sends a message to ApplicationSelector which stores a reference to the
name of the class that will run the clicked example in variable currentSelection. The message then
obtains the text to be displayed in the Text View, and makes sure that the Text View displays it.

• Clicking the Run button sends a message asking ApplicationSelector to open the application whose
class name is stored in currentSelection. If no application is selected, clicking Run opens a notifier
telling the user to select an example. (This is a reasonable extension of the original specification.)

• Clicking Help opens a help window with general help information.
• Clicking Quit asks ApplicationSelector to close the window and terminate.

We now have enough information to start implementing the application. If we knew more about
VisualWorks GUIs, we would know which variables are required for the widgets and we could include them
in our list now. As it is, we must first learn about VisualWorks’ GUI.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

193

Exercises

1. Develop conversations for Application Selector scenarios and use them to confirm that our analysis is
complete.

6.2 Implementing the user interface - the window

To create a graphical user interface, paint it with the UI Painter tool: The window being designed
is a canvas, and the components of the interface (GUI widgets) are selected from a palette and ‘painted’ on
the canvas. The following is a rather detailed description of the procedure and we recommend that you
execute them as you read.

Figure 6.3. To paint a new window, click the Canvas button or use the Tools menu. Use the Resources
button to find existing application model classes and other UI related classes.

The first step is to create a new canvas by clicking the Canvas button (Figure 6.3) or using the
Canvas command in the Tools menu. VisualWorks then opens three new windows: an unlabeled canvas, a
Palette of widgets, and a Canvas Tool (Figure 6.4).

Main lessons learned:

• VisualWorks application architecture has three components - a graphical user interface (GUI), an
application model, and a domain model.

• Common GUI components are included in the Smalltalk library.
• The domain model is a collection of classes representing the problem world.
• The application model provides the link between GUI components and domain objects, and holds the

description of the layout of the user interface.
• Application models are direct or indirect subclasses of the built-in class ApplicationModel.
• In very simple applications, domain information may be implemented as instance variables of the

application model. In such cases, there is no need for a distinct domain model.
• An input event is an action caused by an operation such as pressing a key on the keyboard or clicking a

mouse button. It activates a GUI widget and sends a message to the application model.

 Canvas button  Resources button



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

194

Figure 6.4. Palette with GUI widgets (left), Canvas Tool (top), and unlabeled canvas.

Installing the canvas on an application class

After creating an empty canvas, install it on an application model class by clicking Install in the
Canvas Tool. (Like most other actions, this can be also be done from the <operate> menu of the Canvas
itself.) VisualWorks will then lead you through a series of dialog windows to specify the name of the
application class, the name of its category, the type of its interface, and the name of the class method that
will hold the description . The first of these windows is in Figure 6.5.

Figure 6.5. The first window after clicking Install.

Type the name of your application model on the first line as in Figure 6.6. If the class does not yet
exist, the UI Painter will create it. Next, use the bottom line of this window to enter the name of the class
method that will hold the window specification - the description of the user interface. The recommended



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

195

name for the specification method is windowSpec and this name is already displayed at the bottom of the
window. Use this name unless your application requires several windows which must then be stored as
separate specifications under different names. The advantage of using windowSpec is that it allows you to
open and run your application simply by sending the message open, as in

ApplicationSelector open

Figure 6.6. Provide the name of the application model class and Selector of the specification method.

After entering the selector of the window specification method, click OK. If the application model
class does not yet exist, the UI Painter now opens another window to get more information (Figure 6.7).
Much of this window is already filled-in. The name of the application model class is on the top line and the
name of the category in which the class will be stored is on the second line. The suggested category is
UIApplications-New but we will use the name Tests instead. If the category does not exist, the painter will
create it for you.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

196

Figure 6.7. Specifying category, superclass, and type of user interface application model. We only had to
click the Application button and change the name of the category.

The next step is to select the type of the window in the box labeled Define As. This determines the
behavior of  the window. In most cases, the desired type of interface is Application and we thus select the
Application radio button. (We will explain what a Dialog is and how to create it later.)

Finally, we must choose the superclass of our application model. The window suggests
ApplicationModel and this is usually the appropriate choice. In some cases, you may have previously created
a useful application model for a related application and you may want to reuse it. If so, replace
ApplicationModel with the name of the superclass. Note, however, that you must have ApplicationModel in
the superclass chain or you won’t be able to benefit from all features of VisualWorks GUI classes. In our
case, we leave ApplicationModel as superclass name. After this, click OK and VisualWorks will create a
definition of class ApplicationSelector with the specified superclass, and put it in the specified category. It
will also create the class method windowSpec containing the description of the interface in its present state.
You can find it on the class side of the browser and its present structure is as follows:

windowSpec
"UIPainter new openOnClass: self andSelector: #windowSpec"

<resource: #canvas>
^#(#FullSpec

#window:
#(#WindowSpec

#label: 'Unlabeled Canvas'
#bounds: #(#Rectangle 300 200 500 400 ) )

#component:
#(#SpecCollection

#collection: #() ) )

As you can see, the method begins with <resource: #canvas>which makes it special and the
compiler treats it differently than regular methods. The method contains a description of the window with
its label and, size and position, and when you add new widgets and re-install the window, the spec method
will be updated to capture the new layout. Remember that when you change the canvas (for example by
adding new widgets, changing the label, or changing the background color) you must re-install the canvas.
Otherwise your changes will only be painted on the screen but not captured in the library.

The class is now compiled and the UI specification saved and you can run the application, either
by executing

ApplicationSelector open

in a Workspace or by clicking Open in the Canvas Tool. This will open an empty window looking just like
the canvas that we have created.

Defining canvas properties

After installing the raw canvas, we will now define its properties. Click Properties in the Canvas
Tool and you will get the window in Figure 6.8. Since nothing but the canvas is selected, the Properties
Tool is open on canvas properties and we will redefine its label to Application Selector. Type Application
Selector on the Label line and click Apply and Close. The Properties window closes and the canvas
displays with the new label. Note that if you now opened the application, the label would be unchanged
because we have not re-installed the changed canvas. Install again, open the application, and check that the
label of the window has changed.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

197

Figure 6.8. Defining a new label for the window.

We could define and install additional properties of the window such as its background color, but
we will now proceed to the widgets. If you must interrupt your work at this point, close the interface and
save the Smalltalk image. When you return, you can reopen the canvas editor either by

• clicking the Resources button (Figure 6.3) and locating you application model class in the Resource
Finder window (Figure 6.9) or

• by opening the browser on your spec method windowSpec method and executing the Smalltalk
statement in the comment at the top of the definition (see listing above).

Figure 6.9. You can access an applicaton with the Resource Finder. Edit opens the canvas editor, Start
opens the application on the selected specification, Browse opens a browser on the application model class.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

198

Exercises

1. Follow the procedure described in this section and create the canvas. Examine the windowSpec
method.

2. Use the Properties Tool to change the background color of the window to light yellow. Re-install
before opening and check the new windowSpec.

3. Most VisualWorks tools are implemented with the user interface painter. Test this by checking the
windowSpec method of class Browser and opening it with open.

6.3 Painting widgets and defining their properties

After creating the canvas, we will now paint the widgets and define their properties. To paint a
widget on the canvas, click it in the palette and drop it on the canvas, clicking the select button when the
widget is positioned where you want it. Initially, you will not be able to identify palette buttons but when
you click a palette button, its name is displayed at the bottom of the palette as in Figure 6.10. The Sticky
Selection button allows you to make several copies of the selected component; click it on to start and click
it off to disable the sticky mode.

Main lessons learned:

• To create a user interface and its application model
• Open a canvas with a Palette and a Canvas Tool from the launcher.
• Install the canvas on an application model class using the Install button. Complete the dialog

windows, specifying the name of the method holding window specification, the name of the
application model class and its category, and the type of the window (Application). The class
will be automatically defined if it does not yet exist. To open the installed canvas, click Open
in the Canvas Tool or send open to the application model class.

• Define window properties using Properties from the Canvas Tool and re-install.
• If you change the user interface, re-install the window. Failure to re-install a changed GUI is one of the

most common causes of a strange looking or misbehaving interface.
• Changes to application model code do not require re-installation.
• Executing the comment at the beginning of the canvas specification method (typically windowSpec)

opens the Canvas, Palette, and Canvas Tool on the interface.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

199

Figure 6.10. UI Palette and its buttons.

We will now paint the Action Buttons required in our interface. Click the Action Button button (!),
move the mouse cursor over the canvas, and click. When an Action Button appears (Figure 6.11), click
again to drop it in place. If you don’t like the button’s position or size, move it or reshape it by dragging its
body or its handles - the small rectangles in the corners - while pressing the <select> mouse button.

Figure 6.11. Widget handles show that the widget is selected. You can now move it, reshape it, define its
properties, or delete it (command cut in the <operate> menu).

Position the first Action Button as in Figure 6.12 and proceed to define its properties.

Action Button Check Box Radio Button

Label Input Field Text Editor

Menu Button List Combo Box

Divider Group Box Region

Slider Table Data Set

Notebook View Holder Subcanvas

Linked Data Form Embedded Data

Select Sticky Selection

Sticky Selection button



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

200

Figure 6.12. Desired layout.

To define widget properties, select the widget in the canvas and click Properties in the Canvas
Tool. The Properties Tool window opens (Figure 6.13) and you can now define the button’s Label, its
Action, and other parameters.

The label is the text displayed inside the button - color example in this case - and Action is the
name of the message that the button sends to its application model when you click it in the running
application. You can use any legal identifier for the Action method, but the name will be easier to remember
if it is similar to the label; we called it color. VisualWorks automatically adds the # sign in front of it,
making it a Symbol, a special kind of string. We have now defined all the properties that we need. Click
Apply at the bottom of the Properties Tool if you want to proceed and define the properties of another
widget. Clicking Apply & Close applies the properties and closes the Properties Tool. The button in the
canvas now shows the new label and you will probably have to reshape it because the button is too narrow.
Note that you can choose a variety of other properties such as background and foreground colors on other
pages of the Properties Tool.

Figure 6.13. Properties window on an Action Button.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

201

We leave it to you to create and position the remaining buttons and define their properties. One
way to do this is to copy and paste from the canvas <operate> menu. With this method, the buttons will be
copied with all their properties such as size, label, and action, and you will have to redefine them. Having so
many buttons to paint, you might want to create all buttons in the left column first, select the whole column,
copy it, and paste it to create the right column. To select a group of items, hold the <select> button down
and move the mouse cursor to draw a rectangle around the widgets to be selected. When you release the
button, the widgets’ handles will be displayed and you can copy them.

Now that you have all the Action Buttons, you may want to change their widths, heights, or
alignments using the alignment buttons in the Canvas Tool (Figure 6.14). The six buttons on the left are for
alignment of a group of widgets along the top of the first selected widget, its center, bottom, and so on; the
middle four buttons produce equal spacing between widgets, and the two buttons on the right are for
equalizing widget width and height. Select the widget that you want to use as the template and then the
remaining widgets by clicking the left mouse button while holding <shift> down. Then click the desired
alignment button.

Install the canvas and click Open. The window opens with all the buttons, but the buttons will not
do anything because we have not defined their action methods.

Figure 6.14. Canvas Tool buttons for automatic widget alignment.

As the next step, we will add the Text Editor widget for displaying the help text. Click the
corresponding button in the palette, position the widget on the canvas, shape it to the desired size, open the
Properties Tool window, and specify description as the name of its Aspect. The Aspect of a Text Editor is
the name of the method that supplies the displayed text, and the instance variable containing a value holder
with the text. (More on value holders in a moment.)

After defining and applying the Text View’s Aspect, open the Details property page, click both
scroll bars off, and the Read Only property on (Figure 6.15). This will remove the scroll bars from the Text
Editor (our text will be short and scrolling is unnecessary), and make the text read-only, preventing the user
from changing the text. Click Apply and Close, and Install the canvas again.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

202

Figure 6.15. Details page of Text Editor’s properties.

The GUI is now completely installed and you can try to run it by clicking Open in the Canvas
Tool. This time the application will not open and we will get the Exception window in Figure 6.16. It says
that binding #description was not found. This means that when the builder object that builds the window
from windowSpec tried to construct the window, it sent message description to get the text for the Text
Editor - but we have not defined this method yet. Before we can open the interface, we must thus define all
aspect methods. This topic is covered in the next section.

Figure 6.16. The window builder could not establish the bindings between a widget and its value holder.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

203

Exercises

1. Follow the steps listed in this section and create the widgets of Application Selector. When you are
finished, read the windowSpec method and explain how it changed from Section 6.2.

2. Change the color of the text of the Run button to green and the color of the text of the Help button to
red.

3. The box around example buttons and the label Applications in Figure 6.1 is a Group Box widget. Add
the Group Box according to the desired layout. Change the color of its text label and frame to red, and
the background to light green if possible. (Hint: Use on-line help if necessary.)

6.4 Defining Action and Aspect methods

To make our buttons functional and to make it possible to display the Text Editor view, we must
now define their Action and Aspect methods.

The first step in creating Action and Aspect methods is easy because VisualWorks can define their
skeletons (stubs) for you. To do this, select all widgets in the canvas for which you want to create stubs, and
click Define in the Canvas Tool. This will open a window (Figure 6.17) listing the Action or Aspect names
of all selected widgets. Click OK, VisualWorks creates the stubs, and closes the window. You can now open
a browser on the application model and browse the automatically defined stub methods, or run the
application and click the buttons because the messages that the buttons send now exist. Of course, clicking a
button will not do anything because the messages that the buttons send don’t have any meaningful body
because we have not specified what they should do. To get the application to work, we must now redefine
the bodies of all the Action and Aspect method stubs.

Main lessons learned:

• To add widgets to an interface, import them from the palette or copy and paste widgets already on the
canvas.

• When a widget is selected in a canvas, its handles are shown. Handles can be used to change the
widget’s shape. A selected widget can be moved around, edited, deleted, or copied.

• To align or resize a group of widgets, select the widgets and use alignment buttons in the Canvas Tool.
• To define widget properties, use the Properties Tool.
• Action Buttons have an Action property, most other widgets have an Aspect property.
• Action is the name of the method sent to the application model when the user clicks the button.
• Aspect is the name of a value holder holding a widget’s value, and the name of its accessing method.

The Aspect of a Text Editor is the message that returns the value holder with the text, and the name of
the variable holding it.

• When choosing selectors for Action and Aspect methods, use names that match the label of the widget
or its purpose.

• Before you can open an application, you must define Aspect variables and methods so that the user
interface builder can establish and use the bindings between the widgets and their value holders.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

204

Figure 6.17. Automatic definition of stubs of widget methods. When the Add Initialization check box is on,
VisualWorks includes lazy initialization in the definition of all selected Aspect methods.

Although we could define all Action and Aspect methods in the System Browser, we will now use a
smaller browser restricted to our application model class and its hierarchy. To open it, deselect all widgets
in the canvas by clicking outside their perimeters, and click the Browser command in the Canvas Tool. This
opens a hierarchy browser as in  Figure 6.18. (When a widget is selected in the canvas, the browser opens
only on methods relevant to this widget.)

Note that we now have an instance variable called description Text, the Aspect of the Text Editor;
it was created by the Define action. For completeness, add instance variable currentSelection and recompile
the class with accept.

Figure 6.18. Hierarchy browser of class ApplicationSelector.

Our next task is to fill in (‘flesh out’) the bodies of the stub methods stored in instance protocols
actions and aspects. Protocol actions holds Action methods for Action Buttons, protocol aspects holds
Aspect methods, in this case method description for the Text Editor. We will begin with the button method
in the actions protocol.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

205

Click actions and button in the Browser to display the code in Figure 6.19 which shows that the
body of the method does not do anything. Its only use is that if we run the application and click the button,
the application will not crash because the message sent by the button exists.

Figure 6.19. Stub definition of button created by the Define command.

What do we want the button method do? According to our design specification, the method should

• store a reference to the name of the example class ButtonExample in variable currentSelection,
• supply the description text, and
• tell the Text Editor view to display it.

To tell the Text Editor to display the text, we must ask variable description to change its value by
sending it the value: message with the text as its argument. The desired definition is as follows:

button
“Make ButtonExample the current example and display its short description in the text view.”

currentSelection := ButtonExample.
description value:

'Current selection: button.
This example illustrates the three types of buttons available in VisualWorks:
Action Button sends a message.
Check Box Button sets its value to true/false.
Radio Button turns itself on and other radio buttons in the same group off.’

After entering and accepting this definition, open the application and test that the button button
now works. Note that we did not have to reinstall the canvas because we did not change the GUI - we only
changed the code of the class.

We are leaving the remaining Action Button Action methods to you. You only need to know that
the names of the example classes are ColorExample, ComboBoxExample, CustomViewExample,
HideExample, LineExample, List1Example, MoveExample, NotebookExample, and SizeExample. (Test the
applications by sending them open to decide on the description text.) After entering and accepting these
definitions, you can run the application and all example buttons will now work.

Before proceeding to the remaining methods, we will now make a small change to our canvas to
show how easy it is to change your user interface – we will define the size of the window as fixed so that the
user cannot change it. This will be useful because our Text Editor view cannot be scrolled and if the user
made the window smaller, the text might not be readable. To make the size of the window fixed, click



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

206

Layout in the Canvas Tool and select fixed size. Don’t forget to Install the new layout and test it! If you now
open the application, you won’t be able to change the size of the window.

Exercises

1. Implement the material covered in this section.

6.5 The remaining Action methods

In this section, we will define Actions for Help, Run, and Quit, the remaining Action Buttons.

Help
The Help button opens a window with general help. We could create a special window for help

using the UI Painter, but it is easier to use the built-in class SimpleHelp which opens a help window with an
OK button at the bottom. To find how to use it, we can either read its definition in the browser, or we can
look for references to SimpleHelp in the library and find how existing code uses it. Using the second
approach, we find SimpleHelp in the browser, select command class refers in the <operate> menu of the
class view, and examine several examples. We find that to use SimpleHelp, we must

1. send it the class message helpString: aString to create an instance with the help text aString
2. send open to open the window with this text1.

The whole definition of  the help message which is sent by the Help button is thus as follows:

help
“Open help window with general text on the whole application.”
(SimpleHelp helpString:
'Each of the buttons on the left provides access to an example application.
Clicking one of these buttons, displays information about the selection in the Text View.
If you then click Run, the application will open.’) open

Enter and accept this definition and test that the Help button works. Note again that changing the
definition of an Action method does not require re-installing the canvas – it’s not a user interface change.
Test the Help button now.

Run
Clicking Run will open the currently selected application. Since all our example applications use

windowSpec, they can be opened by open. We stored a reference to the name of the class of the selected
application in instance variable currentSelection and the definition of run is thus as follows:

run

                                                          
1 SimpleHelp is a subclass of ApplicationModel with its window specification in windowSpec.

Main lessons learned:

• When you select widgets in the canvas and execute Define, Smalltalk creates stub definitions of their
Action and Aspect methods of and defines their instance variables. The names are determined by he
properties of the widgets.

• Stub definitions usually don’t do anything but their existence makes it possible to open the application
and click its widgets. It also saves you from having to remember the names of aspects and actions when
you want to write their complete definitions.

• After creating the stubs, you usually have to edit them so that they perform their intended tasks.
• Changing the user interface requires only editing and re-installing it.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

207

“Open the currently selected example application.”
currentSelection open

This definition works fine if the user previously clicked an example button but if the user has not
done so, the program will crash because currentSelection is nil, and nil does not understand message open.
To deal with this possibility, run must check the value of currentSelection and send open only if it is not nil:

run
“If an example application is selected, open it.”

currentSelection isNil
ifTrue: [Dialog warn: 'You must select an application first.']
ifFalse: [currentSelection open]

Test that everything works so far.

Quit
The Quit button should close the window and terminate the application and this can be done, for

example, by sending message closeRequest to the application model. The definition of quit is thus

quit
“Close the window and terminate the application.”

self closeRequest

Exercises

1. Implement and test the material covered in this section.
2. Implement Help using Dialog warn: instead of SimpleHelp.

6.6 Text Editor widget

The only unfinished part of our application is the Text Editor and we will now implement it
starting from the stub definition of its Aspect method description Text. Its current form, automatically
generated by Define, is as follows:

description Text
"This method was generated by UIDefiner.  Any edits made here may be lost whenever methods are
automatically defined.  The initialization provided below may have been preempted by an initialize method."

^description isNil
ifTrue: [description := String new asValue]
ifFalse: [description Text]

Before we explain this code and modify it for our needs, note that the comment says that if you
redefine the method in the Browser and then use Define on this aspect, your definition will be replaced by
this default version. So if you change the definition, don’t use the Define button on it again or you will lose
your work. Now back to the definition.

The code first checks whether the value of description is nil. Why? The reason is that when the
application first opens, description is nil and when the builder sends description to obtain the text as it is

Main lessons learned:

• To find how to use a class or a method, read its class or method comment or check existing uses.
• To run an application whose model is a subclass of ApplicationModel and whose interface is stored in

class method windowSpec, send the class message open.
• To close an application and its window, send closeRequest to the application model.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

208

building the window, the process would fail because the builder could not build the text view from nil. The
method thus assigns

description := String new asValue

which returns an empty String, packaged as a ValueHolder object (to be explained shortly). The window
extracts the empty string from the ValueHolder and displays it - no text in the description view. This
technique of not initializing a variable until initialization is really needed is called lazy initialization. It is
useful especially if initialization is time consuming, if it is not required immediately, and if the value may
not be required during each execution of the application.
Everything now works and you can check that when you execute

ApplicationSelector open

everything works as desired. The only blemish is that when the application opens, the Text View does not
display anything - and we would like it to display the message 'Please select an example application.'. To
correct this problem, we must store this string in description before the window opens and this can be done
by defining instance method initialize which is automatically executed as a part of the application opening
process. (We will explain how this happens in a moment.) Since the value of description must be a
ValueHolder, the definition of initialize in class ApplicationSelector will be as follows:

initialize
“Assign initial text to Text Editor via its associated Aspect value holder.”

description := 'Please select an example application.' asValue

where message asValue converts the string into a value holder holding the string.
The program now works just as desired but the body of the description method that was

automatically created by Define is now partially redundant: Variable description is now guaranteed to have
a value when it is first requested by the builder (message initialize is sent before the builder starts creating
the window), lazy initialization is no longer required, and the ifTrue: part of

description
^description isNil

ifTrue: [String new asValue]
ifFalse: [description]

will thus never be executed. All this method will ever do is return description Text. Although the method
still works, it is nicer to delete the unnecessary part:

description
^description

Before closing this section, we must mention one additional detail about Text View widgets. As we
have seen, a Text View has an Aspect variable to hold the value holder with its text and this variable is
declared in the application model class. However, each Text View distinguishes two text objects. One is the
text displayed in the widget, the other is the text last accepted with the accept command or initially assigned
to the widget. Text View holds the currently displayed text in a variable associated with the widget itself,
and the accepted in the Aspect variable in the application model (Figure 6.20). This makes it possible to
restore a Text View to its original contents with cancel when the user changes but does not accept its
contents. As programmers of the application, Our interest is usually restricted to the aspect variable in the
application model and we can ignore the instance variable of the widget.

Some text displayed on the screen - we
have just changed it but we have not

clicked accept yet.

This was the text on the screen when we last
clicked accept in the widget and before we

made the changes on the left..

Text displayed in window Last accepted text, possibly different from text now displayed



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

209

Figure 6.20. The text displayed in a Text Editor is stored in the widget’s variable, the accepted text is stored
in the Aspect variable in the application model.

Exercises

1. Implement the material covered in this section.
2. We used Define to create the definition of description and then edited it to remove lazy initialization. If

you don’t intend to use lazy initialization, click off the check box Add initialization in the Define
window and leave the body of the method empty. Test this feature.

3. Find how message asValue works.

6.7 Value holders, models, and dependents

GUI widgets fall into several categories:

• Passive widgets that organize the window but don’t respond to user input or changing values of domain
objects. Labels and grouping boxes belong into this category.

• Active widgets that respond to user input or changes of domain objects. This category can be further
subdivided in widgets that
• invoke actions – such as action buttons
• gather input – such as text editors
• display information – such as lists.

Widgets that display or gather information need an object to hold the displayed information and this
object is generally some kind of a value holder. We have already mentioned that a ValueHolder is a capsule
containing a value (any object) and providing several accessing messages and a built-in mechanism for
communication with ‘dependents’. We will now explain the value-related messages and the concept of
dependency.

ValueHolder message interface

To put an object in a ValueHolder, send it the conversion message asValue such as

Main lessons learned:

• Lazy initialization means leaving the initialization of a variable until the variable is needed.
• The stub created for Aspect methods by the Define command implements lazy initialization.
• To display a string in a Text Editor when the window first opens, initialize its Aspect variable to the

desired string converted to a ValueHolder using message asValue. Perform this initialization in
application model instance method initialize.

• The Aspect variable of a Text Editor must be a ValueHolder on a String. It holds the accepted text.
• The Text Editor widget holds the currently displayed value in its own instance variable. The accepted

value is held in the application model.

Text Editor widget object
instance variable text

application model object
Aspect variable



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

210

 ‘A piece of text’ asValue

which creates a ValueHolder containing the string ‘A piece of text’. As another example,

x := 3.14 asValue

creates a ValueHolder containing the Float object 3.14.
Creating value holders with asValue is most common but ValueHolder also implements several

specialized creation messages including newBoolean, newFraction, newString which create value holders on
True, 0.0, and an empty string. You can also use the class message with: anObject which creates a
ValueHolder on anObject as in

ValueHolder with: String new

The accessing protocol of ValueHolder includes value, setValue: and value:. Message value
returns the object in the value holder. As an example, sending value to the variable used above, as in

x value

returns 3.14. As another example, to obtain the value of variable description in our Text Editor, execute

description value

To change the of a value holder and to notify its dependents (explained below), send value: as in

description value: ‘New help text’

Remember that if you want to preserve the magic of widget value holders, you must not change
description value by

description := ‘new help text’

because this would change the nature of description (Figure 6.21) from a ValueHolder holding a String to a
String. This would destroy the dependency between the value and its widget, and the part of the GUI that
depends on description being a ValueHolder would now stop working. Unfortunately, assigning a value to a
variable that holds a ValueHolder instead of using value: is a very common mistake!

Figure 6.21. Proper and improper ways of changing the value of a ValueHolder. Center: original state. Left
(correct): result of description value: ‘New help text’, right (incorrect): result of  description := ‘New help

text’.

Value holders are most commonly used as models of widgets, as objects that hold the value of a
widget and enforce dependency of the widget on any changes of this value caused by the application (Figure
6.22). Note, however, that the use of the principle of a model-dependent object is not restricted to widgets.

aValueHolder

aString

‘Old help text’
‘New help text’

aString

a ValueHolder
(model)

a widget
(dependent)

aValueHolder

I hold a value. I am also a
model which means that
when my value changes I

notify my dependents

aString

‘New help text’

I am a dependent and
I respond to the

notification in my
own way, usually
requesting more
information and
adjusting to it

value: :=



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

211

Figure 6.22. The two sides of the model ↔ dependent relationship in GUI widgets.

The dependency relationship between a value holder and a widget is established by UIBuilder when
it constructs the user interface. VisualWorks refers to this link as a binding and we will now explain in more
detail how the mechanism works. We will use the example of the Text Editor in our Application Selector.

When the builder builds the user interface from the windowSpec method, it associates a binding
between the aspect variable description and a ValueHolder assigned to the Text Editor widget as its model.
Once the binding is established and the window opens, it is used as follows: When the applications sends
value: to the ValueHolder (Figure 6.23) as in

description value: ‘New help text’

the ValueHolder changes its value and notifies its single dependent, the Text Editor, that it has changed. It
does so by sending it the update: #value message. The definition of update: in the Text Editor widget (class
ComposedTextView) responds by sending value back to its model, the ValueHolder. When it gets the result
– the new text - it redisplays itself.

Figure 6.23. The chain of events resulting from sending value: ‘New help text’ to description. Full lines
represent message sends, interrupted lines indicate returned objects.

To keep track of its value and its dependents, ValueHolder has two instance variables called value
(holds stored value) and dependents (holds pointers to all dependents). The following definitions show
exactly how ValueHolder works:

value
^value

value: newValue
"Set the currently stored value, and notify dependents. Declared in superclass ValueModel."

self setValue: newValue.
self changed: #value “This is where the notification occurs.”

where

setValue: aValue
" Just change the value without notifying dependents of a change. "

value := aValue

changes the value but does not notify dependence. Dependency is defined by message changed: which
triggers the broadcast of update: to the dependents. Method changed: is declared in class Object essentially
as follows:

1. value: ‘New help text’ description Text

aValueHolder

a Text Editor widget

2. update: #value

3. value

4 ‘New help text’

5. Redisplay with
new text

1. notify dependent of any value change

2. request more information



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

212

changed: anAspectSymbol
"The receiver changed.  The change is denoted by anAspectSymbol. Inform all dependents."

self myDependents update: anAspectSymbol

We have not shown the additional detail involving the changed: message in Figure 6.23.
The ValueHolder thus triggers change notification via the update: message but for this mechanism

to work, each dependent must understand the update: message; the way in which it defines update: then
determines how it responds. We have seen that the definition of update: for the Text Editor widget, for
example, asks the model for the new value of the string and redisplays itself with the new string. To take
care of cases in which a dependent does not care about the update: message, the basic definition in class
Object does not do anything. Every object thus understands update:.

We can now trace the full meaning of the definition of the button method from the previous
section:

button
currentSelection := ButtonExample.
description value: ‘the text for the help comes here’

After assigning a new value to currentSelection, button sends value: its ValueHolder, which then
notifies its dependent (the Text View) via changed and update. The Text Editor view asks its value holder
description for its value, gets the new text, and displays it.

Creating widget - value holder bindings

We have already mentioned that the bindings between widgets and their value holders are
established during the opening of the application. The process is as follows (Figure 6.24): When you send
open to your application model, it creates a new instance of the application model and a user interface
builder, an instance of UIBuilder. The builder object then builds the window in your computer’s memory
from windowSpec, creating bindings between widgets and their value holders. This is achieved by sending
Aspect messages to the application model. In our example, UIBuilder sends description to
ApplicationSelector which returns a ValueHolder with the initialized string. The UIBuilder then associates
this value holder object with the Text Editor and makes the widget a dependent of the aspect variable; the
value holder becomes the model of the widget.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

213

Figure 6.24. Essence of the application opening process.

Exercises

1. Implement the material covered in this section.
2. Trace how the Text Editor in our application responds to clicking an application button and summarize

your findings in a diagram. (Hint: Add self halt before the value: message in the button method.)
3. Class ValueHolder is rather low in the class hierarchy. Examine its superclasses and explain how

ValueHolder obtains its behavior and what new features it adds.
4. Enact the following scenarios using a simple application such as SimpleHelp or ApplicationSelector as

the application model.
a.  Painting of the user interface and its installation. Creates application model with its Aspect and

Action methods and variables, stores window specification. Actors are the developer of the user
interface and an instance of UIPainter, the object that animates the user interface painting tools.

b.  Opening the application. Actors are the user who sends the opening message, the application
model class and its instance, a UIBuilder, and instances of widgets and their value holders.

c.  Interaction with an open application. Actors are the user, the application model, the widgets, and
their value holders.

5. A model may have several dependents. As an example, an application displaying mathematical
functions might display the values in graphical and textual form (using a Table widget, for example).
Both displays would be dependents of a value holder with a list of function values. Enact the basic
operation of the dependency mechanism along the lines of part c of the previous exercise.

Main lessons learned:

• Value-dependent widgets hold their value in a ValueHolder. This value holder is accessible via the
widget’s Aspect variable and method specified as the widget’s property.

• Widgets and their value holders are bound by the model ↔ dependent relationship. The value holder is
the model, the widget is the dependent.

• When the application changes the value of a value holder via the value: message, the value holder
notifies all its dependents by sending them the update: #value message. The reaction of each dependent
depends on its definition of update:. The definition is different for each widget.

• When the dependent is a widget with an Aspect, its reaction to update: #value is to send its Aspect
message to its model, obtaining its new value, and redisplaying itself accordingly.

• To obtain the proper reaction of a widget to a change of its Aspect value, always change the value of
the Aspect value holder by the value: message.

• Using assignment instead of the value: mechanism is the most common reason why widgets don’t
respond to value changes.

• Constructing the user interface from the window specification method is the responsibility of a
UIBuilder. An application model creates its instance when it opens, and keeps it during the application’s
lifetime.

Application model creates an instance of itself and an instance of UIBuilder

The UIBuilder object uses the window specification to create the window with widgets and bindings to aspect
value holders, making aspect objects models of widgets and widgets their dependents.

Application model gets values for widgets from their value holders.

Application model displays user interface and passes control to user.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

214

6. The model-dependent relationship has many applications beyond user interfaces. As an example,
consider a collection of physical particles that works as follows: When a particle changes its energy by
some amount ∆ greater than ∆min, all its neighbors change their energy by ∆/2, all their neighbors
change their energy by ∆/4, and so on. This reaction continues until it dies down when the transmitted
energy falls below the lower limit. Describe this problem it in terms of models and dependencies, and
enact it.

7. We used the term model in three contexts: application model, domain model, and model in the model-
dependent sense. Define the three meanings carefully to clarify their distinct meanings.

6.8 Opening of an application - hook methods

In this section, we will give a more detailed description of the events that take place when an
application model class receives the open message  (Figure 6.25). Understanding this sequence is essential
for initialization and for other operations related to the user interface.

Figure 6.25. The main messages executed in response to ApplicationSelector open. Boldface messages are
hooks that can be redefined in your application model.

To trace the sequence and to follow our description ‘live’, execute

self halt.
ApplicationSelector open

and note the following events:

1. Method open sends new which creates an instance of the application model class ApplicationSelector.
2. The application model ApplicationSelector sends itself the initialize message. If you defined this

message in your application model, this definition is executed. If you did not, the inherited definition of
initialize is executed. The default definition does not do anything and its only purpose is to intercept the

ApplicationSelector (class) open

ApplicationSelector (class) new

ApplicationSelector initialize

ApplicationSelector preBuildWith: aBuilder

ApplicationSelector postBuildWith: aBuilder

UIBuilder openWithExtent: aRectangle

ApplicationSelector postOpen: aBuilder

user assumes control via user interface



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

215

initialize message if it is not fielded by a subclass. This is an example of a hook method - a method that
provides an opportunity for the developer to execute an operation at a critical place in the process.

3. ApplicationSelector now asks class UIBuilder to create a UIBuilder object. This object will eventually
obtain the information about your interface from windowSpecs and ‘build’ it. First, however, the
application model sends preBuildWith: aBuilder to itself; where aBuilder is the new builder object. If
you defined preBuildWith: in your application model class, this method will now be executed, otherwise
the ‘do-nothing’ default definition of preBuildWith: inherited from ApplicationModel will be executed.
The method is another hook.

4. After executing preBuildWith: the builder builds the user interface in memory using windowSpec: It
gathers information about the window’s size and label and the widgets, and constructs their bindings
and a UIPolicy object that will help build the window. The ‘policy’ object determines which style will
be used to draw the window, allowing a choice between the Microsoft Windows look, the Macintosh
look, and the Motif look. After this, the application model sends postBuildWith: aBuilder - another
hook message. Again, the repdefined version does not do anything.

5. The application model now draws the window on the screen, but before it passes control to the user, it
sends postOpenWith: aBuilder. This is the last hook (its inherited behavior is to do nothing) and after
it executes, the application opens for user input via widgets.

In your application, you can use any of the application opening hooks, all of them, or none of
them. In some cases, the nature of what you want to do determines the exact hook that you must use, in
other cases, the same effect can be achieved by using any one of several hooks. As an example, if you want
to do something that depends on the existence of widgets, you must allow the builder to build the widgets
first, which means that you cannot do this in the initialize or preBuildWith: methods.

In our application, we only needed a hook to assign a value holder with the initial text to the
description variable. Although this can be done with any hook method, it is natural to do it during
initialization in method initialize as we did:

initialize
“Create a value holder with the text in the initial Text Editor display.”

description := 'Please select an example application.' asValue

Pseudo-variable super

Although our definition of initialize works fine, it does not follow the recommended style for
hooks. The point is that our application model class might be at a low point in the application model chain
(such as class E in Figure 6.26) and some of its superclasses might contain their own definitions of initialize.
Since our new class should normally execute this inherited behavior and augment it with its own behavior,
we should define initialize to execute the inherited behavior first and the specialized behavior next as in

initialize
self initialize. “Execute inherited behavior.”
description := 'Please select an example application.' asValue

Unfortunately, this form would create an infinite loop, because it makes self send initialize to itself
over and over, until we stop the loop with <Ctrl> <C>. Obviously, our goal was not to re-execute this
definition of initialize but rather the definition higher up in the hierarchy tree. To locate this class, Smalltalk
provides a special identifier called super and the correct way to define initialize using super is as follows:

initialize
super initialize. “Execute inherited behavior.”
description := 'Please select an example application.' asValue

 The concept of super is very important and we will use Figure 6.26 to explain its exact meaning.

Object



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

216

Figure 6.26. Example hierarchy illustrating the meaning of super.

Assume that class D contains method exampleOfSuper defined as follows:

exampleOfSuper
“some code here”
super exampleOfSuper.
“some more code”

When you send exampleOfSuper to an instance of class E, it will pass execution to the definition
of exampleOfSuper in class D. In this definition, super will refer to the nearest superclass of D which
contains its own definition of exampleOfSuper, in this case class B. A very common misconception is that
super refers to the superclass of the receiver, in this case D.

Note the similarities and differences between self and super. In two ways, super is similar to self:
Both are like a variable in that their referent may vary from one context to another, but they are not really
variables because we cannot assign value to them. Because of this partial but incomplete similarity to
variables, self and super are both referred to as pseudo-variables or special variables.

In another way, super and self are different: Pseudo-variable self represents an object - the receiver
of the message. You can thus meaningfully write

^self

The purpose of super, on the other hand, is to specify a class containing the definition of a
message. Without specifying this message, super does not make any sense and if you try to use super by
itself, as in

^super

Smalltalk will refuse to compile the code (Figure 6.27).

A

B
exampleOfSuper

C

D
exampleOfSuper

E
exampleOfSuper

super



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

217

Figure 6.27. Pseudo - variable super must be followed by a message.

Exercises

1. Implement the material covered in this section.
2. Trace and record the complete sequence of message sends following the execution of open.

6.9 MVC – the Model-View-Controller triad

After opening the subject of widgets, it is time to explain the essence of GUI components in
VisualWorks Smalltalk. The principle of user interface components in Smalltalk is the model-view-
controller (MVC) paradigm. According to this principle, every UI component that represents a value of a
domain object uses this value as its model. As an example, a text editor's model is the displayed text, a
slider's model is a floating-point number, and the model of an on/off check box model is a Boolean. The
model holds the data but knows nothing about its display and user interaction, leaving these responsibilities
to the view-controller pair.

The graphical representation of the model is the responsibility of a view object. As an example, a
text may be displayed by the view of a text editor, a floating point number may be displayed by the view of
a slider, and an image may be displayed by a custom view. The view object knows how to display itself
from data supplied by its model but does not hold the original of the data and is incapable of user
interaction.

Finally, the object that manages user activity within the boundaries of a view is the view's
controller. A controller is notified when an input event such as a mouse click occurs, and defines methods
that process these events. As an example, when a user clicks the <select> button to select text inside a text
editor, the editor’s controller is notified and converts these events into a highlighted text selection in
cooperation with its model and view. A controller knows nothing about the data  and its display but it is in
full control of the user interface.

Each of the three components of the MVC triad is thus in charge of one aspect of UI operation and
the three cooperate to accomplish all the tasks that we expect of the user interface - display, damage repair
(such as when a window is obscured by another window or collapsed and expanded), automatic response to
domain changes, and response to user actions. Besides the conceptual elegance of this arrangement, this
separation of responsibility enhances flexibility and reusability because any of the three components can be

Main lessons learned:

• A hook is a method automatically executed during a process such as the opening or closing of a
window. Its inherited definition usually does not do anything but since the developer of a subclass can
redefine it, a hook makes it possible to insert code at strategic places.

• The opening sequence of ApplicationModel includes several ‘do-nothing’ hook messages.
• The proper way to redefine a hook message is to execute first its inherited version with super, and then

execute the specialized behavior.
• self and super are pseudo-variables - the object that they refer to depends on the context but it cannot

be changed by the programmer.
• Unlike self, super cannot stand on its own. It must always be  used as the receiver of a message.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

218

combined with others in new combinations, thereby eliminating the need to construct a variety of custom
user interfaces with similar behaviors. Some of the possibilities are as follows:

• The same model data may be displayed by a different view in different modes of operation of the
application. As an example, an object representing economic data may be represented as a pie chart or
as a graph and the switch from one to another may be controlled by clicking a button.

• The same model may be simultaneously displayed by several different views. As an example, a
mathematical function may be displayed as a collection of x and y values in a table, and as a diagram in
the same window.

• The same view can be used with many different models. As an example, a pie chart object may represent
economic data in one application and demographic data in another without any change in its definition.
The switch requires only the assignment of a different model.

• The same view can use different controllers. As an example, the same Text Editor may use a read-write
controller when the application is used by fully authorized users, and a read-only controller when the
program is used by less authorized users.

• The same controller may be used with different views. As an example, a controller sensitive to mouse
clicks and equipped with an <operate> menu could be used in an input field and a text editor.

Smalltalk’s implementation of the MVC concept is based on the communication patterns in Figure
6.8 and made possible by instance variables of the three objects. As the diagram shows, each object in the
triad can communicate directly with each other object except that the model does not have direct access to
the controller view. The typical communications are as follows:

The controller generally needs to notify the model about user interaction. As an example, when the
user clicks a square in a clickable chess board view in a chess program (Section 12.7), the controller must
tell the model which square has been selected.

The view needs access to its model when it needs to redisplay itself. As an example, when a chess
player clicks a piece, the controller notifies the model, the chess board model asks the view to display it,
and the view asks the model for information about the squares that must be redisplayed. This typical
scenario thus requires controller -> model and model <-> view communication.

As an example of communication between a controller and its view, consider an application such
as the canvas painter in which the user can drag objects within a window. To do this, the controller can
communicate with the view directly.

Communication from the view to the controller is usually restricted to specifying an appropriate
controller class when the first input event occurs. This message then creates the controller.

MODEL – displayed object

VIEWCONTROLLER

keyboard

mouse

window on
computer screenmouse

events

keyboard
events



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

219

Figure 6.8. Top: Standard lines of communication among the three components of the MVC triad
and the meaning of MVC components. Bottom: A single model may have two or more different view-

controller pairs.

Although every widget that displays data has its special model, view, and controller, it is not
surprising that all models, all views, and all controllers have something in common and that their
implementation is based on abstract class called Model, View, and Cotroller. We will now outline the
principle of these class and return to views and controllers in much more detail in Chapter 12 which is fully
dedicated to this subject.

Class Model is responsible for the dependency mechanism. Its definition is quite simple and consists of
variable dependents which can hold any number of objects dependent on the model, and methods
implementing dependency. (In fact, these methods are inherited from Object.) Class Model has numerous
subclasses including ApplicationModel (and with it all application models defined by the system or the user)
and ValueHolder (a subclass of ValueModel which defines value, value: and setValue:).

Class Controller is the father of all controllers. It introduces variables view and model that refer to its
companions in the MVC triad, and numerous methods. Perhaps the most interesting of these are methods
that provide hooks to input events and are sent when a user clicks a button, moves the mouse, presses a key,
and so on. These methods are hooks that are reused by all subclasses whether system-defined or user-
defined.

Class View is the mother of all view. It knows about its model and controller and provides or inherits
mechanisms for creating nested views. It also provides automatic damage repair which is necessary when
the view is damaged (for example obstructed and then uncovered). Any class subclassed to View inherits
this essential and valuable behavior.

We will have much more to say about the MVC triad and about its components in Chapter 12
which is completely dedicated to views and controllers.

12.7 IDs make widgets accessible at run time - a Tic-Tac-Toe game

In this section, we will explain the purpose of widget IDs and illustrate it on a program
implementing a Tic-Tac-Toe game with the user interface in Figure 6.28.

MODEL

VIEWCONTROLLER

VIEWCONTROLLER



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

220

Figure 6.28. Desired user interface.

The game is played by two players denoted X and O; the first player is always X. When the
window first opens, the squares on the game board are blank and the players start taking turns clicking the
squares. When a player clicks an empty square, the square displays the player’s symbol (X or O). If this
results in three vertical, three horizontal, or three diagonal squares marked by the same symbol, the player
wins; otherwise the game continues. If the player clicks an already marked square, the program displays a
warning asking the user to click an empty square. The Reset button resets the board to blank squares.
The usage scenarios are as follows:

Scenario 1: Player clicks empty square.
Conversation:
1. User clicks square.
2. System displays player’s symbol.
3. System checks whether the game is over. If it is, it displays an appropriate notification and resets the

board; if it is not, it changes current player from X to O or vice versa.

Scenario 2: Player clicks square that already contains a symbol.
Conversation:
1. User clicks square.
2. System displays a warning asking the player to click and empty square.

Scenario 3: Player clicks Reset.
Conversation:
1. User clicks Reset.
2. System erases all squares.
3. System resets player symbol to X.

Design

The problem is simple and we can design the solution without going into much detail. The domain
objects consist of players and the grid. The only thing the program needs to know about the players is who
is the current player (X or O) and this requires only a String object. The only other required class is the
application model.

All in all, we don’t need any domain classes and the only necessary information is instance
variable player holding the string identifying the current player. Our program will thus consist of a single
class, an application model class called TicTacToe, a subclass of ApplicationModel. Its behaviors will be as
follows:



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

221

• initialization - initialize player to ‘X’
• actions - respond to activation of board squares and the Reset button
• private - check for end of game, toggle players after a move

Implementation

We will implement the squares as action buttons with blanks, Xs or Os as labels. We will need to
change button labels at run time as the players click them, and to do this, we need run time access to them.
This access can be gained via the builder which holds a dictionary of all named widgets (widgets assigned
IDs with the Properties Tool) which associates widget IDs and the corresponding value holders. To make a
widget accessible fill in its ID property; to access it, ask the builder to locate this component via its ID. As
an example, if we assigned the upper left action button the ID button1, we can access it at run time by

builder componentAt: #button1

To assign IDs, use the ID field in the Properties Tool as in Figure 6.29. Any widget may have an ID.

Figure 6.29. Assigning an ID to a widget so that it can be accessed at run time.

Now that we know how to access a widget, how can we access its label? First of all, the component
accessed by the builder is not really the widget but a wrapper object containing the widget. To get the
widget, send the widget message to the wrapper. After this, ask the widget for its label, and then access the
label’s text. Altogether, to get a widget’s label, execute

(aBuilder componentAt: #button1) widget label text “Get text of label of button1.”

To change the text of the label, use message labelString:.
We are now ready to start implementing the program. First, paint the canvas and name the button

IDs #button1, #button2, and so on. Since the window should open with empty squares, the String assigned
to button labels in the Property Tool will be empty (Figure 6.29). When the user clicks button1, its Action
method will check whether the label is an empty string and respond as follows:

button1



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

222

“Button was clicked. Check if it is already labeled and respond appropriately.”
self builder componentAt: #button1 widget label text isEmpty

ifTrue: [“Get component, change its label, exit if game is over, switch players.”
self builder componentAt: #button1 widget label labelString: player.
self endOfGame ifTrue: [^Dialog warn: ‘Game over.’].
self newPlayer]

ifFalse: [Dialog warn: 'This field is already occupied']

This works but repeating expression

self builder componentAt: #button1 widget

is ugly. Moreover, it will have to be accessed again in the reset Action method and we thus decide to
evaluate the expression once for all during initialization and save (cache) the result in an instance variable
as

button1 := self builder componentAt: #button1 widget

Assuming that this has been done, the definition becomes

button1
“Button was clicked. Check if it is already labeled and respond appropriately.”

button1 text isEmpty
ifTrue: [button1 text: player.

self endOfGame ifTrue: [^self].
self newPlayer]

ifFalse: [Dialog warn: 'This field is already occupied']

This definition must be repeated with minor variations for each button and this is not very nice. We
will give a better solution at the end of this section.

The next question is where to put the assignment to button1 and the variables corresponding to the
other buttons. Clearly, it must be before the application opens, in one of the hook methods. It cannot be
done in initialize because the builder does not yet exist, it cannot be done in preBuildWith: because the
builder has not yet processed widget properties and does not have the ID dictionary. We will thus do it in
postBuildWith: as follows:

postBuildWith: aBuilder
“Cache button labels for easy access in Action methods.”

button1 := (aBuilder componentAt: #button1) widget label.
button2 := (aBuilder componentAt: #button2) widget label.
button3 := (aBuilder componentAt: #button3) widget label.
button4 := (aBuilder componentAt: #button4) widget label.
button5 := (aBuilder componentAt: #button5) widget label.
button6 := (aBuilder componentAt: #button6) widget label.
button7 := (aBuilder componentAt: #button7) widget label.
button8 := (aBuilder componentAt: #button8) widget label.
button9 := (aBuilder componentAt: #button9) widget label

As the next step, we will implement endOfGame which checks for end of game. Our
implementation will be very straightforward - we will simply check whether any of the rows, columns, or
diagonals are filled with copies of the current player’s symbol, and return the or of this combination. The
definition is as follows:

endOfGame
“Check all rows and columns and diagonals for end of game. Return true or false.”
| end |
end := ((self isPlayer: button1) & (self isPlayer: button2) & (self isPlayer: button3)) |

((self isPlayer: button4) & (self isPlayer: button5) & (self isPlayer: button6)) |
((self isPlayer: button7) & (self isPlayer: button8) & (self isPlayer: button9)) |



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

223

((self isPlayer: button1) & (self isPlayer: button4) & (self isPlayer: button7)) |
((self isPlayer: button2) & (self isPlayer: button5) & (self isPlayer: button8)) |
((self isPlayer: button3) & (self isPlayer: button6) & (self isPlayer: button9)) |
((self isPlayer: button1) & (self isPlayer: button5) & (self isPlayer: button9)) |
((self isPlayer: button3) & (self isPlayer: button5) & (self isPlayer: button7)).
end ifTrue: [self reset. Dialog warn: 'Player ', player, ' wins. Game over.'].
^end

where we used fully evaluating logic because it is more readable and because evaluation speed is irrelevant
in this case. Method isPlayer: aButton checks whether aButton’s symbol is equal to the player’s symbol as
follows:

isPlayer: button
“Is the symbol displayed in button the same as the player’s symbol?”

^button label text = player asText

where we had to convert the player string because a label’s text is a Text object which is somewhat different
from a string and cannot be directly compared with it. We will learn about Text later.

Finally, method  newPlayer toggles the player:

newPlayer
“Update player.”

player = 'X'
ifTrue: [player := 'O']
ifFalse: [player := 'X']

Finally, the reset method. It resets all button labels and initializes player to ‘X’:

reset
“Reset button and reinitialize the player.”

button1 labelString: ''.
button2 labelString: ''.
button3 labelString: ''.
button4 labelString: ''.
button5 labelString: ''.
button6 labelString: ''.
button7 labelString: ''.
button8 labelString: ''.
button9 labelString: ''.
player := 'X'

Improving button methods

When we wrote the button1 method, we noted that it is repeated with very minor variations for all
buttons and this is ugly. Besides, if we decide to make any changes, we will have to repeat them in all nine
methods. We will thus change all button methods to the following style

button1
self doButton: (builder componentAt: #button1)

and put all the shared code in

doButton: aButton
“Game button aButton has been clicked. Check if the button is already in use and if not, change its label,
check for end of game, and switch players if not done.”
aButton widget label text isEmpty

ifTrue:
[aButton widget labelString: player.
self endOfGame ifTrue: [^self].



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

224

self newPlayer]
ifFalse: [Dialog warn: 'This field is already occupied']

Note that as we are changing the state of the object assigned to variables button1, button2, etc., we
don’t have to make any changes to the variables themselves – they keep pointing to ‘the same’ object whose
properties have changed via doButton:.

You might argue that method reset has a similar problem as our button methods – it seems
unnecessarily repetitive and it should be possible to simplify it. We will see in Chapter 7 that this can
indeed be done.

Exercises

1. Complete and test the implementation of class TicTacToe.
2. Our implementation of endOfGame ignores the possibility that the game ends in a draw. Correct this

shortcoming.
3. Improve TicTacToe by adding a button to display the score of the two players in a notifier window.
4. Formulate a strategy for the computer to be one of the players. The strategy may be very simple such as

choosing a square randomly, or more sophisticated.
5. Open TicTacToe in step-by-step mode and inspect the builder. List the contents of its

namedComponents dictionary.
6. Our application can be implemented more neatly by defining domain model class GameBoard

implementing all the functionality except the user interface, and implementing the GUI by a simplified
version of TicTacToe with no domain behavior. Reimplement the program along these lines.

Conclusion

This chapter introduced development of applications with graphical user interfaces. VisualWorks’
application architecture has three components: the graphical user interface (GUI), the application model,
and the domain model. The role of the GUI is to display results and provide means of interaction between
the user and the computer. The domain model is a collection of classes representing objects in the problem
world. The application model provides the link between the GUI and the domain model, converting user
actions into messages to domain objects, and changes in domain objects to messages to the user interface.
Most applications contain all three parts but very simple applications combine the domain model and the
application model in one class. Occasionally, an application does not have a GUI and does not require an
application model either. Such applications are called ‘headless’.

To minimize the effort required to create an application, VisualWorks provides a library of GUI
components, class ApplicationModel containing shared properties of application models, and tools for
interactive creation of the user interface with minimal programming. To take full advantage of the built-in
functionality, application models must be subclasses of ApplicationModel.

VisualWorks UI development environment is based on three tools: a canvas (the future window), a
Palette of widget buttons, and a Canvas Tool. To create a user interface, the programmer selects widgets on
the palette, paints them on the canvas, and defines their properties such as labels, colors, and actions using
the Properties Tool.

During the process of creating a user interface, the programmer installs the GUI on the application
model which stores a description of the GUI in a class method of the application model. The Define
command of the Canvas Tool defines aspect variables and stubs of Action and Aspect methods.

Main lessons learned:

• If you want to be able to refer to a widget at run time, assign it an ID property and use the builder to
access it via componentAt: message.

• A widget in a running application is enclosed in a wrapper. To access the widget, send widget to the
component.



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

225

The principle of updating value holding widgets is dependence between the value objects and the
widgets themselves. This dependence is achieved by storing the values in instances of ValueHolder whose
instances provide a uniform interface to their value components and implement dependency. When the
value of a ValueHolder is changed with the value: message, the ValueHolder notifies its dependents and they
respond by executing their predefined behavior. A Text Editor widget, for example, responds by using its
Aspect message to request text from the application model and by redisplaying itself with the new text.

When an application model class receives the open message, it executes a series of messages
including the building of the user interface by a UIBuilder object and the opening of the window from this
‘built’ before it transfers control to the user interface. The opening sequence includes several hooks - do-
nothing messages defined in ApplicationModel to allow the programmer to insert any appropriate actions
into the application opening process.

Any widget can be assigned an ID and this ID can be used to access the widget at run time for
effects such as changes of labels and other effects.

The basis of VisualWorks graphical user interfaces is the MVC paradigm in which an object
holding data (the model) is displayed by a view and the user interface is implemented by a controller. Class
View defines several mechanism for keeping views up to date, and new view classes created for new GUI
components should thus be subclassed to View.

The controller part of MVC is responsible for mouse- and keyboard-based user interaction within
the view’s area. The preferred method for propagating model changes to the view is via dependency where
each significant change of the model notifies all model’s dependents. In the MVC triad, the dependent is the
view.

As a side product of developing our example applications, we introduced the very important
concept of the pseudo-variable super. The purpose of super is to provide access to a higher level definition
of a method, usually to avoid recursion in a new method with the same name. Pseudo-variable super does
not represent an object and cannot be used by itself. It must always be used as a receiver of a message.

Important classes introduced in this chapter

Classes whose names are boldfaced are very important, classes whose names are printed in italics are less
important, classes whose names are printed in regular font are not of much interest.

ApplicationModel, SimpleHelp, UIBuilder, ValueHolder.

Terms introduced in this chapter

active widget - a widget capable of interaction with the user
application model - object linking user interface and domain model; subclassed from ApplicationModel
Action button - UI button that executes a predefined action when clicked
Action  method - action button property; method defined in application model and invoked when user clicks

the button
Aspect method - widget property; application model method used to access the value of the widget’s value

holder
Aspect variable - application model variable bound to a ValueHolder holding the model of a widget
builder - instance of UIBuilder, part of VisualWorks framework which constructs the user interface before a

window opens, and provides access to UI components during execution
canvas - blueprint of a future window on which widgets are painted during user interface design
Canvas Tool - window providing access to commands during the construction of the user interface
controller – the object responsible for dealing with user input in an MVC triad
Define Tool - tool for automatic definition of Action and Aspect methods and aspect variables
dependency - model ↔ dependent relationship in which the model automatically notifies its dependents of

its changes
domain model - collection of classes representing objects in the problem domain



Introduction to Smalltalk - Chapter 6 - Design of applications with graphical user interfaces
 Ivan Tomek 9/17/00

226

graphical user interface (GUI) - interface between an application and its human user implemented with
windows and widgets

GUI - graphical user interface
hook - method built into a process such as application opening or closing to allow developers to insert

application-specific actions into the process
input event - operation such as pressing a key on the keyboard, moving the mouse, or clicking a mouse

button
Install - UI Painter command; defines the application model class if it does not exist and stores the GUI

description in a user-specified class method
lazy initialization - leaving initialization of an instance variable until the time when its value is requested
MVC paradigm - model - view - controller - the three parts of VisualWorks user interfaces responsible for

the data, its display, and user interaction respectively
model - the controlling part of the model ↔ dependent relationship
model↔dependent relationship - see dependency
passive widget - a widget that does not allow user interaction
Properties Tool - tool allowing specification of window and widget properties such as labels, names of

Action and Aspect methods, colors, and so on
pseudo-variable - identifier whose meaning depends on the context but whose value cannot be changed by

assignment; self and super are pseudo-variables
super – pseudo-variable providing access to a higher level definition of a method
Text Editor - active GUI widget displaying text and allowing user input
UI builder - user interface builder - see builder
UI Painter - interactive tool for GUI development with minimal programming
value holder - instance of ValueHolder, an object holding a value and a list of dependents; used as model in

the model ↔ dependent relationships
view -  the object responsible for displaying the model in the MVC triad
widget - a passive or active GUI component such as an Action Button, a Label, or a List


