
Networking Squeak

Bijan Parsia Bolot Kerimbaev Lex Spoon

August 17, 2000

Unless otherwise noted, the authorial “I” belongs to the primary au-
thor of the section, to wit, Bolot for the section on Comanche, Lex for the
Squeaky Clients, and Bijan everywhere else.

1 Introduction

There is a apparent split in the Squeak worldview between the intensely
individualistic and the thoroughly social. Squeak itself aspires to be a
complete personal computing environment (with the single user in both
computational and intellectual control from top to bottom) and a tool for
collaborative development, exploration, and experimentation. This con-
ception is akin to the notion of a networked personal computer—neither
a thin client dependent on the network and server, nor an isolated work-
station, but a node among peers, server, client, and self-sufficient in turn,
separable but connected. A Squeaker is not merely autonomous, but au-
tokoenomous.1

To support Squeaky autokeonony, Squeak has an extensive and varied
set of networking facilities, applications, and frameworks, and a corre-
spondingly extensive and varied community.

1“. . . ‘autokeonony’ which I take from the greek ’auto’ (“self”) and ’koinonia’ (“com-
munity, or any group whose members have something in common”). What I mean by
’autokeonony’ is “the self in community.” pp., 145 Sarah Lucia Hoagland, Lesbian Ethics

1



1.1 Why use Squeak for networking?

You’re looking around for a web server. Or maybe a new email client.
Or perhaps you want to write a web crawler. Why use Squeak? After
all, Squeak networking apps tend to be lacking in maturity—no surprise
in so young a system. For example, Scamper, the web browser bundled
with Squeak, is neither compliant with the latest specs, nor particularly
polished, nor dramatically quick (though it is quite snappy for many pur-
poses).2 If what you wanted was the best or neatest or most powerful web
browser as such, Scamper wouldn’t fit the bill.

But Scamper (like every other Squeak networking app) derives some
compelling advantages simply from being written in Squeak:

First, they share Squeak’s hyperportability. Squeak images run (nearly)
identically wherever there is a Squeak VM—no converting, recompiling,
or tweaking needed. And since the Squeak’s VM is very portable,3 it has,
in fact, been ported nearly everywhere. For general networking purposes,
all that must be ported above the raw VM are the socket primitives.4 Con-
ceivably (and it has been proposed on occasion) this dependence on the
host platform’s networking capabilities could be eliminated by writing a
TCP/IP stack in Squeak proper. (Anyone need a M.A. thesis?)

Second, they share in Squeak’s malleability. Given the power and flex-
ibility of Squeak’s language and integrated development tools, it’s very
easy to program clients or servers, and even easier to tweak or extend
existing ones. A few data points: The Pluggable Web Server, and the var-
ious Swikis built on it, were put together by Mark Guzdial when he was
still new to Squeak, while Scamper and the IRC client were written by
Lex Spoon during a Summer Internship at Squeak Central. As a Squeak,
Smalltalk, and programming novice, I was, nevertheless, able to usefully
modify all of these with very little effort.

Combined with its portability, Squeak’s malleability makes it almost
uniquely ideal for making custom, compact clients.

Finally, they share in Squeak’s seamless systematicity. Every application—
web browser, web server, mail client, what have you—is simply a collec-

2In the course of writing many things have changed in the Squeak networking world.
For example, another web browser (a relic of Squeak project) has come to light, if not to
general distribution.

3reference to Ian’s chapter?
4Which, at the time of this writing, are themselves under some flux.

2



tion of classes which can be combined and reused in myriad and some-
times stunning ways. 5 It’s easy to learn quite a bit about http, sockets,
parsing, POP, and IRC just from playing around in Squeak. It’s a great
place to explore, experiment, and investigate.

In Squeak, you can be a programming dabbler and still have control
over your tools and environment. Right now, you give up a certain level of
maturity and functionality that you find in current commercial programs
and most longer standing Free/Open Source software. But using Squeak
now is like having been in on the ground floor of Linux—it’s usable, it’s
only getting better, and it’s getting better fast.

1.2 Why use networking in Squeak?

You’re a Smalltalk veteran. You love hacking the compiler and the VM.
You mess with meta-objects and pounce on primitives. Why muck with
this mundane networking stuff?

Squeak aims to be a comfy computing home. We should be able to
do just about anything we’d care to do, and, of course, one thing most of
us want to do is play on the Internet. So, we should be able to browse
the web, send and read email, chat, publish a website, and so on all from
within Squeak, and it should range from pleasant to delightful to do so.
Alas, while often pleasant and sometimes delightful, Squeak is not quite
paradise. But it certainly has the potential, and that’s a good reason to use
Squeak for networking: to help realize that potential. So, there’s the public
service motive, and, in Squeaky parlance, there’s a lot of “blue plane”6

work to be done.
Squeak also aims to be a cutting edge research environment. Though

some might say that “multimedia” is Squeak’s focus, that’s too narrow a
description. Multimedia is important to Squeak, at least in part, because
the various media are crucial to communication and, more generally, to in-
teraction (not just “with the machine”, but with ideas, other people, tools,
and so on). Squeak is a good place to do serious and seriously fun ex-
ploration of various forms of collaboration, both with standard and with
novel tools.

5Lovers of Cyberdog, Apple Computer’s defunct component-based Internet suite can
find much to like about Squeak.

6Is this in BTF?

3



At the time of this writing, most commercial projects using Squeak are
focused on Squeaking the web. In general, there are a lot of projects for
which using Squeak to build a website (for example) is an easy sell. Web
apps are high profile and (with Squeak) a lot of fun.

There are more folks who know something about HTML, HTTP, FTP,
and so on than who know something about Squeak. I’ve found both when
learning and a teaching Squeak that having that solid ground to work from
is very helpful. More than just providing some self-confidence and orien-
tation, there’s typically a lot of immediate gratification in using Squeak
for networking tasks. Also, people typically have a lot of little network
jobs that they’d love to have automated, which gives an immediate, prag-
matic focus to the demonstration. It’s quite pleasant to write little classes
or even just a bit of workspace code to do the job that your disciple might
have otherwise written a Python or Perl7 script for—it gives your Python
or Perl wielding friends a very nice taste of Squeak.

Historically, Squeak networking has had a delightful community of
novice programmers, new Squeakers, gurus, and plain old end users. The
people involved are a joy to be around. They also are an exhaustingly pro-
ductive bunch. If “Net time” is quick, and “Squeak time” is quicker, then
it should be no surprise that “Squeak net time” is blindingly fast.

Here are five ways for the native Squeaker to get acquainted with net-
working in Squeak:

1. use the many networking related classes available for various ad hoc,
everyday tasks;

2. switch over one’s Internetworking to the collection of end user net-
work apps, tweaking and enhancing them along the way;

3. use networking type examples to introduce new folks to Squeak;

4. write new and interesting network based or network aware pro-
grams.

5. work on making the hodge podge of protocols, message formats, file
types, name schemes, and so forth that make up our wired world as

7Python and Perl are both “scripting” languages often used for system administration,
as well as for ad hoc, and not so ad hoc, networking tasks.

4



simple, natural, and transparent as possible to the programmer, user,
and programmer/user alike.

There are plenty of people doing each of these things, so there’s no lack
of companionship, guidance, or audience.

2 Some simple SqueakWorking

So, you’re ready to jump into the wonderful world of Squeak networking
and you want to know where to begin? For your introductory pleasure,
there is the Slick Demo and the Sober Overview. (Note: start with the Slick
Demo.)

2.1 A Slick Demo

Most of the popular demos of Squeak involve doing crazy things with
animation, 3D, sound, and so on, but I’ve found that for a lot of folks
certain simple tricks have the biggest impact.8

All this demo needs is a Workspace, a basic handle on navigating the
Squeak interface,9, a net connection, and the “netchap.cs” change set filed
into your image.

Start off by typing and inspecting the following in the Workspace:

’http://www.squeak.org/’ asUrl.

[Display: HttpUrlInpsec.eps]
Cool! An URL is an object (hey, this is Smalltalk), and scanning the in-

stance variables reveals a lot about the structure of URLs. When I first dis-
covered this, I was grabbing URLs left and right, just to see what Squeak
would make of them. (And it works for ftp:, file:, and mailto: URLs as
well.)

8See Mark Guzdial’s “Squeak demo for blowing students’ minds” story at:
http://minnow.cc.gatech.edu/squeak/52

9See chapter x. You need to be able open a workspace, enter text, select the text and
be able to do it (alt/cmd-d, or the “do it” menu command), inspect it (alt/cmd-i, or the
“inspect” menu command) or explore (alt/cmd-shift-i). A bit of familiarity with inspectors
and explorers is also helpful.

5



When the charms of URL parsing wear thin, grab one of these URL
inspectors, then enter and inspect following line in its “code pane”:

self retrieveContents.

Whoa! Not only did Squeak go out and grab the web page at the end of
the URL, but it doesn’t just pop out the text—it represents the page as a
MIMEDocument! What? Huh? Html files delivered over the web are
MIMEDocuments? Hmm. I remember that now. In fact, inspecting

’http://www.squeak.org/SQ100x100.gif’ asUrl retrieveContents.

will give me another MIMEDocument, only this time it’s of type ’im-
age/gif’. That sure beats guessing the type of the content from the file-
name extension.

[Display: MimeDocs.eps]
But, when we get down to it, the MIMEDocument version of the HTML

is just a pretty wrapper around some text (the main type is text, after all).
Can’t Squeak do better than that?

Of course it can. Enter the following text in the code pane of an inspec-
tor of an HMTL MIMEDocument:

HtmlParser parse: (self content).

and Explore (cmd/alt-shift-i) it. If you have a GIF MIMEDocument handy,
you can try doing the following, uglier code:

HTTPSocket showImage: (GIFReadWriter on: (RWBinaryOr-
TextStream with: self content) reset binary) nextImage named:
self url

(I find using the ObjectExplorer is more fun than inspectors for parse
trees; I showed the ObjectExplorer to a friend and he shouted out, “Python
should have this!!!”)

After poking around the parse tree, and examining some of the parse
nodes, “do”:

self openAsMorph.10

10Bijan added method

6



[Display: HtmlParseTree.eps]
Now click on some blue text to open Scamper onto a new page. Yes,

folks, those links are live.

[Display: RenderedHtml.eps]
This kind of demonstration shows a number of important points, even,

I hope, to the most skeptical:

� First, and always, Squeak is dramatically cool—and not just for mul-
timedia whiz-bangatry.

� Squeak is remarkably net-savvy, with a sensible understanding of
URLs, MIME types, HTML, and so on.

� Squeak’s net-savvy is accessible through a variety of powerful and
interesting tools. There’s something compelling about browsing through
an HTML parse tree one moment and viewing the rendered HTML
the next. The line between “programming tool” and “networking
app” is rather thin, and this is an advantage, not a failing.

� This advantage isn’t just productive, it’s also didactic. What you
know about networking guides you through the tools and the code.
And one can learn about network “objects” (e.g., the structure of
URLs) by using the Squeak development tools. Squeak provides a
uniform perspective on your computing world. Opening an inspector
on an URL is very much like opening an inspector on a SmallInteger.
This systematicity, of course, is a driving design principle behind
Squeak: everything, from the top to the bottom, from the interface to
the virtual machine should be accessible, or perhaps transparent to
the same set of tools and techniques.

� The final point is that some of those most skeptical types only yield
to whiz-bang multimedia extravaganzas. Fortunately, Squeak can
oblige them with a networkish twist.

[Display: FlyingScamper.eps]

7



2.2 A Sober Overview

2.2.1 The state of things

Through at least version 2.8, the core distribution of Squeak contains fif-
teen “Network-” categories comprising close to two hundred classes. For-
tunately, a number of these classes are low-level, node style classes for
HTML parsing, or support classes for applications so the actual number
one needs to master is fairly low and, furthermore, the whole shebang is
reasonably layered, allowing for task specific focused attention. Unfortu-
nately, there are several useful network useful, indeed crucial, classes and
methods in the image (e.g., there are several relevant Stream classes, many
important String methods, and so on). When writing network stuff, it’s of-
ten worth doing a little investigation of the image before plunging ahead
with writing a slew of utility methods.

It’s reasonable to divide, in a rough and ready way, the “Network-”
categorized classes into 3 basic groups:

1. basic infrastructure, primarily the classes in the Network-Kernel and
Network-Protocol classes;

2. middleware/support classes, such as those found in Network-Url,
and such classes as HtmlParser, HtmlFormatter, and MailMessage;
and

3. end user applications classes: Scamper, Celeste, PWS, etc. and their
immediate helper classes (e.g., CelesteComposition).

The networking primitives are concentrated in two classes: Socket
and NetNameResolver. NetNameResolver is a stand-alone utility class,
which simply provides some useful address and hostname lookup meth-
ods on the class side (for example, NetNameResolver class>>addressForString:).
If one is using a dial-up connection (or other situation where one’s IP
address may change frequently) when developing network applications,
NetNameResolver>>localAddressString is very handy. Otherwise, one
can pretty much leave NetNameResolver alone.

Even if one is mainly using higher level frameworks, some familiarity
with Socket is useful for debugging and profiling. In particular, many
fall into the following pitfall: Before one can successfully use any net-
work service, the networking primitives must be initialized, typically with

8



Socket>>initializeNetwork. This needs to be done for every launch of
the image; doing it more than once causes no harm, but it must be done
at least once. Unfortunately, some platforms in some situations don’t re-
spond well to the initialization process if, for example, one does it before
firing up the PPP connection.11 To avoid these problems, Squeak doesn’t
#initializeNetwork at start up, which means that one must remember to
do so before trying to do anything networkish. The end user apps all do
this, but not everything else does. (So, be careful with Workspace experi-
ments.)12

Socket provides a fairly standard suite of methods for doing normal
socketish activities: pinging, connecting, waiting, reading and writing
bytes, listening on ports, and so on. While it’s perfectly reasonable to
do socketish things directly with Socket, there are more Smalltalky fa-
cilities available, even for reading/writing bytes type stuff. Both the Co-
manche web/application server and the Flow internet/streaming frame-
work13 provide stream style access to sockets (and there are other Sock-
etStream implementations floating about), and one should expect that, in
the future, one of these will make it into the base distribution.

In the current image, subclasses of Socket (in particular, of its subclass
SimpleClientSocket) are used to provide basic access to a set of Internet
services, namely FTP, HTTP, SMTP, and POP.14 HTTPSocket and SMTP-
Socket have some useful utility methods (mostly on the class side). For ex-
ample, after opening an SMTPSocket on a mail server (using SMTPSocket
class>>usingServer:), one can send arbitrary mail messages using #mail-
From:to:text:. The downside of this method is that you have to be aware
of the textual format of mail message, and include all the headers (includ-
ing “From:” and “To:”, which might seem redundant). Similarly, while
HTTPSocket class does have several convenience methods for fetching
web pages (#httpShowPage:, #httpFileIn:, etc.), most of the helper meth-
ods require some nitty-gritty knowledge of HTTP header formats.

11VisualWorks initializes its network primitives at startup, and “Why does launching
VisualWorks try to start up my PPP connection” is a very common question from Mac
users of VisualWorks.

12It may be that this issue has been resolved by the time of your reading this. We can,
at least, hope so.

13Both discussed below.
14The relevant classes are all in Network-Protocols.

9



Protocol Middleware End User/high level
FTP ServerDirectory, ServerFile, Re-

moteFileStream, FtpUrl
FileList

HTTP (Client) Some HTTPSocket class meth-
ods, HttpUrl

Scamper

POP No really convenient wrappers. Celeste
SMTP No really convenient wrappers. Celeste

Telnet and IRC are a bit different, which is no surprise having been
written much later15 with a somewhat different sensibility. Each is some-
what tied to Morphic, and not solely for the GUI, and thus presents a
somewhat different programming interface (for example, the IO loops are
implemented using Morphic’s “stepping” feature).16

The URL classes (in “Network-Url”) provide the beginnings of a nicer
mode of access to various network services. Developed for Scamper, they
do best for the retrieving of documents, but are easily extended to other
tasks.

2.2.2 Flow into the Future

There is considerable interest in refactoring Squeak’s networking system17,
and several projects working on different aspects. For example, at the time
of this writing, there has been an extensive debate on the Squeak mailing
list to determine the best semantics and implementation for the network-
ing primitivesm including such issues as how to finesse the differences be-
tween different platforms, the advantages of pushing certain things down
into the primitives, and how to ensure certain performance characteristics.
At the other end of the spectrum, there has been considerable work done
on Celeste, Comanche is gearing up to replace the Pluggable Web Server
(PWS), a new Swiki framework has just reached beta 11, and so on.

There is also Flow, a comprehensive replacement for everything in be-
tween.18 Flow is derived from a Squeak fork developed for a home net-
working research project. Thus, Flow is a mature framework, that was

15By Lex Spoon at the same summer internship where he wrote Scamper
16More on IRC below.
17To be fair, there is considerable interest in refactoring everything. That’s the XP (eX-

treme Programming) way.
18Flow includes its own set of primitives, but has been modified by John M. McIntosh

to the use the existing primitives.

10



pounded on for several years as the substratum of a variety of network-
ing applications.19 Unlike the current system, Flow was developed by one
person, Craig Latta, and so lacks the piecemeal feel that the current classes
have. Flow is also quite complete, with support for sockets, files, MIDI, se-
rial ports, and a full range of networking protocols. As of this writing, only
the basic infrastructure has been ported and released, but that’s enough to
get a feel for Flow.20

The other significant fact about Flow is that it is the basis for a “Camp
Smalltalk” project to provide a cross-Smalltalk Internet/networking frame-
work. Essentially, Flow is that framework, so it is highly likely that it will
show up in Squeak in some form.

Flow comprises three class hierarchies: a refactored Stream hierarchy,
the ExternalResource hierarchy, and the Correspondent classes.21 Exter-
nalResources are the low level classes which deal with the nitty gritty of
encapsulating hardware details and OS facilities. “External” here should
be thought of as roughly “external to the Squeak image”, i.e., files, sockets,
serial ports, USB, etc. These classes also wrap the requisite primitives—
much as Socket and NetNameResolver do. Thus, unless one is imple-
menting access to a new sort of input/output interface (e.g., IRDA), one
should not have any need to modify or subclass, or even mess much with
the ExternalResource classes. In general, one is better off reading and
writing to them via the streaming protocols.

Indeed, streams are the heart and rationale of Flow, and, in some ways,
the least obvious aspect. In general, streams provide a uniform interface
for multiple and interruptible writing to, modifying, reading from, and
enumerating collections of objects. For “internal streams” (e.g., on Collec-
tions), streams abstract away from the idiosyncratic access details of the
particular collection types. For example, Array and its subclasses (includ-
ing, most notably, String) are of fixed size, whereas OrderedCollection

19Including a very spiffy web browser which also is being back-ported to the main
Squeak distribution

20Currently released is “Flow 1” which covers sockets, but lacks the various network
protocol support. Flow 2 does files, Flow 3 MIDI, and Flow 4 serial ports. All these
were present and used in the Squeak port. Flow 5 is projected to handle FireWire/ILink
connections. In what follows, unless otherwise specified, read “Flow 1” for “Flow”.

21Flow 2 introduces a fourth hierarchy rooted in URL, which handles, as one might
expect, URL style references to external resources. They are roughly compareable to the
current Url classes.

11



is of variable size. Thus, without streams, to append a new object to the
end of an Array requires copying the contents of the Array to a new Ar-
ray whose size is greater by one, and then putting the new element in the
last position of the new Array. Or, one could convert the Array to an Or-
deredCollection, #add: the element, and then covert back. Clearly, none
of these strategies are really a good idea. They are error prone, perfor-
mance poor, and just plain tedious. Fortunately, one may simply use a
stream on the Array and start adding or inserting elements at will. Even
better, one doesn’t need to care whether the streamed over collection is an
Array—the same stream methods will work for an OrderedCollection.22

Traditionally, the main external stream has been FileStream, which
adds various external resource specific methods (#open, #close, #finalize,
etc.), several file system information methods (#fullname, #directory, etc.),
and “file mode” methods which influence how the underlying “collection
of bytes” is to be treated (e.g., read only, write only, as characters with
platform specific line endings, etc.). In Flow 2, FileStream is an Exter-
nalStream on the ExternalResource subclass File. In Flow 1, this basic
pattern is repeated23 for all the various ExternalResources, with one great
simplification: both sockets and hardware ports are treated as kinds of
NetResource, and have one concomitant stream class: NetStream. Es-
sentially, NetStreams stream over external sequences of bytes which are
interactively generated, i.e., via a request, wait, response sequence. In
this way, NetStreams are analogous to Random—they are “generating”
streams, rather than “iterating” streams.

Adding basic stream support for a new type of NetResource, whether
new hardware or a new transport protocol, does not require modifying
NetStream at all. One merely must implement in one’s new NetResource
some methods for reading, writing, and waiting for something to read
or write.24 NetStream does the rest. Of course, one may wish to add

22The performance advantage of streams is a classic Smalltalk tip. Flow incorporates
several performancing tunings for external resources, including buffering. One nice thing
about Flow’s factoring of the Stream hierarchy is that these performance tunings typically
come for free for new resources.

23Of course, there are more sophisticated types of streams one might want to have for
reading and writing things other than simple sequences of bytes. For example, NetMes-
sages provide for streaming to structured text message formats, such as that defined by
RFC822. But notice how in Flow, these are orthogonal to the resource streamed over.

24The actual four methods are, respectively, #next:into:startingAt:,

12



some convenience methods to NetStream, or a subclass, for managing the
streamed over resource (much as FileStream does with #binary, #text, and
so on), but for the actually streaming functionality, no more is needed.

With these two layers, Flow merely provides an elegant architecture for
accessing and implementing rather low level features—even NetStream
only deals with reading and writing bytes. It is in the third layer i.e., the
Correspondents hierarchy that supplies aid for implementing (and then
using) the various Internet services. It supports sending and receiving
email or news (POP and SMTP clients), browsing or serving web pages
(HTTP client and server), interacting with chat servers (IRC) or a Telnet
server, and makes it easy to add custom net protocols, printer drivers,
connection and synchroniztion with palmtops, and so on. Flow separates
protocol from transport. So, where squeak currently includes behavior for
protocals like POP and HTTP in subclasses of Socket, Flow applications
provide it subclasses of Client and Server. Unfortunately, Flow 1 includes
none of the protocol specific classes, so it is a little hard to say what im-
plementing and using them is like. However, the included abstract classes
(Correspondent, Client, and Server) do provide a few hints, at least for
implementation issues. Correspondent abstracts transport mechanism,
stream creation, and connecting/disconnecting. Client adds support for
making requests and sending commands to a server, whereas Server has
some support for managing (multiple) client connections, server status,
and responding to client requests.

Overall, Flow provides a remarkably well-organized approach to deal-
ing both with new hardware and low-level system facilities, and with new
application level protocols. It works hard to minimize repetition, tedium,
and distracting details. It also embodies a coherent model of external, and
thus network, services with cleanly separatedg concerns. While this par-
ticular model may not be to everyone’s taste, clearly it is the mark against
which alternative proposals will have to measure themselves.

#nextPut:from:startingAt:, #waitForReadabilityTimeoutAfter:, and #waitForWriteability.

13


