
Squeak For Non-Native Speakers

Noel Rappin

Chief Technical Architect

Echobridge

Introduction
Welcome to Squeak! If you are reading this book, it means that you are
interested in learning more about the exciting range of applications and
activities that are being built in Squeak. If you are reading this chapter, it
means that you’d like a quick tour of the basics of using Squeak before
learning about its internal implementation, or seeing how it can be applied
as a web server, 3D graphics engine, sound synthesizer, handwriting
recognizer, cheese grater, and so on.1 As you’ll see demonstrated in the
later chapters of this book, it’s very hard to start talking about all the
features of Squeak without sounding like the host of a late-night
infomercial (It’s an object-oriented programming languages, and not one,
but two interface packages, and a programming environment, and a web
server! Now how much would you pay? Did we mention it’s completely
cross-platform?)

If you have never programmed in Squeak before, a short introduction
is in order before you move on to the advanced topics. The goal of this
chapter is to provide you with enough information about Squeak to
understand the code samples and design principles in the later chapters,
and allow you to experiment with it on your own – experimentation is a
major part of the Squeak world view. You won’t leave this chapter
knowing every keyboard shortcut and message in Squeak – there’s just too
much. You will come out of this chapter with a place to start your own
Squeak experience, and an understanding of the design principles behind
Squeak, and how they differ from other languages you may be familiar
with.

You are a member of the target audience for this chapter if you are an
intermediate to advanced programmer, completely comfortable with basic
concepts like: function, conditional, loop, variable, type. I assume that
you’ve done at least enough object-oriented programming to be familiar
with concepts such as class, instance, method, and inheritance. It will be
helpful if at least some of that object-oriented experience is in C++ or Java

1 Okay, just kidding about the cheese grater. All the other ones, though, are real.

2

Squeak For Non-Native Speakers

– I’ll be using those as comparisons. (previous Smalltalk experience is a
plus, but not a requirement). It’s entirely possible that even though
you’ve done some OO programming, you’ve never really gotten what all
the fuss was about. Hopefully we’ll show you the reason here.

If that describes you, than this chapter should be at exactly the right
place to help you jump to Squeak. If you’ve never done any object-
oriented programming before, you might be better of starting with a general
introduction to OOP before diving in here.

Feeling Right At Home
The first thing to show you in the tour of Squeak is how to get it and how
to feel at home in the environment. Squeak’s programming environment is
a direct ancestor of the first Smalltalk programming environments written
at Xerox PARC. While it is still in many ways more powerful than most
programming environment created since, it also takes a little getting used to
if you are more comfortable with say, CodeWarrior or Visual C++.

Getting, Having, Playing

The first step to using Squeak is to download it off the internet, and start
it on your system. The initial implementation of Squeak was written for
the MacOS. Within weeks of the first release, it was ported to Windows.
Since then, Squeak has been ported to several varieties of UNIX, BeOS,
DOS, a number of flavors of Windows CE, a Motorola chip running
without an OS, and so on. The process of starting Squeak is broadly
similar across platforms – any operating system quirks not discussed here
should be available from the main Squeak site at http://www.squeak.org.

To download Squeak, first head to http://www.squeak.org and click
on the link for downloading. In most cases, you will find an archive (ZIP,
StuffIt, or tar) matching your OS of choice2. Download that archive in
binary mode, and expand it into a directory on your machine. You must
perform the download in binary mode, or some of the files may be
corrupted by your download program reinterpreting the line endings
incorrectly. The CD accompanying this book also contains a Squeak
package for several operating systems, which includes the code discussed
throughout this book.

2 Some of the less common UNIX and other OS versions distribute VM source

code, rather than binary. Compiling the VM is beyond this chapter, but the resources
linked from Squeak.org should get you started.

3

Squeak For Non-Native Speakers

The archive contains at least four files, three of which are identical no
matter which platform you are running. Much of the cross-platform
power of Squeak comes from the fact that over 90% of the data you
download in your archive is identical no matter what platform you are
using.

As of this writing, the current release of Squeak is 2.8, and your
archive will contain the following files (file names may vary slightly from
operating system to operating system, or from Squeak version to Squeak
version).

• An image file: squeak2.8.image. The image file contains the entire
binary state of your Squeak system. This includes the complete
state of all objects known to the system, as well as all compiled code,
and various global preferences that have been set. The image file can
be thought of as a complete memory dump of the entire squeak
system. In many respects, the image is the system. Images are
completely compatible across platform – you can save an image in
one platform and load it in another. You can also have more than one
image saved under different names – if, for example, you have two
different Squeak projects with different needs.

• A sources file: squeakV2.sources. The sources file contains all
of the text source code that was part of the Squeak system at the
time of the Squeak 2.0 release. Don’t change the name of this file –
Squeak will look for it when it’s time to display source code.

• A changes file: squeak2.8.changes. The changes file contains all
the text source code that has been added or changed in Squeak since
the 2.0 release. All the changes you make in Squeak by adding or
modifying code will also be stored in the changes file. The changes
file belongs to the image file of the same name – if you save your
image under a new name, you will get a new changes file. The
implication of this for you is that all the changes you make to your
Squeak system can be viewed, undone, and shared.

• An executable virtual machine file. The exact name of this file
changes from platform to platform. The VM file, which for most
purposes you won’t have to look at, does the background grunt work
of converting platform independent Squeak code into platform
dependent machine code. If this sounds familiar to you Java folks,
well, where do you think they got the idea from? As compared to
the Java VM, the Squeak one is much smaller (in fact, much of it is

4

Squeak For Non-Native Speakers

written in Squeak code translated by Squeak to C) – which is one of
the reasons why Squeak has been so easy to port.3

In addition to the above files, your Squeak package may include
optional, platform dependent, plug-ins. These files provide support for
other OS dependent features such as 3D graphics and sound.

Once you’ve downloaded the files and dropped them all into a
directory, starting up Squeak is a simple matter of running the VM
executable with an image file as an argument. In the MacOS, simply
double-clicking on an image file is enough. On Win32 machines, dragging
the image file over the VM file works, as does using the Explorer to bind
.image files to the VM executable file. On UNIX systems, the VM file can
be invoked from the command line, with the image file as an argument.

Once you’ve launched Squeak in whatever OS, you will be treated to a
main window in a particularly memorable shade of light green. There will
be two open windows on top of that – one labeled “Welcome to Squeak
2.7” and the other labeled “Getting Started”. Along the left side are a
series of minimized windows labeled “Play With Me” numbered 1 through
8.

Figure 1: Squeak Welcome Screen

3 Squeak’s small VM increases flexibility at some cost in speed. Performance is

increased by including native versions of the most commonly called Squeak code in the
VM, called a primitive. If the native primitive fails, the system executes the Squeak
version instead.

5

Squeak For Non-Native Speakers

Now, having launched Squeak successfully, you’re probably
wondering how you actually do anything. Time for the next section…

Environmental Concerns

Squeak’s interface and environment are a direct descendent of the original
Smalltalk-80 system, itself one of the progenitors of all the window and
mouse based interfaces you see on your desktop today. That said, Squeak
is likely to seem slightly different from your standard Windows or Mac
program – you’ll immediately notice that Squeak doesn’t use menu bars,
for one thing. In fact, it’s more useful to think of Squeak as it’s own
operating system piggy-backing on your existing system rather than
merely a program running on whatever OS is controlling the rest of your
desktop – many Squeakers stay within Squeak for nearly all their daily
computing tasks.

The mouse and keyboard are still the basic modes of interaction with
Squeak. The keyboard works pretty much the way keyboards work. As
for the mouse, it will almost work the way you expect. Squeak assumes

6

Squeak For Non-Native Speakers

you have a three-button mouse, regardless of how many buttons your
mouse actually has. The left button is used for pointing and selecting.
The right button brings up a context-specific menu for whatever window
you are in, and the center button brings up a menu of window activities
(close, resize, change label) for the currently active window. In practice,
you’ll rarely use the center button – most of its features are available
separately in the title bar of the window. If you are stuck with a Windows
two-button mouse, center clicks are simulated with alt-left click.4 On a
Mac, right clicks are represented with cmd-click, and center clicks are opt-
click. Occasionally, you’ll see references to the three buttons as “red,
yellow, and blue”, a reference to the names used for the mouse buttons on
the original Xerox Alto, but those names are not common anymore. Table
1 has a quick-reference chart of the buttons and their common meanings.

Button: Left Center Right

Also Known As: Red Yellow Blue

Generally Used
For:

Pointing,
selecting

Window
manipulation

Context
sensitive menu

Windows 2-
Button
Equivalent:

Left Click Alt-Left Click Right Click

Mac 1-Button
Equivalent:

Click Opt-Click Cmd-Click

Table 1: Squeak Mouse Buttons

Playing around with the Squeak opening window, you’ll notice that
clicking on either of the large windows makes the window active, and also
causes a scroll-bar to be displayed to the left of the window. Clicking on
the desktop brings up a menu of common system functions including
saving and quitting, that I’ll refer to as the World Menu (also known as the
Desktop menu, depending on which GUI you are using, but World Menu
is so much cooler sounding).

Clicking on the smaller windows on the side will make them active,
and display a close box on their left, and a maximize box on the right.
(Don’t close them yet, we’re not done with them – if you do accidentally

4 If you do have a three-button mouse in Windows, you can get the third button to

work by right-clicking on the Squeak window toolbar (or it’s button in the system tray),
going to VM Preferences, and selecting “Use 3 Button Mouse Mapping”

7

Squeak For Non-Native Speakers

close them, click anywhere on the desktop not covered by a window, and
select quit. When prompted to save before quitting, select no. Then
restart Squeak – your image will appear just as before.5

Figure 2: Some of the Play With Me Windows

Now, click on the window labeled “Play With Me 1”, and maximize
it. It turns out to display a window with some scroll bars and lists.
Notice that clicking on this desktop causes a menu to display which looks
slightly different than the World Menu on the background desktop. This
is because Squeak actually has two completely distinct graphics/interface
packages. The initial desktop uses MVC, which is based on Smalltalk-
80’s original Model, View, Controller framework. However, the Play
With Me’s and most of the newer Squeak interface work are in Morphic,

5 Which is an important point that will be discussed later – ordinarily you do save

your image when quitting, otherwise changes you make are not saved.

8

Squeak For Non-Native Speakers

an interface package based on a system originally created for the Self
language. From the user perspective of viewing and displaying code, the
two packages are similar (Morphic is somewhat jazzier graphically and
more fully featured), and most of the topics here will be applicable to both
unless otherwise noted.

Now open “Play With Me 3”. It opens into what looks like a
thumbnail sketch of a Squeak desktop. It is, in fact, a thumbnail sketch of
a Squeak desktop – a fact you can confirm by clicking on it, and choosing
“enter project.” Play With Me 3 is an example of a Squeak project.
Projects are separate environments within squeak allow you to maintain a
separate desktop and a separate set of code changes for each one. Being
able to specify different screen preferences for different projects is nice (I
usually give different projects different background colors, so I can tell
what I’m working on at a glance). The real benefit to projects, however, is
that the changes made to the image in each project are stored separately,
allowing code in a project to be transferred more easily. We’ll see more
about this in a few pages when we discuss change sets.

You get out of a project by clicking on the desktop to get the World
Menu, and selecting either “previous project”, which takes you back to the
project you just left, or “jump to project”, which gives you a list of all
projects in the system and lets you choose which one to go to.

 Saving and quitting are also tasks that you’d like to do once in a
while from your programming environment (even if the following chapters
make a compelling case for never quitting Squeak, saving frequently is
recommended). In Squeak, saving is an action you perform on the image as
a whole – not on individual methods or classes of code. Individual
methods or classes of code can be filed out as text, for storage or as a way
to package software for distribution. New code methods are accepted into
the image, and the image is then saved to disk. Storing the image to disk
saves not only the code, but also the state of any global variables in the
system. Not saving the image to disk means that any changes you’ve
made in the image are gone (code changes are usually accessible in the
.changes file, but must be reaccepted). To avoid this, you should get in the
habit of saving the image frequently.

Given the above discussion, the bottom items on the World Menu –
Save, Save As…, Save and Quit, and Quit – behave as you’d expect. Save
As… allows you to create a clone of your image file. Quit will prompt
you for a save before actually quitting. Windows users should take care
not to exit Squeak by using the upper-right close box – that box will not
give you the save prompt, rather, it will ask you if you want to quit
Squeak without saving. Generally, you should resist this temptation.

9

Squeak For Non-Native Speakers

Open Some Windows, Feel The Breeze

The Squeak user interface has a variety of specialized windows for code
browsing, evaluation, and inspection. However, you’ll likely spend the
majority of your Squeak time in three windows, the System Browser, the
Workspace, and the Transcript.

To start your exploration of these windows, access the World Menu
from whatever project you happen to be in. Select “Open”, and from the
submenu, first select a Workspace, then select a Transcript. You are
rewarded with two blank windows – one a pale yellow, and the other a
burnt orange. It seems modest, but this is the beginning of Squeaking.

Select the Workspace (but make sure the Transcript is visible), and
type the following (capitalization and parentheses are important):

Transcript show: (2 + 2) asString

With the cursor at the end of the line, right click the mouse, and select
“do it” from the menu. If everything went correctly, you’ll see a four
show up in the Transcript window. If things don’t go correctly you’ll see
an error window. For now, just close it and try again.

What’s happening? The Workspace window is a text editor that
allows you to evaluate Squeak code. The Transcript Window is a global
space that is always available, and is used for returning values and for
debugging purposes. The “do it” command sends text to the Squeak
interpreter for evaluation (either the line the cursor is on, or a multi-line
group of selected text). This particular line of code is adding 2 + 2,
converting the result to a string, and asking the Transcript to display the
result (4, I hope).

Actually, you don’t need the Transcript to show results. On a fresh
workspace line, type the following:

2 squared.

 Again, right-click with the cursor at the end of that line, but this time
select “print it.” The result (who didn’t get 4 again?) will appear in the
workspace. The “print it” command causes the code to be sent to the
interpreter, and then the result returned by that code is written to the
window at the end of the selection. Notice that the result is selected, so
that it can be easily overwritten by the next words you type.

10

Squeak For Non-Native Speakers

Figure 3: Transcript and Workspace

Go to another fresh line and type:

‘abc’ reversed.

Be sure and use single quotes, and not double quotes. This time,
right-click and select ‘inspect it’. A new window opens, titled “String”,
with “self, all inst vars, 1, 2, 3” along the left side. “Inspect it” causes
Squeak to evaluate code and open an inspector window on the result.
Inspector windows show the values of all the component variables of an
object, and can be opened on any Squeak object. In this case, “self” shows
the object as a whole, in this case, the string ‘cba’, while the “1,2,3”

11

Squeak For Non-Native Speakers

listings show the ASCII values for the individual characters that make up
the string. Inspector windows are very helpful in debugging large and
complex Squeak objects.

Figure 4: An Inspector Window

Now that you’ve seen individual lines of code, it’s time to take a peek
at the mother lode. Go to the World Menu, select “open”, and then select
“browser”. A window will open, titled “System Browser”. It has four
panes across the top half, and a single pane taking up the bottom half.

Figure 5: The System Browser

The System Browser allows you to view every single line of code that
makes up Squeak, as well as being the main window for adding and editing

12

Squeak For Non-Native Speakers

your own code. It is therefore a bit of an understatement to say that being
able to use this browser effectively is critical to efficient Squeaking.

The top four panes allow you to browse and narrow your search to
specific methods of Squeak code. From left to right:

• Category Pane: This pane presents categories, groups of Squeak
classes arranged by functionality (the arranging is for human
categorization only). Browsing up and down his column will give
you some idea of the breadth of Squeak. Right-clicking in this pane
will allow you to do things like search for a specific class or add a
new category. Selecting a category brings up a list of classes in the…

• Class Pane: This pane presents all the classes that are members of a
particular category. These are the classes that make up Squeak’s
object-oriented hierarchy. Right-clicking in this pane will bring up a
menu of options for more information about the selected class.
Pressing the “?” button will bring up a comment about the class. The
“class” and “instance” buttons control what kind of information
about the class is displayed. Selecting a class brings up a list of
method categories in the…

• Method Category Pane: This pane presents a list of method
categories for a particular class. The categories, which are for human
readability only, divide the functionality of a class into more easily
browsed chunks. Right-clicking on this menu allows you to add,
rename, or organize categories. Selecting a category brings up a list of
methods in the…

• Method Pane: This pane gives you a list of methods in the selected
category of the selected class. Right-clicking here gives you a menu
of more information about the selected method. Selecting a method
allows you to see the code in the code pane.

The code pane takes up the bottom half of the System Browser and
allows you to view and edit Squeak code. From here you can also create
new classes and methods.

As I mentioned, the System Browser contains all the code that runs
Squeak, as well as the code that you will write. Since over 95% of Squeak
is written in Squeak that includes just about everything. The code that
displays the System Browser, interprets and evaluates text, the file
system, the examples you’ll see in this book. Some of the code covers the
most current cutting-edge multimedia formats, like Flash. Some of the
code is so old that the comments refer to the Xerox Alto. Feeling a little

13

Squeak For Non-Native Speakers

overwhelmed is a common first reaction. Feeling empowered is a common
second one.

This run through the basics of the Squeak interface is necessarily
brief, and I’ve left out pages of things like keyboard shortcuts, and how to
change the colors. The end of this chapter will tell you where to look for
that information. As for us, it’s time to look at Squeak, the programming
language, in more detail.

Think Small
Smalltalk has a different structure than the object-oriented programming
languages that you are most likely to be familiar with. Unlike C++ or Java,
all variables in Smalltalk are objects, including integers, Booleans, floating
point numbers, and characters. There are no “basic types” to clutter up
the syntax. In addition, most of the structures that we traditionally think
of as syntax, such as loops and conditionals, are implemented as part of
the Smalltalk object library, and are not special syntactic forms. Smalltalk
is designed around a very few syntax rules, applied consistently
throughout the language, and providing for maximum flexibility for the
programmer. Most of the language issues in this chapter also apply to
other dialects of Smalltalk, but a few of them do not (and the interface
details are Squeak specific). To minimize confusion, I will continue to
refer to the environment and language as Squeak, rather than Smalltalk.

Squeak in a Note Card (Who needs a whole nutshell?)

The basic syntax of Squeak can be summarized easily on a 3x5 note card.
Every line of Squeak code is evaluated in exactly the same way.

• Every variable is an object. Like C++ and Java, every object is
an instance of a class, and has its instance variables and
methods determined by that class. Unlike C++ and Java, there
are no basic types that are not objects.

• All Squeak code is triggered by a message being sent to a
specific object. The object replies to a message by evaluating a
method of the same name. If the object does not have such a
method, its parent object is checked for the method, and so on
up until either the method is found, or an error is raised.

• All methods return a value.

• There are three types of messages.

14

Squeak For Non-Native Speakers

o unary messages, such as 3 negated. The syntax of a
unary message is <object> <messagename>

o binary messages, such as a + b. The syntax of a
binary message is <object> <messagename>
<object>.

o keyword messages such as Transcript show: a. The
syntax of a keyword message is <object>
<messagepart>: <object>, where there can be
multiple <messagepart>: <object> pairs that make
up a single message.

• All code is evaluated from left to right, unary messages first,
binary messages second, and keyword messages last.
Parentheses are used as in other programming languages to
force order of evaluation, and are frequently used to mark the
boundaries of keyword messages, where that boundary might
not be clear from the unparenthisized code.

• In an assignment statement, the right hand side is evaluated,
and the symbol on the left hand side is assigned the resulting
value.

And that’s it. Every line of Squeak code follows exactly that
pattern6.

Applying the Rules

The next thing you need to understand about Squeak’s syntax rules are
that there are no exceptions for things such as, say, traditional operator
precedence. Operator precedence in Squeak is strictly left to right. So, for
example: 2 + 3 * 6 will evaluate to 30, not 20 as you would expect in most
languages. If you want it to evaluate to 20, you need 2 + (3 * 6). Most
Squeakers, consider this a small price to pay for the consistency and
readability of Smalltalk code.

Here’s an incorrect line of code for computing the length of the
hypotenuse of a right triangle7:

6 Okay, one exception – the syntax ^object for returning the result of a method.

Alan Kay explains that this can be thought of as a message sent back to the calling
object.

7 Squeak currently uses two separate symbols for assignment – the more familiar :=
syntax, as well as the underscore character _, which is displayed as a left-pointing arrow.
The two are functionally identical.

15

Squeak For Non-Native Speakers

hypotenuse := 3 squared + 4 squared sqrt.

The sequence of messages evaluated in this example is as follows:

• On the right hand side of the equation. The interpreter
evaluates the unary messages from left to right before it can
evaluate the binary message +. The first unary message is 3
squared, which returns the integer object 9.

• The second unary message is 4 squared, which returns 16.

• At this point we have 9 + 16 sqrt, and the interpreter still has
a unary message to evaluate before it can perform the addition.
16 sqrt returns 4.

• Now the addition is performed, returning 13.

• Hypotenuse is set to 13.

It’s not uncommon to have this kind of message traffic jam in Squeak.
Parentheses are the traffic cops of choice, turning the line of code into:

hypotenuse := (3 squared + 4 squared) sqrt.

The sequence of messages is the same until after message number 2,
after which the sequence becomes:

• At this point we have (9 + 16) sqrt. The system can
perform the addition, which returns 25.

• The interpreter now has 25 sqrt, which returns 5.

• Hypotenuse is set to 5

Object Orientation

The object-oriented semantics of Squeak are geared towards simplicity,
elegance and flexibility, without the syntactic clutter of C++ and Java. To
a programmer coming to Squeak from either of those languages, the Squeak
object-oriented structures may seem to be missing features. After working
with Squeak for a while, though, you are more likely to realize that the
ease of working in Squeak more than makes up for the more complex and
rarely used feature set of other object-oriented languages.

16

Squeak For Non-Native Speakers

Creating Objects

To start, Squeak’s object-oriented hierarchy allows only single
inheritance. Multiple inheritance is not supported8, and there is no feature
analogous to Java interfaces9 or C++ templates (the dynamic nature of
ordinary Squeak objects is what templates are trying to emulate). All
classes in Squeak inherit from the class Object, which has more
functionality than its Java counterpart.

To create a new class of your own, open a System Browser, and
select any category in the first pane. The code pane will show the
following:

Object subclass: #NameOfClass

instanceVariableNames: 'instVarName1 instVarName2'

classVariableNames: 'ClassVarName1 ClassVarName2'

poolDictionaries: ''

category: 'Kernel-Methods'

This is a template for class creation. All you need to do is replace
each slot with your needed values. Replace Object with the expected
superclass of the new class. Replace NameOfClass with the name of the
new class (but leave the pound sign – that tells Squeak to consider the
name a symbol literal rather than a variable). By complier-enforced
convention, class names begin with capital letters. Replace 'instVarName1
instVarName2' with the list of instance variables in this class, separated by
spaces. Replace 'ClassVarName1 ClassVarName2' with the list of class
variables. We’ll create a class called “person” for the rest of these
examples. Change the code so that it reads:

Object subclass: #Person

instanceVariableNames: ‘firstName lastName’

classVariableNames: ‘Population’

poolDictionaries: ''

category: 'Tutorial'

When you are done, right click in the code pane, and select “accept”.
And just like that, a new class that you can select in the System Browser.
You may need to right click in the category pane and select “update” to see
the new category. There is nothing special about this code – it’s just a
Squeak message being sent to the class Object and creating a new subclass.

8 Although it’s actually not hard at all to hack it into the Squeak system by

modifying the Object class – it’s just rarely worth the trouble.
9 Although some Smalltalk dialects do have features similar to interfaces, and it’s

not out of the question that Squeak will have one someday.

17

Squeak For Non-Native Speakers

Each Squeak class defines instance variables and instance methods.
Each instance, as you might expect, gets it’s own copy of the instance
variables, and can respond to the messages corresponding to the instance
methods. By convention, instance variables start with lower case letters,
and are mixed upper and lower case, i.e., “firstName”. Any instance
variable can be assigned any Squeak object as a value – there is no static
typing in Squeak.

A Squeak instance variable can only be accessed from within that class
or one of it’s subclasses. In C++ terminology, all Squeak instance
variables are protected. (Java’s protected keyword also includes access
within packages – there is no similar access path in Squeak). All access to
the variable from outside the class must go through accessor methods. By
convention, the getter method is just the name of the variable, and the
setter method is a keyword message using the name of the variable and
taking one parameter. For example, to get the firstName of an instance of a
class Person, you would say:

aPerson firstName.

And to set the variable, you would use.

aPerson firstName: ‘noel’.

Which shows another piece of Squeak syntax – the use of single
quotes around string literals.

Note that you do have to explicitly write the getter and setter
methods.10 To do that, select Person in the class pane, and select one of
the elements in the method category pane. The code pane should read like
this:

message selector and argument names

"comment stating purpose of message"

| temporary variable names |

statements

This is a template for method code. The name of the method and
keywords goes in the first line. A comment is inserted into the double
quotes. A list of temporary variables for the method goes between the
pipe characters, separated by spaces, and the code itself goes after that.
When you are done typing code into the code pane, right click in that pane
and select “accept”. If correct, the code is compiled into the Squeak image

10 There is a Squeak preference that you can set that will automatically create them

when called, but it’s best to get in the habit of just writing them – it’s easier to maintain
your encapsulation that way.

18

Squeak For Non-Native Speakers

– if not, error messages will appear in the code pane at the location of the
error.

The code for the getter message looks like this:

firstName

^firstName

And the setter looks like this

firstName: aString

firstName := aString

The ^ symbol indicates a returned value. The aString in the header
and first line of the setter is the local name for the object passed as the
argument. All Squeak methods return a value – if the message doesn’t
specify the value, it returns the object which received the message.

By the way, you don’t need to go all the way back to the message
template to write a new method – if you change the method name in the
first line of the code pane, the method will be accepted under the new
name without affecting the old method name. This can be a quick way to
write a number of similar methods.

Instances and Classes

Classes, like everything else in Squeak, are objects – in this case, instances
of the class Class. Object manipulation in Squeak is performed by
sending messages to the class Object – for example, the creation of a
subclass, as shown above.

A Squeak class creates a new instance by being passed the message
new, as in:

newPerson := Person new.

The new message acts very much like a default constructor in C++ or
Java, it returns a new instance. By default, all the instance variables of the
new instance are set to nil. The usual idiom is to create an instance
method called initialize, and refer to it as follows:

newPerson := Person new initialize.

Tracing the Squeak interpreter shows that the first message Person
new returns a new instance of the Person class. That new instance is
then sent the initialize message, and the initialized instance is then
assigned to newPerson.

You can create variables that belong to the class, rather to the
instances, by putting class variable names in the subclass creation
template. Class variable names are capitalized. Class variables behave

19

Squeak For Non-Native Speakers

similarly to static variables in C++ and Java, however, like Squeak instance
variables, they are all private, and can only be accessed within instances of
that class.

Classes can also have methods. To view and create them, select the
class button in the class pane of the system browser. One use of class
methods is to create constructors that take parameters, for example, the
message Array with: anObject which creates a new array and populates
the first index of that array with anObject. Another use is to provide
accessor methods for class variables.

Squeak has no explicit destructor methods. The Squeak garbage
collector periodically removes all instances with no external references.

Inheriting The Wealth

Squeak objects inherit all the instance variables and methods of their
ancestors all the way up to the class Object. Unlike C++ and Java,
Squeak is completely late-binding, and performs no compile-time type
checking to determine if the object actually answers the message being sent
(although you will get an error if no object anywhere in the image defines
that message). The method that is invoked from a message is based on the
identity of the receiving object at run time. The flexibility of this is shown
when you see a line of code that sends a message that is defined by a
number of Objects across the hierarchy:

anObject asString.

Any Squeak object that defines (or has an ancestor which defines) the
message asString can legally be assigned to anObject before this line is
run. The specific asString that is run depends on the identity of
anObject – Squeak first attempts to see if there is an asString instance
method in anObject’s class. If yes, that method is invoked. If not,
Squeak works up the hierarchy until an asString method is encountered.
If the method is not encountered, then Squeak will return an
doesNotUnderstand error.

To override a method in a parent class, just define a method of the
same name in the child class. If you need to call the parent method to
extend it, Squeak provides the pseudo-variable super, which responds to
the message sent as if starting one level up on the hierarchy. To refer to
the current instance itself, Squeak uses the pseudo-variable self, which can
be used either to send other messages to the same object, or to pass the
object as a parameter in a message, analogous to C++ and Java’s use of
this. The variable self can also be used as an argument to a message, as in
anotherObject doSomethingWith: self.

20

Squeak For Non-Native Speakers

Another important message for the Squeak object-oriented framework
is subclassResponsibilty, which is used similarly to the C++ and Java
keyword abstract. If you wish to declare a method in a superclass without
a definition, with the intent that all subclasses will need to define it, then
you create the method with the message body self
subclassResponsibility. You can still create instances of the class with
that method, but trying to invoke that method will result in an error.

Finding What You Need, Keeping What You Write
Most programmers coming to Squeak for the first time are used to
programming environments where the code is stored in a series of text files,
one for each class or module. The transition to Squeak’s image based
system can be jarring – it’s an entirely different way of organizing and
managing code. New Squeakers frequently struggle with finding existing
code, maintaining their new code, and sharing code with other
programmers. Squeak has a number of features that will assist with all of
these needs.

The Art of Browsing

The System Browser is where you will most likely spend the majority of
your time as a Squeaker. Each of the top panes in the browser window
has menu items that allow you to better find or organize code at that level
of detail. This section will cover most of them – there are other menu
items that have little to do with organization and navigation, and will not
be covered here. Many of these menu items call up windows that are
cousins to the System Browser – the same idea, but organized around a
different (usually smaller) structure. They all work essentially the same
way, however, and code can be created or edited in any of them just as it is
in the main System Browser.

Starting at the top left of the System Browser again, the category pane
is by itself a structure for navigation and organization. As mentioned
previously, the categories here are solely for human readability, the
compiler pays no attention to them. There is no better way to get a feel for
what Squeak provides you than to browse the category headings. To best
use that power for yourself, you should give each of your projects a
separate category. It’s also common to maintain a category or two of
common utility code that you would use in several projects. Large
projects are often broken into more than one category, separating interface
code from back end code is common.

21

Squeak For Non-Native Speakers

Among the menu items available by right clicking on this pane are:

find class Presents you with a dialog box where you can enter a
class name or name fragment and get a list of all classes in
the current image that match. Since most classes in the
Squeak image have names that roughly correspond to
their functionality, this can be extremely useful.

recent
classes

Presents a list of the last 16 classes selected in a System
Browser, and allows you to go directly to the one you
choose.

browse all Gives you a System Browser cousin that has no category
pane. Instead, the class pane contains all classes in the
Squeak image alphabetically.

browse Gives you a System Browser cousin that only displays
classes in the category selected.

reorganize The code pane becomes a series of lists corresponding to
the current relationship between categories and classes.
With a little judicious editing, cutting, and pasting, you
can move classes around to different categories. This
method is easier than editing each class if you are going to
change several classes at once.

update Updates the System Browser to take notice of category
additions or edits made in other System Browsers

The class pane has quite a few menu items to help you find related
classes and methods.

browse class Opens a new System Browser cousin with just the
method categories and methods of the selected class.

browse full Opens a new System Browser, with the selected class
selected.

hierarchy Puts, in the code pane, a text representation of the
object hierarchy containing the selected class.

spawn hierarchy Opens a new browser window. In the class pane of
this window is the object hierarchy containing the
selected class.

22

Squeak For Non-Native Speakers

spawn protocol Opens a new browser window with only one pane on
top that contains the methods of this class in
alphabetical order.

inst var refs… Gives you a menu of instance variables in this class.
Selecting one returns a browser with all methods in
the class that use that instance variable.

inst var defs… As above, but returning all methods in the class that
define (assign a value to) that instance variable.

class var refs… As “inst var refs…” but with class variables.

class vars Opens an inspector window which allows you to see
the current values of all class variables of the selected
class.

class refs Opens a browser with a list of all methods that
explicitly reference (by creating instances of, usually)
the selected class.

unsent methods Generates a menu of all methods in the current class
that are never sent by any object anywhere in the
current image.

Find method Generates a menu of the methods of the current class.
Selecting an item in that menu takes the current
browser to that method.

The method category pane has relatively few menu items for
navigation. Like the class category pane, it is not used by the compiler and
interpreter. You should take advantage of it, however, to help organize
classes that have multiple methods. Perusing the Squeak image, you will
see that certain category names are used by convention, including initialize
(or initialize-release), adding, accessing, testing, converting, and printing.
Using category names that are already enshrined in the image will make it
easier for others to read and use your code.

browse Opens a code browser with all the methods in the
selected category.

reorganize Similar to the item in the class category pane, this item
allows you to use text editing to organize the methods
into categories.

23

Squeak For Non-Native Speakers

alphabetize Organizes the categories in the pain to alphabetical
order.

remove empty Removes categories in the pane that have no methods.

The code pane has a very large menu attached to it (the bottom entry
“more…” opens a second page of the menu). Many of these items are
duplicates of the category pane, and I’m not going to repeat those.

senders of… Returns a code browser with a list of any method in
the image that sends the selected message.
However, not all of these methods are necessarily
sending it to this class all the time – if you are
searching on a common message such as add: it’s
likely that most of the messages are not aimed at the
class you are in – but they potentially could be.

implementers of… Returns a code browser with a list of every method
in the image that implements the same message in
other classes. This is where you would find all the
other add: messages in the image.

method
inheritance

Walks up the object hierarchy by returning a
browser that shows you all the superclasses of this
object that also define this message.

versions The Squeak change facility keeps track of every
accepted version of a method until specifically
purged. Selecting this shows you a browser of the
previous versions of this method.

implementers of
sent messages

Otherwise known as “what code can I break” this
item shows you every method of class that
implements any message sent in the selected
method. In other words, it’s anyplace in the image
that could be called from this code. Note that it
does not take into account any information in the
code about what classes are expected – it displays
everything.

change sets with
this method

A list of all change sets currently being maintained
in the image that contain this method.

inspect instances Inspect instances gives you an inspector window

24

Squeak For Non-Native Speakers

inspect
subinstances

with all instances of the selected class currently
living in the image. Inspect subimages also includes
instances of subclasses of the selected class.

Saving, Loading and Sharing

The easiest mechanism for saving Squeak code is merely to continuously
save the image. Using the image as your code repository has many
advantages. It stores the values of global and class variables, stores all
previous versions, and requires no particular attention to detail beyond
remembering to save every time you leave Squeak.

Unfortunately, there are a few drawbacks to relying on images.
Although it doesn’t happen often, it’s possible that an image can become
corrupted, and although the .changes file means you don’t actually lose
anything, recovering from an image crash can be a pain. Image files are
rather large, and maintaining regular backups will eat up space more
quickly than strictly necessary. Also, it’s difficult to share code in an
image file with another programmer who wants to install the code in their
image.

Squeak provides two related mechanisms for saving code as text for
easy backup and sharing. The simpler mechanism is called a file out. To
create a file out, right click on any of the top panes of the System Browser
or related code browser, and select the “file out” menu option. A file is
created in your Squeak directory containing the contents of the selected
category, class, method category, or method, depending on what pane you
started in. You do not get a dialog to choose the name – the name of the
selected item is used (for methods and method categories, it’s the name of
the class followed by the name of the method or category). The extensions
on file outs is “.st”. The file is text, and is more or less human readable –
it includes some delimiter characters to allow the compiler to read the file
back in.

To load a file out into your Squeak image, you open a File List by
selecting “open” from the main World Menu, and then selecting “file list”.
A file list lets you browse your system’s hard drive and has three panes.
The top right pane contains a list of the files and subdirectories in the
directory being browsed. The top left pane has the file tree down to the
current directory, and the bottom pane shows the contents of the current
file. To file in a .st file, browse to it so that the contents of the file are
showing in the bottom pane, right click, and select “file it in” from the
menu. Ordinarily, you’ll see a progress bar, and you may see some

25

Squeak For Non-Native Speakers

warnings in a Transcript window, if classes are loaded with dependencies
to classes that have not yet been loaded. Don’t worry – assuming all the
classes are in the file out at all, it will all be fine as soon as everything
loads. After filing in the .st file, do an update on the category pane of a
System Browser, and you will see that the new code has been loaded into
the image.

Figure 6: File List Window

File outs are limited, however, to only saving entire categories or
classes, and only one per file. To work around that limitation, you can use
a change set. Every change you make to the Squeak image is stored in one
or more change sets, and these sets can be saved as text and loaded just like
file outs (only with a .cs extension). So, any combination of changes you
have made at any time to the current image can be combined into a change
set, saved, and shared.

Easily said, but you do have to manage the change sets a little bit to
make sure the right changes are in the set you want. The easiest way to do
this is to create a Squeak project. By default, all changes made inside a
project are stored to a change set of the same name. So all the changes in a
project can be saved together, which is often good enough to distribute
code.

For a more targeted change set, you can use a Change Sorter. Change
Sorters allow you to see the contents of change sets, and to modify them.
You create a change sorter from the World Menu open command or from

26

Squeak For Non-Native Speakers

the World Menu changes submenu, and they come in two flavors, Simple
and Dual.

A simple change sorter shows you all the Change Sets in the system –
that’s the top left pane. The top right pane is a list of all classes that have
changes in the selected change set. The middle pane contains a list of
methods in the selected class that are in the change set (not necessarily a
list of all methods that the class has). And the bottom pane shows the
code of the selected method, and you can edit and accept code within it.

Figure 7: Simple Change Sorter

From the top left pane, you can right click and select “new change
set…” to create a new change set, then select it, right click and select
“make changes go to me”. From that point on, all changes in that project
will go to that change set. This is particularly nice if you know you are
only going to have a few changes that you want saved or distributed.

For even more control over the change set, a Dual Change Sorter looks
like two Simple Change Sorters glued together. You can create a new
change set on either side, and direct changes from the selected set on one
side to be copied to the selected set on the other side. This is the way to
go when you only want to distribute some of your recent changes, or if
you want to distribute a number of disparate changes across the image.

Change sets are filed out by right clicking on the change set pane and
selecting “file out”, and are loaded into the image by using the File List,
exactly as ordinary file outs are loaded.

27

Squeak For Non-Native Speakers

Figure 8: Dual Change Sorter

Classes You Should Know
By now, you are probably wondering exactly how all this plays out in
terms of things that you actually do during your day to day existence as a
programmer. There are several Squeak classes that you should be
acquainted with to support common programming structures.

Building With Blocks

Nearly all of Squeak’s structured programming constructs depend on a
class called BlockClosure, which has no direct analogue in C++ or Java.
A BlockClosure (usually just called a block) is a lump of compiled
Smalltalk code that can be passed to or returned from methods just like
any other object. The block can then be executed at any time.

You create a block by enclosing the code to be blocked inside brackets.
For example, type the following into a workspace:

[2 + 3]

Performing a printIt on that line of code gives you: [] in
UndefinedObject>>DoIt which mostly means that you have an
unevaluated BlockClosure. In order to get the block to do anything you
have to pass it the value message:

[2 + 3] value

28

Squeak For Non-Native Speakers

Performing a printIt on that line of code gives you five. You can also
assign the block to an object:

a := [2 + 3].

a value.

Will also evaluate to five.

Blocks can also have variables with scope local to the block, which
you create like so:11

[:a :b | a + b]

And evaluate by passing the message value: with parameters, for
example:

[:a :b | a + b] value: 2 value: 3

Will also evaluate to five.

Currently in the Squeak image you can have up to four value: in a
row. If you have more temporaries than that, you can either a) seriously
consider refactoring, b) add the message you want or c) use
valueWithArguments: anArray.

Big deal, right? I mean, we just came up with a really convoluted way
of doing things that we could already do anyway. The block concept is
very powerful, however, and allows Squeak objects to have much more
flexible behavior than their C++ or Java counterparts.

Consider, for example the problem of maintaining a sorted list.
Typically this is managed by comparing new objects in the list to the
existing objects. In Java 1.1 and in most C++ implementation, you have to
roll this functionality on your own. In Java 1.2, which partially replicates
the Smalltalk collection classes, this can be accomplished by having your
class implement the Comparable interface and adding a new method to
every class you want sorted. Or you can mess with inner classes. Forget
about easily sorting objects of different classes.

In Squeak, as we will see in more detail below, the same functionality
is accomplished quite easily in the class SortedCollection by the simple
application of a block. SortedCollection has as an instance variable
called sortBlock which, you can see by looking at the class method
SortedCollection>>new defaults to [:x :y | x <= y]. This deftly handles

11 It’s actually a long-standing issue in the Squeak implementation that the scope of

block variable is actually larger than the block itself. However, for reasons of good
programming practice and compatibility with future versions of Squeak, you should never
depend on a block variable being available outside the block.

29

Squeak For Non-Native Speakers

any object that implements the <= method, and if you want to sort on
some more complex set of values you just send a sortBlock: message to
your collection and pass it any complicated block that you want (well, it
does have to have the two temporary variables).

Blocks are commonly used to provide “pluggable” behavior to classes,
where a class might be called upon to provide the same kind of behavior in
many different contexts. As we’ll see below, control structures such as
loops and conditionals are prime examples – an if statement always does
the same thing structurally, even though the specific code being executed
changes each time. You can also easily create your own customized
control structures that also take blocks as arguments.

Conditionals, Loops and Other Programmer Type Things

Structured constructs such as conditionals and loops show off the elegance
of Squeak’s pure object-oriented system.

A standard if/then statement is handled in Squeak using the
ifTrue:ifFalse message, like this:

(a = b) ifTrue: [Transcript show: ‘equal’]

 ifFalse: [Transcript show: ‘not equal’].

The parameters passed to the ifTrue: and ifFalse: keywords are
blocks, and as discussed in the previous section can either be typed out as
shown above or be variables previously set to block values. When the
message is evaluated, one block or the other is evaluated based on the value
of the Boolean expression.

You may have noticed some hand waving in the previous sentence.
After all, I had made a point of saying that everything in Squeak is a
message sent to an object, and there are no syntactic special forms. What
object, then, receives the ifTrue:ifFalse: message?

Tracing out the receiver of the message shows that the = message is
sent to the object a. The = message returns either true or false, which
means that the message is actually being sent to either true or false. And,
if you point your System Browser at the ‘Kernel – Objects’ category,
you’ll see a class called False and a class called True. Each of these classes
is a Singleton, meaning that they each have only one instance object – false
and true respectively. (If I haven’t mentioned that Squeak is case-sensitive
so far, now would be a good time to squeeze that in – capital ‘T’ True is
the class, lowercase ‘t’ true is the value.). Further browsing in the True
class, shows that True>>ifTrue:ifFalse: is simply evaluated as follows:

ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock

30

Squeak For Non-Native Speakers

^trueAlternativeBlock value

In other words, to evaluate if-then statements, Squeak depends on the
principles of object and message dispatch to control which branch is
chosen.12 False>>ifTrue:ifFalse is the exact same one-liner, except that
it is the falseAlternativeBlock that is sent the variable message. The
messages ifFalse:ifTrue, ifTrue:, and ifFalse: are also available and are
implemented analogously.

Looping constructs in Squeak start similarly, with the WhileTrue:
and WhileFalse: messages. They are, as you would expect, Squeak’s
while loop messages. There is, however, one significant “gotcha”
compared to the if messages discussed above. Unlike the if messages,
which are sent to Boolean objects, the while messages are sent to blocks
that return Booleans, such as:

[x < 3] whileTrue: [x := x + 1].

There is a reason for this oddity, only I had to stare at my Squeak
screen for a few minutes before I remembered what it was. The block
allows the receiver of the message to be re-evaluated before each potential
loop iteration, whereas a static Boolean object would not be re-evaluated.
The argument block of the whileTrue: in this case, [x := x + 1], is
evaluated every time through the loop, for as long as the receiver block
continues to evaluate to true.

Squeak has two mechanisms that give for loop functionality. The
simplest is the timesRepeat: aBlock message which is sent to an
Integer:

4 timesRepeat: [Transcript print: ‘Hi’].

The block is repeated the value of the integer times. The times repeat
construct does not give you access to the index variable within the block.
To do that, you need the to:do: message, which looks like this.

1 to: 4 do: [:index | index + 1]

The to:do: message is sent to any integer13 and is defined thusly in
the Squeak image (although, usually compiled inline in practice).

to: stop do: aBlock

12 In practice, actually, the Squeak compiler usually inlines Boolean calls into the

method body for performance purposes.
13Technically the message can be sent to any number – it’s defined in the Number

superclass of all numbers. However, it’s really only meaningful for integers. The general
behavior of these kinds of intervals for non-integers was a raging topic of debate on the
Squeak mailing list a few months back.

31

Squeak For Non-Native Speakers

| nextValue |

nextValue _ self.

[nextValue <= stop]

whileTrue:

[aBlock value: nextValue.

nextValue _ nextValue + 1]

We’ve already discussed all the Squeak constructs in this code. The
first line creates a temporary value, which is then set to self – in this case
the number that receives the message (1 in the above call). Line 3 defines
the block that is the loop condition, while line 4 sets up the loop itself.
Inside the loop, the argument block [:index | index + 1] is sent the value:
message with the index of that pass through the loop, and then the counter
is incremented. This means that the argument block must have exactly one
temporary variable defined to accept the index value.

Squeak also offers the to:by:do: message, which allows you to
increment (or decrement) by integers other than one (but not zero). Given
the definition of to:do: it shouldn’t be hard to figure out how to:by:do: is
written – or you could just look it up in the Number class.

Collecting Objects

Just about every programming language created since about 1945 has
included some mechanism for manipulating a group of variables, most
commonly by using a numerically indexed array of values. Few languages,
however, offer as rich and varied set of collection options as Smalltalk. Of
all the features of Smalltalk, the collection classes are the ones that I most
frequently miss when I’m programming in other languages – it’s only in
recent years that other languages have even come close to the depth of the
Smalltalk collection hierarchy.

In Squeak, the collection classes are defined in the seven categories
prefixed with “Collection”, and yes, that’s seven categories, not seven
classes. In fact, it’s 65 classes in Squeak 2.7, if I’m counting right
(admittedly some of them are support classes, not actually collections).
Luckily, we only need to go through a few of them in order to get the
general idea. The majority of your collection class use in Squeak will
probably be in one of the concrete classes discussed in this section.

Usually, I find it easier to discuss the Squeak collection classes by
starting at the top of the hierarchy – the abstract class Collection – and
discussing the common features of all Squeak collections, then moving to
the concrete classes and discussing their specific functionality. If you find

32

Squeak For Non-Native Speakers

the next few paragraphs a little too abstract, it might be helpful to skip
down a little bit to the discussion of a specific collection, then come back.

A Squeak collection is… well, there’s no getting around the word
collection… a Squeak collection is a collection of Squeak objects.
Collections are not restricted as to the type or class of Squeak objects that
they can contain, and, unlike arrays in many other programming languages,
are not restricted to holding only objects of a single class at a time, nor are
you required to specify the class of objects to be contained when defining
or using the collection.14

The class Collection, which is abstract, defines the general protocol
for all collections. Collection defines many messages that can be sent to
any of the collection subclasses. Some of the most common, important, or
interesting include size, which returns the number of elements in the
collection. The method isEmpty, returns true or false based on whether
there are no elements in the collection. The message includes: anObject
returns true or false based on whether the argument is included in the
collection. Collections can be converted from one type to another by using
a method of the form asSortedCollection or asSet.

The most useful features of the collection class are the enumeration
classes that perform actions on each element of the collection. The general
form is exemplified by the do: aBlock message, which takes as an
argument a single variable block and sends each individual element in the
collection to the block. do: returns the original collection, so it is usually
called for its side effects. For example, size is defined as:

size

| tally |

tally := 0.

self do: [:each | tally := tally + 1].

^tally

This message simply runs a counter and increments it once for every
element in the collection. Notice that in this case, although the block takes
an argument, the argument is not used. It is needed, however, because the
implementations of do: will send the one argument value: message to the
block.

14 And having made that bold statement, I admit in the fine print that, while it’s

true for most collections, certain collections do limit themselves to specific classes for
performance reasons, or for other logical reasons. Strings, for example, are strictly
collections of characters.

33

Squeak For Non-Native Speakers

If you want to return a changed list, then you can use the collect:
aBlock message. Like do:, it takes a one argument block and applies it to
each element. However, rather than returning the original collection, it
returns the new collection formed by the result of each block application in
order.

You can also filter a list using select: aBlock, which takes a one
argument block and returns a collection containing all the elements for
which the block evaluates to true.

And most fun of all, there is inject: thisValue into: binaryBlock.
It’s actually easier to display the code for inject: then it is to describe it,
so here goes15 (I’ll give examples of inject: and the other enumeration
methods in a moment).

inject: thisValue into: binaryBlock

| nextValue |

nextValue := thisValue.

self do: [:each | nextValue := binaryBlock value: nextValue value:
each].

^nextValue

It is useful, really, and you’ll see how in just a moment.

The specific subclass of Collection that is most similar to what you
have likely done before is Array. Arrays in Squeak work quite similarly to
arrays in other programming languages. They have a fixed size, although in
Squeak that size is set at run time and not at compile time. Like other
Squeak collections, any array can have any time of objects as components.

Arrays are created in a variety of ways. Literal arrays are created
with a hash sign and parentheses: #(1 2 3) is a three element array. They
can also be created using the class method with: and it’s variants. Array
with: 1 with: 2 with: 3 creates the same three element array. So, as
promised, some enumeration examples:

#(1 2 3) collect: [:each | each squared] (1 4 9)

#(1 2 3) select: [:each | each even] (2)

#(1 2 3) inject: 0 into: [:subTotal :next | subTotal +
next].

6

15 Okay, if you do want it explained, here’s the method comment, “Accumulate a

running value associated with evaluating the argument, binaryBlock, with the current
value of the argument, thisValue, and the receiver as block arguments.”

34

Squeak For Non-Native Speakers

The inject one is the trickiest. Looking at the implementation of
inject: above, we can see that on the first pass through the loop, the block
is sent the arguments 0 and 1. It sums them and returns 1. Next time
through, the arguments are the running total,1 and the next list element, 2,
returning 3, and finally the arguments are 3 and 3, returning 6. It sums the
collection.

Arrays are accessed using the at: message: #(1 2 3) at: 2 returns 2.
This points out a large difference between Squeak arrays and C and Java –
the first element of a Squeak array has the index 1, not the index 0. Array
indices are set using the at: put: message: #(1 2 3) at: 2 put: 4 returns #(1
4 3). There are also handy messages like first and last, that return what
they say they return.

Arrays are actually only one of the subclasses of Collection that also
inherits from SequenceableCollection – essentially any collection
where the elements have a sequence, and thus integer indices. Another
useful subclass of SequenceableCollection is OrderedCollection,
which is an array without the fixed size restriction. In addition to the
array access messages, an OrderedCollection also responds to add:,
which adds an object to the end of the collection, and add addFirst:, which
adds one to the beginning. The combination makes OrderedCollection
useful for mimicking stacks or queues. And, as mentioned above in the
section on blocks, there is SortedCollection, which maintains the
sequence in sorted order based on a comparison block. Unlike Array and
OrderedCollection, SortedCollection does not respond to the message
at: put:, since the sorted collection insists on controlling where in the
sequence a new member belongs.

The sequenceable collection that you are likely to use most often,
however, is String, which is defined as an ArrayedCollection of
characters. String literals are enclosed in single quotes (double quotes are
reserved for comments). Strings in Squeak are mutable in content, but not
in length, and can be changed using the same basic methods discussed for
arrays. Strings are concatenated using the comma (,) operator – a method
that actually also works for all sequenceable collections, should you have
need of it. In addition to the existing methods for arrays, the String class
has quite a few utility methods, including, but hardly limited to, methods
for finding substrings and characters, comparison methods including
methods for comparing the beginning and end of strings, conversions to
date, number, HTML, and postscript, correction against a dictionary,
enumeration over the lines of the string, and so on. A complete listing is
obviously beyond the scope of this chapter, but most of the methods are
short, and well commented – digging through them is a good way to get a

35

Squeak For Non-Native Speakers

handle on some simple, useful Squeak code. Before you try and write
some fancy utility on strings, take a look here, since there’s a good chance
that somebody has beaten you to it.

The ordered collections are similar to what you are probably used to
from other programming collections, however the unordered collections
don’t have related functionality in most languages. The simplest of these
is Bag. Bag is about as simple as a collection gets. It stores anything
you put in it, as many times as you put it in, in no particular order.16

Items are added to the bag using the add: anObject message, and are
retrieved using… well, items in a bag aren’t usually retrieved the way that
items in an array are – bags have no order, and thus no index to grab the
item. However, you do have access to the full power of the enumeration
methods such as do: and select:.

If you come from a C background, you are probably wondering why
you would ever use a bag. Often, however, the enumeration routines are
everything you need in a collection – think of how many times you create
an array and only access it in the context of looping through it (and if you
do need it sorted, there’s always asSortedCollection). In addition, using
a bag when you don’t need the indexes leads to time and space efficiencies
– owing to the implementation of bags, testing for inclusion is particularly
fast, as compared to arrays. Perhaps more importantly, it provides a
comment on the programmers intentions and the expected use of the
collection.

More structured than the Bag is Set, which mimics a mathematical
set – an unordered collection of objects, each of which appears exactly
once. Set enforces this by overwriting the add: anObject message to
only add the new item if it does not already exist in the set. Converting a
collection to a set using asSet and then converting it back can be a useful
mechanism for removing duplicates from a collection.

The most useful unordered collection is Dictionary. A dictionary is a
collection of associations – a key and a value. Both the key and the value
can be any Squeak object. The keys are unique within a specific
dictionary, while the values need not be. Objects are placed in the
dictionary using at: anObject put: anObject and are retrieved using at:
anObject. Therefore:

sample := Dictionary new.

sample at: 'abc' put: 123.

16 In practice, each element of a Bag is only stored once, with a dictionary keeping

track of how many times it’s in the Bag – it’s more space efficient.

36

Squeak For Non-Native Speakers

sample at: 'abc'

The last line will return 123. A subsequent at:put: call to sample
with 'abc' as the key will replace the 123 value with the new value. You
may be familiar with this kind of functionality through Java Hashtables
(without, of course, having to typecast everything) or Perl associative
arrays (which are limited to string keys only).

Dictionary objects have additional enumeration functions – the
standard do: function enumerates over the values in the dictionary, but
there are also keysDo:, which takes a one-element block and enumerates
over the keys in the dictionary, and keysAndValuesDo:, which takes a
two element block and enumerates over the set of keys and values.(the key
is the first argument to the block, and the value is the second, and also
associationsDo: which takes a one argument block and applies it to all
the association objects in the dictionary. There are also functions for
testing and removing keys that are similar to the existing ones for handling
values in other collections.

You Also Should Know The Debugger…

Despite all the myriad tools Squeak has to help you in your programming,
it is nevertheless inevitable that you will have the occasional bug or two in
your code as you write it. In order to help you find your way through
that bug, here is a brief introduction to the Squeak debugger.

The debugger, in addition to being invoked by errors in the code, can
also be invoked at any point in the code by including the message self
halt.17 In order to show a typical use of the debugger, set up an example
using the person class defined above (this example assumes you have
getter and setter messages set for both the firstName and lastName
instance variables).

Let’s define the following method to display a person’s full name.
This method should concatenate three strings, the firstName of the
person, a space, and the lastName of the person.

fullName

^firstName, ‘ ‘ lastName

Unfortunately, I seem to have forgotten the commas between the
space and the last name – a potential syntax error. Let’s see what happens
if the code is evaluated.

17Remember, though, that everything in Squeak is an Object, including errors.

Both user defined halt messages (class Halt) and inadvertent MessageNotUnderstood
errors share the same superclass, and invoke the debugger through the same entry point.

37

Squeak For Non-Native Speakers

In the workspace, type:

A := Person new.

A firstName: ‘Noel’ .

A lastName: ‘Rappin.

A fullName

Now, select and doIt: for the entire chunk. You should get a message
like the one in Figure 9.

The error message box describes the error, and provides a stack trace
of all the messages leading to the error. It offers three options:

• Proceed: just keep going as though the halt had never been
called. Usually only useful after a programmer placed halt.

• Abandon: stops the message processing at that point.

• Debug: opens the debugger window.

Figure 9: Error Message Box

The debugger window allows you to track the behavior of your errant
program to a fine level of detail. The top pane of the window provides a
stack trace, starting from the beginning of execution and ending in the
message that actually invoked the error. Note, that as in this example, the
top message Object>>doesNotUnderstand: is not the message with the
actual error, rather, it’s the message invoked by Squeak in response to the
condition of asking an object to reply to a message that is not defined. It’s
not unusual to have to scroll down through one or two messages to reach
the method that actually contains the defect. Right-clicking on the top
pane gives you a menu that has both instructions for the debugger such as
step forward one message, and also some of the method search
functionality that is in the method pane of the system browser.

38

Squeak For Non-Native Speakers

Figure 10: Squeak Debugger

The middle pane is an ordinary code editor. The last message to begin
evaluation is highlighted. Right-clicking on this pane gives you everything
you would expect in a code editor, including the ability to edit and accept
code right in the debugger (and then, of course, continue onward as if
nothing had ever gone wrong).

The bottom pane is split in half. The left half contains a mini
inspector window for the object that is executing the message in the pane
(in other words, the object returned by evaluating self inside that message).
The top two entries are always “self” and “all inst vars” followed by a list
of all instance variables in that object. Selecting one of the items in the list
shows its value in the next pane, right clicking on one of them opens a
menu with many of the search functions we have seen before, and the
opportunity to open a full blown inspector window on the selected object.

The right half of the pane contains a similar list, but for the context of
the message send itself, and containing the values of any variables
temporary to the method. In this case, there are none, so all we see are the
entries for “this context”, and “all temp vars”. Again, you have the
opportunity to open full inspector windows on any of the objects listed.

Looking at the values in Object>>doesNotUnderstand, you can
see that in that context self is ‘ ‘ – a string containing only a space, and the
message is a Message with selector: lastName and arguments: ().
In other words, without the comma, Squeak is evaluating the code: ‘ ‘

39

Squeak For Non-Native Speakers

lastName as (what else) a message send. In this case the string ‘ ‘
doesn’t have a message called lastName, which is what triggers the error.

For More Information…
The main Squeak web site at http://www.squeak.org is relatively small, but
contains pointers to all the current versions in all operating systems
currently supported, and information about the Squeak mailing list. Much
of the other information on the site is not updated frequently.

The Squeak Swiki at http://minnow.cc.gatech.edu/squeak is updated
frequently, however. The Swiki is a communal, editable web site,
maintained by the Squeak community, and powered by Squeak – you’ll
read about it later in this book. The Swiki has all kinds of useful
information posted by Squeakers.

To get on the Squeak mailing list, send an email message to squeak-
request@cs.uiuc.edu with a subject of “Subscribe”. The Squeak mailing
list runs at about 50 messages per day, and is archived at
http://macos.tuwien.ac.at:9009/Server.home and
http://www.egroups.com/list/squeak/. Topics of discussion on the list
vary widely from the newest of newbie questions, to the arcane details of
the virtual machine, to Squeak Central messages about the future of
Squeak.

A very useful quick reference of Squeak, containing full lists of menus,
keyboard shortcuts, and documentation of key classes, is available on-line
at: http://www.gate.net/~werdna/squeak-qref.html.

Several Squeak specialties, including the Personal Web Server and
Siren maintain their own mailing lists. More information about these is
available on the Swiki.

Updates to the main Squeak image are available from within Squeak,
assuming you have an internet connection. Select help from the World
Menu, then select “update code from server”. A series of change sets will
be loaded onto your system (this will likely take several minutes). These
changes contain enhancements and bug fixes that have been added to the
core image by Squeak Central (many of them appear on the Squeak mailing
list first). Announcements of new updates are made to the Squeak mailing
list. Note that updates only affect the image itself, changes to the Virtual
Machine must be downloaded separately.

Happy Squeaking!

