
CHA P T E R 17
A simple network simulator

In this chapter, we develop a simulator for a computer network, step by step
from scratch. The program starts with a simplistic model of a computer net-
work, made of objects that represent different parts of a local network such
as packets, nodes, workstations, routers and hubs.

At first, we will just simulate the different steps of packet delivery and have
fun with the system. In a second step we will extend the basic functionali-
ties by adding extensions such as a hub and different packet routing strate-
gies. Doing so, we will revisit many object-oriented concepts such as poly-
morphism, encapsulation, hooks and templates. Finally this system could be
refined to become an experiment platform to explore and understand dis-
tributed algorithms.

Basic definitions and a starting point

We need to establish the basic model; what does the description above tell
us? A network is a number of interconnected nodes, which exchange data
packets. We will therefore probably need to model the nodes, the connection
links, and the packets:

• Nodes have addresses, can send and receive packets;

• Links connect two nodes together, and transmit packets between them;

• A packet transports a payload and has the address of the node to which
it should be delivered; if we want nodes to be able to answer (after re-
ception), packets should also have the address of the node which origi-
nally sent it.

201

A simple network simulator

mac

pc 1

hub
pc 2

impr

impr2

mac2

pung

Figure 17-1 Two little networks composed of nodes and sending packets over
links.

17.1 Packets are simple value objects

Packets seem to be the simplest objects in our model: we need to create
them, and ask them about the data they contain, and that’s about it. Once
created, a packet object is merely a passive data structure: it will not change
its data, knows nothing of the surrounding network, and has no behavior
that we can really talk about.

Let’s start by defining a test class and a first test sketching what creating and
looking at packets would look like:

TestCase subclass: #KANetworkEntitiesTest
instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Tests'

KANetworkEntitiesTest >> testPacketCreation
| src dest payload packet |
src := Object new.
dest := Object new.
payload := Object new.

packet := KANetworkPacket from: src to: dest payload: payload.

self assert: packet sourceAddress equals: src.
self assert: packet destinationAddress equals: dest.
self assert: packet payload equals: payload

By writing this unit test, we described how we think packets should be cre-
ated, using a from:to:payload: constructor message, and how it should be

202

17.2 Nodes are known by their address

accessed, using three messages sourceAddress, destinationAddress, and
payload. Since we have not yet decided what addresses and payloads should
look like, we just pass arbitrary objects as parameters; all that matters is that
when we ask the packet, it returns the correct object back.

Of course, if we now compile and run this test method, it will fail, because
the class KANetworkPacket has not been created yet, nor any of the four
above messages. You can either execute and let the system prompt you when
needed or we can define the class:
Object subclass: #KANetworkPacket

instanceVariableNames: 'sourceAddress destinationAddress payload'
classVariableNames: ''
category: 'NetworkSimulator-Core'

The class-side constructor method creates an instance, which it returns after
sending it an initialization message; nothing original as far as constructors
go:

KANetworkPacket class >> from: sourceAddress to: destinationAddress
payload: anObject
... Your code ...

That constructor will need to pass the initialization parameters to the new
instance. It’s preferable to define a single initialization method that takes
all needed parameters at once, since it is only supposed to be called when
creating packets and should not be confused with a setter:

KANetworkPacket >> initializeSource: source destination: destination
payload: anObject
... Your code ...

Once a packet is created, all we need to do with it is to obtain its payload, or
the addresses of its source or destination nodes. Define the following getters:

KANetworkPacket >> sourceAddress
... Your code ...

KANetworkPacket >> destinationAddress
... Your code ...

KANetworkPacket >> payload
... Your code ...

Now our test should be running and passing. That’s enough for our admit-
tedly simplistic model of packets; we completely ignore the layers of the OSI
model, but it could be an interesting exercise to model them more precisely.

17.2 Nodes are known by their address

The first obvious thing we can say about a network node is that if we want
to be able to send packets to it, then it should have an address; let’s translate

203

A simple network simulator

that into a test:
KANetworkEntitiesTest >> testNodeCreation

| address node |
address := Object new.
node := KANetworkNode withAddress: address.
self assert: node address equals: address

Like before, to run this test to completion, we will have to define the KANet-
workNode class:
Object subclass: #KANetworkNode

instanceVariableNames: 'address'
classVariableNames: ''
category: 'NetworkSimulator-Core'

Then a class-side constructor method taking the address of the new node as
parameter:

KANetworkNode class >> withAddress: aNetworkAddress
^ self new

initializeAddress: aNetworkAddress;
yourself

The constructor relies on an instance-side initialization method, and the test
asserts that the address accessor works; define them:

KANetworkNode >> initializeAddress: aNetworkAddress
... Your code ...

KANetworkNode >> address
... Your code ...

Again, our simplistic tests should now pass.

17.3 Links are one-way connections between nodes

After nodes and packets, what about looking at links? In the real world, net-
work cables are bidirectional, but that’s because they have wires going both
ways. Here, we’re going to keep it simple and define links as simple one-way
connections; to make a two-way connection, we will just use two links, one in
each direction.

However, creating links that know their source and destination nodes is not
sufficient: nodes also need to know about their outgoing links, otherwise they
cannot send packets. Let us write a test to cover this.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.

204

17.3 Links are one-way connections between nodes

link attach.

self assert: (node1 hasLinkTo: node2)

This test creates two nodes and a link; after telling the link to attach itself, we
check that it did so: the source node should confirm that it has an outgoing
link to the destination node. Note that the constructor could have registered
the link with node1, but we opted for a separate message attach instead,
because it’s bad form to have a constructor change other objets; this way we
can build links between arbitrary nodes and still have control of when the
connection really becomes part of the network model. For symmetry, we
could have specified that node2 has an incoming link from node1, but that
ends up not being necessary, so we leave that out for now.

Again, we need to define the class of links:

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination'
classVariableNames: ''
category: 'NetworkSimulator-Core'

A constructor that passes the two required parameters to an instance-side
initialization message:

KANetworkLink class >> from: sourceNode to: destinationNode
^ self new

initializeFrom: sourceNode to: destinationNode

As well as the initialization method and accessors:
KANetworkLink >> initializeFrom: sourceNode to: destinationNode

... Your code ...
KANetworkLink >> source

... Your code ...
KANetworkLink >> destination

... Your code ...

The attachmethod of a link should not (and cannot) directly modify the
source node, so it must delegate to it instead.

KANetworkLink >> attach
source attach: self

This is an example of separation of concerns: the link knows which node has
to do what, but only the node itself knows precisely how to do that. Here, if a
node knows about all its outgoing links, it means it has a collection of those,
and attaching a link adds it to that collection:

KANetworkNode >> attach: anOutgoingLink
outgoingLinks add: anOutgoingLink

205

A simple network simulator

withAddress:
attach: aLink
hasLinkTo: aNode

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach

source
destination

NetworkLink

Figure 17-2 Current API of our three main classes.

For this method to compile correctly, we will need to extend KANetworkNode
with the new instance variable outgoingLinks, and with the corresponding
initialization code:
KANetworkNode >> initialize

outgoingLinks := Set new.

And finally the unit test relied on a predicate method to define in KANetwor-
kNode:
KANetworkNode >> hasLinkTo: anotherNode

... Your code ...

The method hasLinkTo: should verify that there is at least one outgoing
links whose destination is the node passed as argument. We suggest to have
a look at the iterator anySatisfy: to express this logic.

Again, all the tests should now pass.

17.4 Making our objects more understandable

When programming we often make mistakes and it is important to help de-
veloper to address them. Le us put a breakpoint and try to understand the
objects.

KANetworkEntitiesTest >> testNodeLinking
| node1 node2 link |
node1 := KANetworkNode withAddress: #address1.
node2 := KANetworkNode withAddress: #address2.
link := KANetworkLink from: node1 to: node2.
link attach.
self halt.
self assert: (node1 hasLinkTo: node2)

Running the test will open a debugger as the one shown in Figure 17-3. We
get object but their textual representation is too generic to really help us.

The method printOn: is responsible to the printing of the object represen-
tation. We will then redefine this method for the different objects we have.

KANetworkNode >> printOn: aStream
aStream nextPutAll: 'Node ('.
aStream nextPutAll: address , ')'

206

17.5 Simulating the steps of packet delivery

Figure 17-3 Navigating specific objects having a generic presentation.

KANetworkLink >> printOn: aStream
aStream nextPutAll: 'Link'.
source

ifNotNil: [aStream
nextPutAll: ' ';
nextPutAll: source address].

destination
ifNotNil: [aStream

nextPutAll: ' -> ';
nextPutAll: destination address]

Now if we rerun the test we obtain a better user experience as shown in Fig-
ure 17-4: we can see the address of a node and the source and destination of
a link.

17.5 Simulating the steps of packet delivery

The next big feature is that nodes should be able to send and receive packets,
and links to transmit them.
KANetworkEntitiesTest >> testSendAndTransmit

| srcNode destNode link packet |
srcNode := KANetworkNode withAddress: #src.
destNode := KANetworkNode withAddress: #dest.

207

A simple network simulator

Figure 17-4 Navigating objects offering a customized presentation.

link := (KANetworkLink from: srcNode to: destNode) attach;
yourself.
packet := KANetworkPacket from: #address to: #dest payload:
#payload.

srcNode send: packet via: link.
self assert: (link isTransmitting: packet).
self deny: (destNode hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (destNode hasReceived: packet)

We create and setup two nodes, a link between them, and a packet. Now, to
control which packets get delivered in which order, we specify that it hap-
pens in separate, controlled steps. This will allow us to model packet delivery
precisely, to simulate latency, out-of-order reception, etc.:

• First, we tell the node to send the packet using the message send:via:.
At that point, the packet should be passed to the link for transmission,
but not completely delivered yet.

• Then, we tell the link to actually transmit the packet along using the
message transmit:, and thus the packet should be received by the
destination node.

208

17.6 Sending a packet

17.6 Sending a packet

To send a packet, the node emits it on the link:

KANetworkNode >> send: aPacket via: aLink
aLink emit: aPacket

For the simulation to be realistic, we do not want the packet to be delivered
right away; instead, emitting a packet really just stores it in the link, until
the user elects this packet to proceed using the transmit: message. Storing
packets requires adding an instance variable to KANetworkLink, as well as
specifying how this instance variable should be initialized.

Object subclass: #KANetworkLink
instanceVariableNames: 'source destination packetsToTransmit'
classVariableNames: ''
category: 'NetworkSimulator-Core'

KANetworkLink >> initialize
packetsToTransmit := OrderedCollection new

KANetworkLink >> emit: aPacket
"Packets are not transmitted right away, but stored.
Transmission is explicitly triggered later, by sending
#transmit:."

packetsToTransmit add: aPacket

We also add a testing method to check whether a given packet is currently
being transmitted by a link:

KANetworkLink >> isTransmitting: aPacket
... Your code ...

17.7 Transmitting across a link

Transmitting a packet means telling the link’s destination node to receive
it. Nodes only consume packets addressed to them; fortunately this is what
will happen in our test, so we can worry about the alternative case later
(notYetImplemented is a special message that we can use in place of code
that we will have to write eventually, but prefer to ignore for now).

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self notYetImplemented]

209

A simple network simulator

withAddress:
attach: aLink
consume: aPacket
receive: aPacket from: aLink
send: aPacket via: aLink
hasLinkTo: aNode
hasReceived: aPacket

address
NetworkNode

from:ad1 to: ad2 payload: any

sourceAddress
destinationAddress
payload

NetworkPacket

from: asNode to: dNode
attach
transmit: aPacket
isTransmitting: aPacket

source
destination

NetworkLink

Figure 17-5 Richer API.

Consuming a packet represents what the node will do with it at the applica-
tion level; for now let’s just define an empty consume: method, as a place-
holder:
KANetworkNode >> consume: aPacket

"Default handling is to do nothing."

After consuming the packet, we remember it did arrive; this is mostly for
testing and debugging, but someday we might want to simulate packet losses
and re-emissions. Don’t forget to declare and initialize the arrivedPackets
instance variable, along with its accessor:

KANetworkNode >> hasReceived: aPacket
... Your code ...

Now we can implement the transmit: message. A link can not transmit
packets that have not been sent via it, and once transmitted, the packet
should not be on the link anymore. We should remove it from the link list
of package to be transmitted and tell the destination to receive it using the
message receive:from:.
KANetworkLink >> transmit: aPacket

"Transmit aPacket to the destination node of the receiver link."
... Your code ...

At that point all our tests should pass. Note that the message notYetImple-
mented is not called, since our tests do not yet require routing. Figure 17-5
shows that the API of our classes is getting richer than before.

17.8 The loopback link

On a real network, when a node wants to send a packet to itself, it does not
need any connection to do so. In real-world networking stacks, loopback
routing shortcuts the lower networking layers; however, this is finer detail
than we are modeling here.

Still, we want to model the fact that the loopback link is a little special, so
each node will store its own loopback link, separately from the outgoing

210

17.8 The loopback link

links. We start to define a test.
KANetworkEntitiesTest >> testLoopback

| node packet |
node := KANetworkNode withAddress: #address.
packet := KANetworkPacket from: #address to: #address payload:
#payload.

node send: packet.
node loopback transmit: packet.

self assert: (node hasReceived: packet).
self deny: (node loopback isTransmitting: packet)

The loopback link is implicitely created as part of the node itself. We also
introduce a new send: message, which takes the responsibility of selecting
the link to emit the packet. For triggering packet transmission, we have to
use a specific accessor to find the loopback link of the node.

First, we have to add yet another instance variable in nodes:

Object subclass: #KANetworkNode
instanceVariableNames: 'address outgoingLinks loopback
arrivedPackets'
classVariableNames: ''
category: 'NetworkSimulator-Core'

As with all instance variables, we have to remember to make sure it is cor-
rectly initialized; we thus modify initialize:
KANetworkNode >> initialize

... Your code ...

The accessor has nothing special:

KANetworkNode >> loopback
^ loopback

And finally we can focus on the send: method and automatic link selection.
The method send: should be more generic than the method send:via: and
will be one exposed as a public entry point.

This method has to rely on some routing algorithm to identify which links
will transmit the packet closer to its destination. Since some routing algo-
rithms select more than one link, we will implement routing as an iteration
method, which evaluates the given block for each selected link.

KANetworkNode >> send: aPacket
"Send aPacket, leaving the responsibility of routing to the
node."
self

linksTowards: aPacket destinationAddress
do: [:link | self send: aPacket via: link]

211

A simple network simulator

One of the simplest routing algorithm is flooding: just send the packet via
every outgoing link. Obviously, this is a waste of bandwidth, but it works
without any knowledge of the network topology beyond the list of outgoing
links.

However, there is one case where we know how to route the packet: if the
destination address matches the one of the current node, we can select the
loopback link alone. The logic of linksTowards:do: is then to check is the
address we want to send the packet is the one of the node. In that case we
execute the block using the loopback link, else we simple iterate on the out-
going links of the receiver.

KANetworkNode >> linksTowards: anAddress do: aBlock
"Simple flood algorithm: route via all outgoing links.
However, just loopback if the receiver node is the routing
destination."
... Your code ...

Now we have the basic model working, and we can try more realistic exam-
ples.

17.9 Modeling the network itself

More realistic tests will require non-trivial networks. We thus need an ob-
ject that represents the network as a whole, to avoid keeping many nodes
and links in individual variables. We will introduce a new class KANetwork,
whose responsibility is to help us build, assemble then find the nodes and
links involved in a network.

Let’s start by creating another test class, to keep things in order:

TestCase subclass: #KANetworkTest
instanceVariableNames: 'net hub alone'
classVariableNames: ''
category: 'NetworkSimulator-Tests'

Since every test needs to rebuild the whole example network from scratch,
we specify so in the setUpmethod:

KANetworkTest >> setUp
self buildNetwork

Before anything else, let’s write a test that will pass once we’ve made progress;
we want to access network nodes given only their addresses. Here we check
that we get a hub node based on its address:

KANetworkTest >> testNetworkFindsNodesByAddress
self

assert: (net nodeAt: hub address ifNone: [self fail])
equals: hub

212

17.9 Modeling the network itself

mac

pc 1

hub

pc 2

impr

alone

ping

pong

Figure 17-6 A hub.

We will have to implement this nodeAt:ifNone: on our KANetwork class;
but first we need to decide how its instances are built. Let’s build network
net, with the main part connected in a star shape around a hub node; a pair
of nodes ping and pong are part of the network but not connected to hub,
and the alone node is just by itself, not even added to the network as shown
in Figure 17-6.

Expanding a network implies adding new connections and possibly new
nodes to it. If the net object understands a connect: aNode to: anoth-
erNodemessage, you should be able to build nodes and connect them into a
network that matches the figure.

KANetworkTest >> buildNetwork
alone := KANetworkNode withAddress: #alone.
net := KANetwork new.
hub := KANetworkNode withAddress: #hub.
#(mac pc1 pc2 prn)

do: [:addr |
| node |
node := KANetworkNode withAddress: addr.
net connect: node to: hub].

net connect: (KANetworkNode withAddress: #ping) to:
(KANetworkNode withAddress: #pong)

The name of the connect:to: message suggests that establishing the bidi-
rectional links is the responsibility of the net object. It also has to remember
enough info so we can inspect the network topology; we can simply store
nodes and links in a couple of sets, even though that representation is a little
redundant. Let’s define the class with two instance variables:
Object subclass: #KANetwork

instanceVariableNames: 'nodes links'
classVariableNames: ''
category: 'NetworkSimulator-Core'

213

A simple network simulator

Whenever we define an instance variable, initialization comes next:

KANetwork >> initialize
... Your code ...

Now we can give the network the possibility to create links. This method we
will use to add links to the network link collection.
KANetwork >> makeLinkFrom: aNode to: anotherNode
^ KANetworkLink from: aNode to: anotherNode

We add a low level method add: to add a node in a network.
KANetwork >> add: aNode

nodes add: aNode

To be able to test the network construction we add a little test message;

KANetwork >> doesRecordNode: aNode
^ nodes includes: aNode

Now, we can add isolated nodes to the network, even if it does not seem very
useful.

Connecting nodes.

Connecting nodes without ensuring that they are part of the network really
does not make sense. Therefore, when connecting nodes, we will first ensure
the nodes are added (by simply adding them in the node Set of the network),
then we create and attach links in both directions; finally we store both links.

Here is a test covering this aspect.

KANetworkTest >> testConnect
| netw hubb mac pc1 |
netw := KANetwork new.
hubb := KANetworkNode withAddress: #hub.
mac := KANetworkNode withAddress: #mac.
pc1 := KANetworkNode withAddress: #pc1.

netw connect: hubb to: mac.
self assert: (hubb hasLinkTo: mac).
self assert: (mac hasLinkTo: hubb).
self assert: (netw doesRecordNode: hubb).
self assert: (netw doesRecordNode: mac).

netw connect: hubb to: pc1.
self assert: (hubb hasLinkTo: pc1).
self assert: (mac hasLinkTo: hubb)

Now implement the connect:to: method; for concision, note that the at-
tachmethod we defined previously effectively returns the link.

214

17.10 Looking up nodes

KANetwork >> connect: aNode to: anotherNode
... Your code ...

The test testConnect should be green.

17.10 Looking up nodes

At this point, the test testNetworkFindsNodesByAddress should run through
setUp but fail in the unit test itself, because we still need to implement node
lookup. The base lookup should find the first node that has the requested ad-
dress, or evaluate a fall-back block (a perfect case for the detect:ifNone:
message):

KANetwork >> nodeAt: anAddress ifNone: noneBlock
... Your code ...

We can also make a convenience nodeAt: method for node lookup, that will
raise the predefined NotFound exception if it does not find the node. Let’s
first write a test which validates this behavior:
KANetworkTest >> testNetworkOnlyFindsAddedNodes

self
should: [net nodeAt: alone address]
raise: NotFound

Then we can simply express nodeAt: by delegating to nodeAt:ifNone:.
Note that raise an exception, you simply send the message signal to the ex-
ception class. Here we use the specific class method signalFor:in: defined
on the NotFound class.
KANetwork >> nodeAt: anAddress

^ self
nodeAt: anAddress
ifNone: [NotFound signalFor: anAddress in: self]

17.11 Looking up links

Next, we want to be able to lookup links between two nodes. Again we define
a new test:
KANetworkTest >> testNetworkFindsLinks

| link |
self

shouldnt: [link := net linkFrom: #pong to: #ping]
raise: NotFound.

self
assert: link source
equals: (net nodeAt: #pong).

self
assert: link destination

215

A simple network simulator

equals: (net nodeAt: #ping)

And we define the method linkFrom:to: returning the link between source
and destination nodes with matching addresses, and signalling NotFound if
no such link is found:
KANetwork >> linkFrom: sourceAddress to: destinationAddress

... Your code ...

Final check.

As a final check, let’s try some of the previous tests, first on the isolated
alone node, showing that loopback works even without a network connec-
tion:
KANetworkTest >> testSelfSend

| packet |
packet := KANetworkPacket

from: alone address
to: alone address
payload: #something.

self assert: (packet isAddressedTo: alone).
self assert: (packet isOriginatingFrom: alone).

alone send: packet.
self deny: (alone hasReceived: packet).
self assert: (alone loopback isTransmitting: packet).

alone loopback transmit: packet.
self deny: (alone loopback isTransmitting: packet).
self assert: (alone hasReceived: packet)

You can see that we used new convenience testing methods isAddressedTo:
and isOriginatingFrom: which help inspect the state of a simulated net-
work without explicitly comparing addresses. However, those methods should
not take part in network simulation code, since in the real world nodes can
never know their peers other than through their addresses.

KANetworkPacket >> isAddressedTo: aNode
^ destinationAddress = aNode address

KANetworkPacket >> isOriginatingFrom: aNode
^ sourceAddress = aNode address

The second test attempts transmitting a packet in the network, between the
directly connected nodes ping and pong:
KANetworkTest >> testDirectSend

| packet ping pong link |
packet := KANetworkPacket from: #ping to: #pong payload: #ball.
ping := net nodeAt: #ping.
pong := net nodeAt: #pong.

216

17.12 Packet delivery with forwarding

link := net linkFrom: #ping to: #pong.

ping send: packet.
self assert: (link isTransmitting: packet).
self deny: (pong hasReceived: packet).

link transmit: packet.
self deny: (link isTransmitting: packet).
self assert: (pong hasReceived: packet)

Both tests should pass with no additional work, since they just reproduce
what we already tested in KANetworkEntitiesTest and adding KANetwork
did not impact the established behavior of nodes, links, and packets.

17.12 Packet delivery with forwarding

Until now, we only tested packet delivery between directly connected nodes;
let’s try sending a node so that the packet has to be forwarded through the
hub.
KANetworkTest >> testSendViaHub

| hello mac pc1 firstLink secondLink |
hello := KANetworkPacket from: #mac to: #pc1 payload: 'Hello!'.
mac := net nodeAt: #mac.
pc1 := net nodeAt: #pc1.
firstLink := net linkFrom: #mac to: #hub.
secondLink := net linkFrom: #hub to: #pc1.

self assert: (hello isAddressedTo: pc1).
self assert: (hello isOriginatingFrom: mac).

mac send: hello.
self deny: (pc1 hasReceived: hello).
self assert: (firstLink isTransmitting: hello).

firstLink transmit: hello.
self deny: (pc1 hasReceived: hello).
self assert: (secondLink isTransmitting: hello).

secondLink transmit: hello.
self assert: (pc1 hasReceived: hello).

If you run this test, you will see that it fails because of the notYetImple-
mentedmessage we left earlier in receive:from:; it’s time to fix that! When
a node receives a packet but is not the recipient, it should forward the packet:

217

A simple network simulator

KANetworkNode >> receive: aPacket from: aLink
aPacket destinationAddress = address

ifTrue: [
self consume: aPacket.
arrivedPackets add: aPacket]

ifFalse: [self forward: aPacket from: aLink]

Now we need to implement packet forwarding, but there is a trap. An easy
solution would be to simply send: the packet again: the hub would send the
packet to all its connected nodes, one of which happens to be pc1, the recipi-
ent, so all is good!

Wrong…

The packet would be also sent to other nodes than the recipient; what would
those nodes do when they receive a packet not addressed to them? Forward
it. Where? To all their neighbours, which would forward it again... so when
would the forwarding stop?

To fix this, we need hubs to behave differently from nodes. In reality, hubs
work at the lower layers of the OSI model, but our simplified model does not
have that level of detail. We can approximate this by saying that upon recep-
tion of a packet addressed to another node, a hub should forward the packet,
but a normal node should just ignore it.

Let’s first define an empty forward:from: method for nodes, then add a
new class for hubs, which will be modeled as nodes with an actual implemen-
tation of forwarding:

KANetworkNode >> forward: aPacket from: arrivalLink
"Do nothing. Normal nodes do not route packets."

17.13 Introducing a new kind of node

Now we define the class KANetworkHub that will be the recipient of hub spe-
cific behavior.
KANetworkNode subclass: #KANetworkHub

instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator'

A hub does not have routing information, so all it can do is flood routing,
with a catch: the packet must not be sent back from where it arrived, be-
cause if that happens to be another hub the packet would bounce back and
forth indefinitely. We suggest to take advantage of the message linksTo-
wards:do: that performs an action for all given links to one address.

KANetworkHub >> forward: aPacket from: arrivalLink
... Your code ...

218

17.14 Other examples of specialized nodes

Now we can use a proper hub in our test, replacing the relevant line in KANet-
workTest >> buildNetwork, and check that the testSendViaHub unit test
passes.

hub := KANetworkHub withAddress: #hub.

You have now a nice basis for network simulation. In the following we will
present some possible extensions.

17.14 Other examples of specialized nodes

In this section we will present some extensions of the core to support differ-
ent scenarios. We will propose some tasks to make sure that the extensions
are fully working. In addition in this section we do not define tests and we
strongly encourage you to start to write tests. At the moment of the book
you should be ready to write your own tests and see their values to improve
your development process. So take this opportunity to practice.

Workstations counting received packets

We would like to know how many packets specific nodes are receiving. In
particular when a workstation consumes a packet, it simply increments a
packet counter.

Let’s start by subclassing KANetworkNode:
KANetworkNode subclass: #KANetworkWorkstation

instanceVariableNames: 'receivedCount'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

We need to initialize the receivedCount instance variable. Properly redefin-
ing initialize is enough, because the address is initialized separately in
the constructor method KANetworkNode >> withAddress:; however, it’s
really important not to forget the super initializemessage, because that
method does initialize the default node behavior.
KANetworkWorkstation >> initialize

super initialize.
receivedCount := 0

Now we can redefine consume: accordingly:

KANetworkWorkstation >> consume: aPacket
receivedCount := receivedCount + 1

Define accessors and the printOn: method for debugging. Define a test for
the behavior of workstation nodes.

219

A simple network simulator

Printers accumulating printouts

When a printer consumes a packet, it prints it; we can model the output tray
as a list where packet payloads get queued, and the supply tray as the num-
ber of blank sheets it contains.

The implementation is very similar; we subclass KANetworkNode to redefine
the consume: method:
KANetworkNode subclass: #KANetworkPrinter

instanceVariableNames: 'supply tray'
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkPrinter >> consume: aPacket
supply > 0 ifTrue: [^ self "no paper, do nothing"].

supply := supply - 1.
tray add: aPacket payload

Initialization is a bit different, though; since the standard initializemethod
has no argument, the only sensible initial value for the supply instance vari-
able is zero:
KANetworkPrinter >> initialize

super initialize.
supply := 0.
tray := OrderedCollection new

We therefore need a way to pass the initial supply of paper available to a
fresh instance:
KANetworkPrinter >> resupply: paperSheets

supply := supply + paperSheets

For convenience, we can provide an extended constructor to create printers
with a non-empty supply in one message:

KANetworkPrinter class >> withAddress: anAddress initialSupply:
paperSheets
^ (self withAddress: anAddress)

resupply: paperSheets;
yourself

Define accessors and the printOn: method for debugging purpose. Define
some test method for the behavior of printer nodes.

Servers answering requests

When a server node consumes a packet, it converts the payload to uppercase,
then sends that back to the sender of the request.

220

17.15 Conclusion

a1

A C

B

a2

c1b1

b2 b3

Figure 17-7 A possible extension: a more realistic network with a cycle between
three router nodes.

This is yet another subclass which redefines the consume: method, but this
time the node is stateless, so we have no initialization or accessor methods to
write:
KANetworkNode subclass: #KANetworkServer

instanceVariableNames: ''
classVariableNames: ''
category: 'NetworkSimulator-Nodes'

KANetworkServer >> consume: aPacket
| response |
response := aPacket payload asUppercase.
self send: (KANetworkPacket

from: self address
to: aPacket sourceAddress
payload: response)

Define a test for the behavior of server nodes.

17.15 Conclusion

In this chapter, we built a little network simulation system, step by step. We
showed the benefit of good protocol decompositions.

As a further extension, we suggest modeling a more realistic network with
cycles, as shown in Figure 17-7. Making this work properly will require re-
placing hubs with routers and flood routing with more realistic routing algo-
rithms.

Here is a possible setup for a new family of tests.

221

A simple network simulator

KARoutingNetworkTest >> buildNetwork
| routers |
net := KANetwork new.

routers := #(A B C) collect:
[:each | KANetworkHub withAddress: each].

net connect: routers first to: routers second.
net connect: routers second to: routers third.
net connect: routers third to: routers first.

#(a1 a2) do: [:addr |
net connect: routers first

to: (KANetworkNode withAddress: addr)].
#(b1 b2 b3) do: [:addr |

net connect: routers second
to: (KANetworkNode withAddress: addr)].

net connect: routers third
to: (KANetworkNode withAddress: #c1)

222

CHA P T E R 18
Snakes and ladders

Snakes and Ladders is a simple game suitable for teaching children how to
apply rules (http://en.wikipedia.org/wiki/Snakes_and_ladders). It is dull for
adults because there is absolutely no strategy involved, but this makes it easy
to implement! In this chapter you will implement SnakesAndLadders and we
use it as a pretext to explore design questions.

18.1 Game rules

Snakes and Ladders originated in India as part of a family of die games. The
game was introduced in England as ”Snakes and Ladders” (see Figure 18-1),
then the basic concept was introduced in the United States as Chutes and Lad-
ders. Here is a brief description of the rules:

• Players: Snakes and Ladders is played by two to four players, each
with her/his own token to move around the board.

Figure 18-1 An example Snakes and Ladders board with two ladders and a
snake.

223

http://en.wikipedia.org/wiki/Snakes_and_ladders

Snakes and ladders

• Moving Player: a player rolls a die, then moves the designated num-
ber of tiles, between one and six. Once he lands on a tile, she/he has to
perform any action designated by the tile. (Since the rules are fuzzy we
decided that we can have multiple players in the same tile).

• Ladders: If the tile a player lands on is at the bottom of a ladder, she/he
should climb the ladder, which brings him to a tile higher on the board.

• Snakes: If the tile a player lands on is a head snake, she/he must slide
down the snake, landing on a tile closer to the beginning.

• Winning: the winner is the player who gets to the last tile first, whether
by landing on it from a roll, or by reaching it with a ladder. We decided
that when the player does not move if he does not land directly on the
last tile, it does not move.

18.2 Game possible run

The code snippet below is a possible way to program this game. We take as a
board configuration the one depicted in Figure 18-1. It defines a board game
composed of 12 tiles with two ladders and one snake. We add two players
and then start the game.

| jill jack game |
game := SLGame new tileNumber: 12.
game
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

game
addPlayer: (SLPlayer new name: 'Jill');
addPlayer: (SLPlayer new name: 'Jack').

game play

Since we want to focus on the game logic, you will develop a textual version
of the game and avoid any lengthy user interface descriptions.

The following is an example game execution: Two players are on the first
tile. The board contains two ladders, [2->6] and [7->9], and one snake [5<-11].

Jill rolls a die and throws a 3 and moves to the corresponding tile. Jack rolls a
die and throws a 6 and moves to the corresponding tile and follow its effect,
climbing the ladder at tile 7 up to tile 9. Jack and Jill continue to alternate
taking turns until Jill ends up on the last tile.

[1<Jill><Jack>][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]
<Jill>throws 3:

[1<Jack>][2->6][3][4<Jill>][5][6][7->9][8][9][10][5<-11][12]
<Jack>throws 6:

[1][2->6][3][4<Jill>][5][6][7->9][8][9<Jack>][10][5<-11][12]

224

18.3 Potential objects and responsibilities

<Jill>throws 5:
[1][2->6][3][4][5][6][7->9][8][9<Jack><Jill>][10][5<-11][12]

<Jack>throws 1:
[1][2->6][3][4][5][6][7->9][8][9<Jill>][10<Jack>][5<-11][12]

<Jill>throws 3:
[1][2->6][3][4][5][6][7->9][8][9][10<Jack>][5<-11][12<Jill>]

18.3 Potential objects and responsibilities

Take a piece of paper, study the game rules and list any potential objects and
their behavior. This is an important exercise to practice, training yourself to
discover potential objects and classes.

Techniques such as Responsibility Driven Design exist to help programmers
during this phase of object discovery. Responsibility Driven Design sug-
gests analysing the documents describing a project, and turning the subjects
of sentences into candidate objects and grouping verbs as the behavior of
these objects. Any synonyms are identifed and used to reduce and gather
together similar objects or behavior. Then later objects are grouped into
classes. Some alternate approaches look for relationship patterns between
objects such as part-whole, locations, entity-owner... This could be the topic
of a full book.

Here we follow another path: sketching scenarios. We describe several sce-
narios and from such scenario we identify key playing objects.

• Scenario 1. The game is created with a number of tiles. The game must
have an end and start tiles. Ladders and snakes should be declared.

• Scenario 2. Players are declared. They start on the first tiles.

• Scenario 3. When player rolls a die, he should move the number of tiles
given by the die.

• Scenario 4. After moving the first player a given number of tiles based
on the result of die roll, this is the turn of the second player.

• Scenario 5. When a player arrives to a ladder start, it should be moved
to the ladder end.

• Scenario 6. When a player should move further than the end tile, he
does not move.

• Scenario 7. When a player ends its course on the end tile, he wins and
the game is finished.

Such scenarios are interesting because they are a good basis for tests.

225

Snakes and ladders

Possible class candidates

When reading the rules and the scenario, here is a list of possible classes that
we could use. We will refine it later and remove double or overlapping con-
cepts.

• Game: keeps track of the game state, the players, and whose turn it is.

• Board: keeps the tile configuration.

• Player: keeps track of location on the board and moving over tiles.

• Tile: keeps track of any player on it.

• Snake: is a special tile which sends a player back to an earlier tile.

• Ladder: is a special tile which sends a player ahead to a later tile.

• First Tile: holds multiple players at the beginning of the game.

• Last Tile: players must land exactly on this tile, or else they do not
move.

• Die: rolls and indicates the number of tiles that a player must move
over.

It is not clear if all the objects we identify by looking at the problem and its
scenario should be really turned into real objects. Also sometimes it is use-
ful to get more classes to capture behavior and state variations. We should
look to have an exact mapping between concepts identified in the problem
scenario or description and the implementation.

From analysing this list we can draw some observations:

• Game and Board are probably the same concept and we can merge
them.

• Die may be overkill. Having a full object just to produce a random
number may not be worth, especially since we do not have a super
fancy user interface showing the die rolling and other effect.

• Tile, Snake, Ladder, Last and First Tile all look like tiles with some vari-
ations or specific actions. We suspect that we can reuse some logic by
creating an inheritance hierarchy around the concept of Tile.

About representation

We can implement the same system using different implementation choices.
For example we could have only one class implementing all the game logic
and it would work. Some people may also argue that this is not a bad solu-
tion.

Object-oriented design favors the distribution of the state of the system to
different objects. It is often better to have objects with clear responsibilities.

226

18.4 About object-oriented design

Why? Because you should consider that you will have to rethink, modify or
extend your system. We should be able to understand and extend easily a
system to be able to reply to new requirements.

Not having a nice object-oriented decomposition for a simple game may not
be a problem, as soon as you will start to model a more complex system not
having a good decomposition will hurt you. Real life applications often have
a lifetime up to 25 years.

In addition, imagine that we are a game designer and we want to experiment
with different variations and tiles with new properties such as one super spe-
cial tile changing other tiles, adding snakes before the current player to slow
other participants.

18.4 About object-oriented design

When designing a system, you will often have questions that cannot be blindly
and automatically answered. Often there is no definite answer. This is what
is difficult with object-oriented design and this is why practicing is impor-
tant.

What composes the state of an object? The state of object should character-
ize the object over its lifetime. For example the name of player identifies the
player.

Now it may happen that some objects just because they are instances of dif-
ferent classes do not need the same state but still offer the same set of mes-
sages. For example the tiles and the ladder/snake tiles have probably a simi-
lar API but snake and ladder should hold information of their target tile.

We can also distinguish between the intrinsic state of an object (e.g., name of
player) and the state we use to represent the collaborators of an object.

The other important and difficult question is about the relationships be-
tween the objects. For example imagine that we model a tile as an object,
should this object points to the players it contains. Similarly, should a tile
knows its position or just the game should know the position of each tile.

Should the game object keep the position of the players or just the player.
The game should keep the players list since it should compute who is the
next player.

CRC cards

Some designers use CRC (for Class Responsibility Collaborators) cards: the
idea is to take the list of classes we identified above. For each of them, they
write on a little card: the class name, its responsibility in one or two sen-
tences and list its collaborators. Once this is done, they take a scenario and

227

Snakes and ladders

see how the objects can play such a scenario. Doing so they refine their de-
sign by adding more information (collaborators) to a class or merging two
classes or splitting a class into multiple ones when they fill that a class has
too many responsibilities.

To improve such process, some designers consider implementation concerns
or alternatives and may create objects to represent such variations.

Some heuristics

To help us taking decision, that are some heuristics:

• One object should have one main responsibility.

• Move behavior close to data. If a class defines the behavior of another
object, there is a good chance that other clients of this object are doing
the same and create duplicated and complex logic. If an object defines
a clear behavior, clients just invoke it without duplicating it.

• Prefer domain object over literal objects. As a general principle it is
better to get a reference to a more general objects than a simple num-
ber. Because we can then invoke a larger set of behavior.

Kind of data passed around

Even if in Pharo, everything is an object, storing a mere integer object in-
stead of a full tile can lead to different solutions. There is no perfect solution
mainly consequences of choices and you should learn how to assess a situa-
tion to see which one has better characteristics for your problem.

Here is a question illustrating the problem: Should a ladder know the tile it
forwards the player to or is the index of a tile enough?

When designing the ladder tile behavior, we should understand how we can
access the target tile where the player should be moved to. If we just give
the index of the target to a ladder, the tile has to be able to access the board
containing the tiles else it will be impossible to access to the target tile of the
ladder. The alternative, i.e., passing the tile looks nicer because it represents
a natural relation and there is no need to ask the board.

Agility to adapt

In addition it is important not to get stressed, writing tests that represent
parts or scenario we want to implement is a good way to make sure that we
can adapt in case we discover that we missed a point.

Now this game is interesting also from a test point of view because it may be
difficult to test the parts in isolation (i.e., without requiring to have a game
object).

228

18.5 Let us get started

18.5 Let us get started

You will follow an iterative process and test first approach. You will take
scenario implement a test and define the corresponding classes.

This game implementation raises an interesting question which is how do
we test the game state without hardcoding too much implementation details
in the tests themselves. Indeed tests that validate scenario only involving
public messages and high-level interfaces are more likely to be stable over
time and do not require modifications. Indeed if we check the exact class of
certain objects you will have to change the implementation as well as the
tests when modifying the implementation. In addition, since in Pharo the
tests are normal clients of the objects they test, writing some tests may force
us to define extra methods to access to private data.

But enough talking! Let us start by defining a test class named SLGameTest.
We will see in the course of development if we define other test classes. Our
feeling is that the tiles and players are objects with limited responsibility and
their responsibility is best illustrated (and then tested) when they interact
with each other in the context of a given game. Therefore the class SLGame-
Test describes the place in which relevant scenario will occur.

Define the class SLGameTest.
TestCase subclass: #SLGameTest

instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

One of the first scenario is that a game is composed of a certain number of
tiles.

We can write a test as follows but it does not have a lot of value. At the be-
ginning of the development, this is normal to have limited tests because we
do not have enough objects to interact with.

SLGameTest >> testCheckingSimpleGame

| game |
game := SLGame new tileNumber: 12.
self assert: game tileNumber equals: 12

Now we should make this test pass. Some strong advocates of TDD say that
we should code the first simplest method that would make the test pass and
go to the next one. Let us see what it would be (of course this method will be
changed later).

First you should define the class SLGame.

229

Snakes and ladders

Object subclass: #SLGame
instanceVariableNames: 'tiles'
classVariableNames: ''
package: 'SnakesAndLadders'

Now you can define the methods tileNumber: and tileNumber. This is not
really nice because we should get a collection of tiles and now we put a num-
ber.
SLGame >> tileNumber: aNumber
tiles := aNumber

SLGame >> tileNumber
^ tiles

These method definitions are enough to make our test pass. It means that
our test was not really good because tiles should hold a collection containing
the tiles and not just a number. We will address this point later.

18.6 A first real test

Since we would like to be able to check that our game is correct we can use
its textual representation and test it as a way to check the game state. The
following test should what we want.

SLGameTest >> testPrintingSimpleGame

| game |
game := SLGame new tileNumber: 12.
self
assert: game printString
equals: '[1][2][3][4][5][6][7][8][9][10][11][12]'

What we would like is that the printing of the game asks the tiles to print
themselves this way we will be able to take advantage that there will be dif-
ferent tiles in a modular way: i.e. we will not change the game to display the
ladder and snake just have different tiles with different behavior.

The first step is then to define a class named SLTile as follows:

Object subclass: #SLTile
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

Now we would like to test the printing of a single tile. So let us define a test
case named SLTileTest. This test case will test some basic behavior but it is
nice to decompose our implementation process. We are trying to minimize
the gap between one functionality and one test.

230

18.6 A first real test

TestCase subclass: #SLTileTest
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders-Test'

Now we can write a simple test to make sure that we can print a tile.

SLTileTest >> testPrinting

| tile |
tile := SLTile new position: 6.
self assert: tile printString equals: '[6]'

Tile position could have been managed by the game itself. But it means that
we would have to ask the game for the position of a given tile and while it
would work, it does not feel good. In Object-Oriented Design, we should dis-
tribute responsibilities to objects and their state is their first responsibility.
Since the position is an attribute of a tile, better define it there.

This is where you see that the fact that the code is running is not a quality
test for good Object-Oriented Design.

In particular it means that we should add an accessor to set the position and
to add an instance variable position to the class SLile. Execute the test.
You should get a debugger and use it to create a method position: as well
as the instance variable.

Now we can define the printOn: method for tiles as follows. We add a [into
the stream, then we asked the position to print itself in the stream by send-
ing it the message printOn: and we add] in the stream. Since the position
is a simple integer, the result of the position printOn: aStream expres-
sion is just to add a string representing the number in the stream.

SLTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << ']'

Your tile test should pass now. When we read the definition of the method
printOn: above we see that it also sends the message printOn: here to the
number used for the position. Indeed, we can send messages with the same
name to different objects and each object may react differently to these mes-
sages. We can also send a message with the same name than the method to
the receiver to perform a recursive call, but as with any recursive call we
should have a non recursive branch.

We are ready to finish the printing of the game itself. Now we can define the
method printOn: of the game to print all its tiles. Note that this will not
work since so far we did not create tiles.

231

Snakes and ladders

SLGame >> printOn: aStream

tiles do: [:aTile |
aTile printOn: aStream]

We modify the method tileNumber: to create an array of the given size and
store it inside the tiles instance variable and to put a new tile for each posi-
tion. Pay attention the tile should have the correct position.

SLGame >> tileNumber: aNumber
... Your code ...

Now your printing tests should be working both for the tile and the game.
But wait if we run the test testCheckingSimpleGame it fails. Indeed we did
not change the definition tileNumber. Do it and make sure that your tests
all pass. And save your code.

18.7 Accessing one tile

Now we will need to be able to ask the game for a given tile, for example with
the message tileAt:. Let us add a test for it.

SLGameTest >> testTileAt

| game |
game := SLGame new tileNumber: 12.
self assert: (game tileAt: 6) printString equals: '[6]'

Define the method tileAt:.
SLGame >> tileAt: aNumber
... Your code ...

18.8 Adding players

Now we should add players. The first scenario to test is that when we add a
player to game, it should be on the first tile.

Let us write a test: we create a game and a player. Then we add the player to
the game and the player should be part of the players of the first tile.

SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) players includes: jill).

232

18.8 Adding players

Object subclass: #SLPlayer
instanceVariableNames: 'name'
classVariableNames: ''
package: 'SnakesAndLadders'

Define the method name: in the class SLPlayer. Now we should think a bit
how we should manage the players. We suspect that the game itself should
get a list of players so that in the future it can ask each player to play its
turn. Notice the previous sentence: we say each player to play and not the
game to play the next turn - again this is Object-Oriented Design in action.

Now our test does not really cover the point that the game should keep track
of the players so we will not do it. Similarly we may wonder if a player should
know its position. At this point we do not know and we postpone this deci-
sion for another scenario.
SLGame >> addPlayer: aPlayer

(tiles at: 1) addPlayer: aPlayer

Now what is clear is that a tile should keep a player list. Add an instance
variable players to the SLTile class and initialize it to be an OrderedCol-
lection.
SLTile >> initialize

... Your code ...

Then implement the method addPlayer:
SLTile >> addPlayer: aPlayer

... Your code ...

Now all your tests should pass.

Let us the opportunity to write better tests. We should check that we can add
two players and that both are on the starting tile.

SLGameTest >> testSeveralPlayersAtStart

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
self assert: ((game tileAt: 1) players includes: jill).
self assert: ((game tileAt: 1) players includes: jack).

All the tests should pass. This is the time to save and take a break.

233

Snakes and ladders

Figure 18-2 Playground in action. Use Do it and go - to get an embedded inspec-
tor.

18.9 Avoid leaking implementation information

We are not really happy with the previous tests for example testPlayerAt-
Start.
SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) players includes: jill).

Indeed a test is a first client of our code. Here we see in the expression play-
ers includes: jill that we have to know that players are held in a collec-
tion and that this collection includes such a player.

It can be a real problem if later we decide to change how we manage players,
since we will have to change all the places using the result of the players
message.

Let us address this issue: define a method includesPlayer: that returns
whether a tile has the given player.

SLTile >> includesPlayer: aPlayer
... Your code ...

Now we can rewrite the two tests testPlayerAtStart and testSever-
alPlayersAtStart to use this new message.

234

18.10 About tools

SLGameTest >> testPlayerAtStart

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: ((game tileAt: 1) includesPlayer: jill).

SLGameTest >> testSeveralPlayersAtStart

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
self assert: ((game tileAt: 1) includesPlayer: jill).
self assert: ((game tileAt: 1) includesPlayer: jack).

18.10 About tools

Pharo is a living environment in which we can interact with the objects. Let
us see a bit of that in action now.

Type the following game creation in a playground (as shown in Figure 18-2).

| game jill jack |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jill.
game addPlayer: jack.
game

Now you can inspect the game either using the inspect command-i or send-
ing the message inspect to the game as in game inspect. You can also use
the do it and go menu item of a playground window. You should get a picture
similar to the one 18-3.

We see that the object is a SLGame instance and it has an instance variable
named tiles. You can navigate on the instance variables as shown in Fig-
ure 18-4. Figure 18-5 shows that we can navigate the object structure: here
we start from the game, go to the first tile and see the two players. At any
moment you can interact with the selected object sending it messages.

18.11 Displaying players

Navigating the structure of the game is nice when we want to debug and in-
teract with the game entities. Now we propose to display the player objects

235

Figure 18-3 Inspecting the game: a game instance and its instance variable
tiles.

Figure 18-4 Navigating inside the game: getting inside the tiles and checking the
players.

18.11 Displaying players

Figure 18-5 Navigating the objects using the navigation facilities of the inspector.

in a nicer way. We will reuse such behavior when printing the game to follow
the movement of the player on the board.

Since we love testing, let us write a test describing what we expect when dis-
playing a game.

SLGameTest >> testPrintingSimpleGameWithPlayers

| game jill jack |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill. "first player"
game addPlayer: jack.
self
assert: game printString
equals: '[1<Jill><Jack>][2][3][4][5][6][7][8][9][10][11][12]'

To make this test pass, you must define a printOn: on SLPlayer. Make sure
that the printOn: of SLTile also invokes this new method.

SLPlayer >> printOn: aStream
... Your code ...

Here is a possible implementation for the tile logic.

237

Snakes and ladders

SLTile >> printOn: aStream
aStream << '['.
position printOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].
aStream << ']'

Run your tests, they should pass.

18.12 Preparing to move players

To move the player we need to know the tile on which it will arrive. We want
to ask the game: what is the target tile if this player (for example, jill) is mov-
ing a given distance. Let us write a test for the message tileFor: aPlayer
atDistance: aNumber.
SLGameTest >> testTileForAtDistance

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: (game tileFor: jill atDistance: 4) position equals: 5.

What is implied is that a player should know its location or that the game
should start to look from the beginning to find what is the current position
of a player. The first option looks more reasonable in terms of efficiency and
this is the one we will implement.

Let us write a simpler test for the introduction of the position in a player.

SLGameTest >> testPlayerAtStartIsAtPosition1

| game jill |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: jill position equals: 1.

Define the methods position and position: in the class SLPlayer and add
an instance variable position to the class. If you run the test it should fail
saying that it got nil instead of one. This is normal because we never set the
position of a player. Modify the addPlayer: to handle this case.

SLGame >> addPlayer: aPlayer
... Your code ...

The test testPlayerAtStartIsAtPosition1 should now pass and we can
return to the testTileForAtDistance. Since we lost a bit track, the best
thing to do is to run our tests and check why they are failing. We get an error

238

18.13 Finding the tile of a player

saying that a game instance does not understand the message tileFor:at-
Distance: this is normal since we never implemented it. For now we do not
consider that a roll can bring the player further than the last tile.

Let us fix that now. Define the method tileFor:atDistance:
SLGame >> tileFor: aPlayer atDistance: aNumber

... Your code ...

Now all your test should pass and this is a good time to save your code.

18.13 Finding the tile of a player

We can start to move a player from a tile to another one. We should get the
tile destination using the message tileFor:atDistance: and add the player
there. Of course we should not forget that the tile where the player is cur-
rently positioned should be updated. So we need to know what is the tile of
the player.

Now once a player has position it is then easy to find the tile on top of which
it is. Let us write a test for it.
SLGameTest >> testTileOfPlayer

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
self assert: (game tileOfPlayer: jill) position equals: 1.

Implement the method tileOfPlayer:.
SLGame >> tileOfPlayer: aSLPlayer

... Your code ...

18.14 Moving to another tile

Now we are ready to work on moving a player from one tile to the other. Let
us express a test: we create only one player. We test that after the move, the
new position is the one of the target tile, that the original tile does not have
player and the target tile has effectively the player.

SLGameTest >> testMovePlayerADistance

| jill game |
game := SLGame new tileNumber: 12.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game movePlayer: jill distance: 4.
self assert: jill position equals: 5.

239

Snakes and ladders

self assert: (game tileAt: 1) players isEmpty.
self assert: ((game tileAt: 5) includesPlayer: jill).

What is hidden in this test is that we should be able to remove a player from
a tile.

Since we should remove the player of a tile when it moves, implement the
method
SLTile >> removePlayer: aPlayer
... Your code ...

Now propose an implementation of the method movePlayer: aPlayer dis-
tance: anInteger. You should get the destination tile for the player, re-
move the player from its current tile, add it to the destination tile and change
the position of the player to reflect its new position.

SLGame >> movePlayer: aPlayer distance: anInteger
... Your code ...

We suspect that when we will introduce ladder and snake tiles, we will have
to revisit this method because snakes and ladders do not store players just
move them around.

About our implementation

The implementation that we propose below for the method movePlayer:
aPlayer distance: anInteger is not as nice as we would like it to be.
Why? Because it does not give a chance to the tiles to extend this behavior
and our experience tells us that we will need it when we will introduce the
snake and ladder. We will discuss that when we will arrive there.
SLGame >> movePlayer: aPlayer distance: anInteger
| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) removePlayer: aPlayer.
targetTile addPlayer: aPlayer.
aPlayer position: targetTile position.

18.15 Snakes and ladders

Now we can introduce the two special tiles: the snakes and ladders. Let us
analyse a bit their behavior: when a player lands on such a tile, it is automat-
ically moved to another tile. As such, snake and ladder tiles do not need to
keep references to players because players never stay on them.

Snakes is really similar to ladders: we could just have a special kind of tiles
to manage them. Now we will define two separate classes so that we can add
extra behavior. Remember creating a class is cheap. One behavior we will

240

18.16 A hierarchy of tiles

tileAt:
tileOfPlayer:
tileFor:atDistance:
movePlayer:distance:

tiles
Game

addPlayer:
removePlayer:

players
position

Tile

name
position

Player

Figure 18-6 Current simple design: three classes with a player acting a simple
object.

implement is a different printed version so that we can identify the kind of
tile we have.

At the beginning of the chapter we used -> for ladders and <- for snakes.

[1<Jill><Jack>][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]

18.16 A hierarchy of tiles

We have now our default tile and two kinds of different active tiles. Now we
will split our current tile class to be able to reuse a bit of its state and behav-
ior with the new tiles. Our current tile class will then be one of the leaves of
our hierarchy tree.

To factor the behavior of the active tiles, we will introduce a new class named
ActiveTile. Once we will be done, we should have a hierarchy as the one
presented in the Figure 18-7.

Let us start create the hierarchy.

Split Tile class in two

Let us do the following actions:

• Using the class refactoring ”insert superclass” (click on the SLTile
and check the class refactoring menu), introduce a new superclass to
SLTile. Name it SLAbstractTile.

• Run the tests and they should pass.

• Using the class instance variable refactoring ”pull up”, push the posi-
tion instance variable

• Run the tests and they should pass.

241

Snakes and ladders

tileAt:
tileOfPlayer:
tileFor:atDistance:
movePlayer:distance:

tiles
Game

printOn:
position
AbstractTile

printOn:

name
position

Player

targetTile
ActiveTile

addPlayer:
removePlayer:
printOn:
includesPlayer:

players
Tile

printOn:
SnakeTile

printOn:
LadderTile

Figure 18-7 A hierarchy of tiles.

• Using the method refactoring ”push up”, push the methods position
and position:.

• Run the tests and they should pass.

What you see is that we did not execute the actions randomly but we want to
control that each step is under control using the tests.

Here are the classes and methods printOn:.
Object subclass: #SLAbstractTile
instanceVariableNames: 'position'
classVariableNames: ''
package: 'SnakesAndLadders'

Define a printOn: method so that all the subclasses can be displayed in the
board by their position.

SLAbstractTile >> printOn: aStream
aStream << '['.
position printOn: aStream.
aStream << ']'

SLAbstractTile subclass: #SLTile
instanceVariableNames: 'players'
classVariableNames: ''
package: 'SnakesAndLadders'

Adding snake and ladder tiles

Now we can add a new subclass to SLAbstractTile.

242

18.16 A hierarchy of tiles

SLAbstractTile subclass: #SLActiveTile
instanceVariableNames: 'targetTile'
classVariableNames: ''
package: 'SnakesAndLadders'

We add a method to: to set the destination tile.
SLActiveTile >> to: aTile

targetTile := aTile

Then we add the two new subclasses of SLActiveTile
SLActiveTile subclass: #SLSnakeTile

instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

SLSnakeTile >> printOn: aStream

aStream << '['.
targetTile position printOn: aStream.
aStream << '<-'.
position printOn: aStream.
aStream << ']'

SLActiveTile subclass: #SLLadderTile
instanceVariableNames: ''
classVariableNames: ''
package: 'SnakesAndLadders'

This is fun to see that the order when to print the position of the tile is dif-
ferent between the snakes and ladders.
SLLadderTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << '->'.
targetTile position printOn: aStream.
aStream << ']'

We did on purpose not to ask you to define tests to cover the changes. This
exercise should show you how long sequence of programming without adding
new tests expose us to potential bugs. They are often more stressful.

So let us add some tests to make sure that our code is correct.
SLTileTest >> testPrintingLadder

| tile |
tile := SLLadderTile new position: 2; to: (SLTile new position: 6).
self assert: tile printString equals: '[2->6]'

243

Snakes and ladders

SLTileTest >> testPrintingSnake

| tile |
tile := SLSnakeTile new position: 11; to: (SLTile new position: 5).
self assert: tile printString equals: '[5<-11]'

Run the tests and they should pass. Save your code. Take a rest!

18.17 New printing hook

When we look at the printing situation we see code duplication logic. For
example, we always see at least the repetition of the first and last expression.

SLTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].
aStream << ']'

SLLadderTile >> printOn: aStream

aStream << '['.
position printOn: aStream.
aStream << '->'.
targetTile position printOn: aStream.
aStream << ']'

Do you think that we can do better? What would be the solution?

In fact what we would like is to have a method that we can reuse and that
handles the output of '[]'. And in addition we would like to have another
method for the contents between the parentheses and that we can specialize
it. This way each class can define its own behavior for the inside part and
reuse the parenthesis part.

This is what you will do now. Let us split the printOn: method of the class
SLAbstractTile in two methods:

• a new method named printInsideOn: just printing the position, and

• the printOn: method using this new method.

SLAbstractTile >> printInsideOn: aStream

position printOn: aStream

Now define the method printOn: to produce the same behavior as before
but calling the message printInsideOn:.
SLAbstractTile >> printOn: aStream
... Your code ...

244

18.18 Using the new hook

printOn:
printInsideOn:

position
AbstractTile

targetTile
ActiveTile

addPlayer:
removePlayer:
printInsideOn:

players
Tile

printInsideOn:
SnakeTile

printInsideOn:
LadderTile

Figure 18-8 Introducing printInsideOn: as a new hook.

Run your tests and they should pass. You may have noticed that this is nor-
mal because none of them is covering the abstract tile. We should have been
more picky on our tests.

What you should see is that we will have only one method defining the be-
havior of representing the surrounding of a tile and this is much better if one
day we want to change it.

18.18 Using the new hook

Now you are ready to express the printing behavior of SLTile, SLSnake and
SLLadder in a much more compact fashion. Do not forget to remove the
printOn: methods in such classes, else they will hide the new behavior (If
you do not get why you should read again the chapter on inheritance). You
should get the situation depicted as in Figure 18-8.

Here is our definition for the printInsideOn: method of the class SLTile.
SLTile >> printInsideOn: aStream

super printInsideOn: aStream.
players do: [:aPlayer | aPlayer printOn: aStream].

What you should see is that we are invoking the default behavior (from the
class SLAbstractTile) using the super pseudo-variable and we enrich it
with the information of the players.

Define the one for the SLLadderTile class and the one for SLSnakeTile.
SLLadderTile >> printInsideOn: aStream

... Your code ...

245

Snakes and ladders

SLSnakeTile >> printInsideOn: aStream
... Your code ...

super does not have to be the first expression

Now we show you our definition of printInsideOn: for the class SLSnakeTile.
Why do we show it? Because it shows you that an expression invoking an
overriden method can be placed anywhere. It does not have to be the first
expression of a method. Here it is the last one.

SLSnakeTile >> printInsideOn: aStream

targetTile position printOn: aStream.
aStream << '<-'.
super printInsideOn: aStream

Do not forget to run your tests. And they should all pass.

18.19 About hooks and templates

If we look at what we did. We created what is called a Hook/Template.

• The template method is the printOn: method. It defines a context of
the execution of the hook methods.

• The printInsideOn: message is the hook that get specialized for each
subclass. It happens in the context of a template method.

What you should see is that the printOn: message is also a hook of the printString
message. There the printStringmethod is creating a context and send the
message printOn: which gets specialized.

The second point that we want to stress is that we turned expressions into
a self-message. We transformed the expressions position printOn: aS-
tream into self printInsideOn: aStream and such simple transformation
created a point of variation extensible using inheritance. Note that the ex-
pression could have been a lot more complex.

Finally what is important to realize is that even position printOn: aS-
tream creates a variation point. Imagine that we have multiple kind of po-
sitions, this expression will invoke the corresponding method on the object
that is currently referred to by position. Such position objects could or not
be organized in a hierarchy as soon as they offer a similar interface. So each
message is in fact a variation point in a program.

18.20 Snake and ladder declaration

Now we should add to the game some messages to declare snake and ladder
tiles. We propose to name the messages setLadderFrom:to: and setSnake-

246

18.21 Better tile protocol

From:to:. Now let us write a test and make sure that it fails before starting.

SLGameTest >> testFullGamePrintString

| game |
game := SLGame new tileNumber: 12.
game
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

self
assert: game printString
equals: '[1][2->6][3][4][5][6][7->9][8][9][10][5<-11][12]'

Define the method setSnakerFrom:to: that takes two positions, the first
one is the position of the tile and the second one is the position of the target.
Pay attention that the message to: of the active tiles expects a tile and not a
position.

SLGame >> setSnakeFrom: aSourcePosition to: aTargetPosition
... Your code ...

SLGame >> setLadderFrom: aSourcePosition to: aTargetPosition
... Your code ...

Run your tests! And save your code.

18.21 Better tile protocol

Now we should define what should happen when a player lands on an active
tiles (snake or ladder). Indeed for the normal tiles, we implemented that the
player change its position, then the origin tile loses the player and the re-
ceiving tile gains the player.

We implemented such behavior in the method movePlayer: aPlayer dis-
tance: anInteger shown below. We paid attention that a player cannot be
in two places at the same time: we remove it from its tile, then move it to its
destination.
SLGame >> movePlayer: aPlayer distance: anInteger

| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) removePlayer: aPlayer.
targetTile addPlayer: aPlayer.
aPlayer position: targetTile position.

At that moment we said that we did not like too much this implementation.
And now this is the time to understand why and do improve the situation.

First it would be good that the behavior to manage the entering and leaving
of a tile would be closer to the objects performing it. We have two solutions:

247

Snakes and ladders

we could move it to the tile or to the player class. Second we should take an-
other factor into play: different tiles have different behavior; normal tiles
manage players and active tiles are placing players on their target tile and
they do not manage players. Therefore it is more interesting to define a vari-
ation point on the tile because we will be able to exploit it for normal and
active tiles.

We propose to define two methods on the tile: one to accept a new player
named acceptPlayer: and to release a player named releasePlayer:. Let
us rewrite movePlayer: aPlayer distance: anInteger with such meth-
ods.
SLTile >> acceptPlayer: aPlayer
self addPlayer: aPlayer.
aPlayer position: position.

The use in this definition of self messages or direct instance variable access is
an indication that definition belongs to this class. Now we define the method
releasePlayer: as follows:

SLTile >> releasePlayer: aPlayer
self removePlayer: aPlayer

Defining the method releasePlayer: was not necessary but we did it be-
cause it is more symmetrical.

Now we can redefine movePlayer: aPlayer distance: anInteger.
SLGame >> movePlayer: aPlayer distance: anInteger
| targetTile |
targetTile := self tileFor: aPlayer atDistance: anInteger.
(self tileOfPlayer: aPlayer) releasePlayer: aPlayer.
targetTile acceptPlayer: aPlayer.

All the tests should pass. And this is the power of test driven development,
we change the implementation of our game and we can verify that we did
not change its behavior.

Another little improvement

Now we can improve the definition of acceptPlayer:. We can implement its
behavior partly on SLAbstractTile and partly on SLTile. This way the def-
inition of the methods are closer to the definition of the instance variables
and the state of the objects.

SLAbstractTile >> acceptPlayer: aPlayer
aPlayer position: position

SLTile >> acceptPlayer: aPlayer
super acceptPlayer: aPlayer.
self addPlayer: aPlayer

248

18.22 Active tile actions

printOn:
printInsideOn:
acceptPlayer:
releasePlayer:

position
AbstractTile

acceptPlayer:
targetTile
ActiveTile

addPlayer:
removePlayer:
printInsideOn:
includesPlayer:
acceptPlayer:
releasePlayer:

players
Tile

printInsideOn:
SnakeTile

printInsideOn:
LadderTile

Figure 18-9 acceptPlayer: and releasePlayer: new message.

Note that we change the order of execution by invoking the superclass be-
havior first (using super acceptPlayer: aPlayer) because we prefer to
invoke first the superclass method, because we prefer to think that a subclass
is extending an existing behavior.

To be complete, we define that releasePlayer: does nothing on SLAb-
stractTile. We define it to document the two faces of the protocol. Figure
18-9 shows the situation.
SLAbstractTile >> releasePlayer: aPlayer

"Do nothing by default, subclasses may modify this behavior."

18.22 Active tile actions

Now we are ready to implement the behavior of the active tiles. But.... yes we
will write a test first. What we want to test is that when a player lands on a
snake it falls back on the target and that the original tile does not have this
player anymore. This is what this test expresses.

SLGameTest >> testPlayerStepOnASnake

| jill game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

249

Snakes and ladders

jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game movePlayer: jill distance: 10.
self assert: jill position equals: 5.
self assert: (game tileAt: 1) players isEmpty.
self assert: ((game tileAt: 5) includesPlayer: jill).

Now we just have to implement it!

SLActiveTile >> acceptPlayer: aPlayer
... Your code ...

There is nothing to do for the message releasePlayer:, because the player
is never added to the active tile. Once you are done run the tests and save.

18.23 Alternating players

We are nearly finished with the game. First we should manage that each turn
a different player is playing and that the game finishes when the current
player lands on the final tile.

We would like to be able to:

• make the game play in automatic mode

• make the game one step at the time so that humans can play.

The logic for the automatic play can be expressed as follows:

play
[self isNotOver] whileTrue: [
self playPlayer: (self currentPlayer) roll: 6 atRandom]

Until the game is finished, the game identifies the current player and plays
this player for a given number given by a die of six faces. The expression 6
atRandom selects randomly a number between 1 and 6.

18.24 Player turns and current player

The game does not keep track of the players and their order. We will have to
support it so that each player can play in alternance. It will also help us to
compute the end of the game. Given a turn, we should identify the current
player.

The following test verifies that we obtain the correct player for a given turn.

SLGameTest >> testCurrentPlayer

| jack game jill |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.

250

18.25 How to find the logic of currentPlayer?

jill := SLPlayer new name: 'Jill'.
game addPlayer: jack; addPlayer: jill.
game turn: 1.
self assert: game currentPlayer equals: jack.
game turn: 2.
self assert: game currentPlayer equals: jill.
game turn: 3.
self assert: game currentPlayer equals: jack.

You should add two instance variables players and turn to the SLGame
class.

Then you should initialize the two new instance variables adequately: the
players instance variable to an OrderedCollection and the turn instance
variable to zero.
SLGame >> initialize

... Your code ...

You should modify the method addPlayer: to add the player to the list of
players as shown by the method below.

SLGame >> addPlayer: aPlayer
aPlayer position: 1.
players add: aPlayer.
(tiles at: 1) addPlayer: aPlayer

We define also the setter method turn: to help us for the test. This is where
you see that it would be good in Pharo to have the possibility to write tests
inside the class and not to be forced to add a method definition just for a test
but SUnit does not allow such behavior. One approach to resolve this, and
ensuring only test code makes use of turn:, is to use class extensions. We
make turn: belong to the *SnakesAndLadders-Test protocol. In this way if
we only load the SnakesAndLadders package then it will not include any test
specific methods.

SLGame >> turn: aNumber
turn := aNumber

18.25 How to find the logic of currentPlayer?

Now we should define the method currentPlayer. We will try to show you
how we brainstorm and experiment when we are looking for an algorithm or
even the logic of a simple method.

Imagine a moment that we have two players Jack-Jill. The turns are the fol-
lowing ones: Jack 1, Jill 2, Jack 3, Jill 4, Jack 5.....

Now we know that we have two players. So using this information, at turn
5, the rest of the division of 5 by 2, gives us 1 so this is the turn of the first

251

Snakes and ladders

player. At turn 4, the rest of the division of 5 by 2 is zero so we take the latest
player: Jill.

Here is an expression that shows the result when we have two players and
we use the division.
(1 to: 10) collect: [:each | each -> (each \\ 2)]
> {1->1. 2->0. 3->1. 4->0. 5->1. 6->0. 7->1. 8->0. 9->1. 10->0}

Here is an expression that shows the result when we have three players and
we use the division.
(1 to: 10) collect: [:each | each -> (each \\ 3)]
> {1->1. 2->2. 3->0. 4->1. 5->2. 6->0. 7->1. 8->2. 9->0. 10->1}

What you see is that each time we get 0, it means that this is the last player
(second in the first case and third in the second).

This is what we do with the following method. We compute the rest of the
division. We obtain a number between 0 and the player number minus one.
This number indicates the index of the number in the players ordered col-
lection. When it is zero it means that we should take the latest player.

SLGame >> currentPlayer

| rest playerIndex |
rest := (turn \\ players size).
playerIndex := (rest isZero

ifTrue: [players size]
ifFalse: [rest]).

^ players at: playerIndex

Run your tests and make sure that they all pass and save.

18.26 Game end

Checking for the end of the game can be implemented in at least two ways:

• the game can check if any of the player is on the last tile.

• or when a player lands on the last tile, its effect is to end the game.

We will implement the first solution but let us write a test first.

SLGameTest >> testIsOver

| jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
game addPlayer: jack.
self assert: jack position equals: 1.
game movePlayer: jack distance: 11.
self assert: jack position equals: 12.

252

18.27 Playing one move

self assert: game isOver.

Now define the method isOver. You can use the anySatisfy: message
which returns true if one of the elements of a collection (the receiver) sat-
isfies a condition. The condition is that a player’s position is the number of
tiles (since the last tile position is equal to the number of tiles).

SLGame >> isOver
... Your code ...

Alternate solution

To implement the second version, we can introduce a new tile SLEndTile.
Here is the list of what should be done:

• define a new class.

• redefine the acceptPlayer: to stop the game. Note that it means that
the tile should have a reference to the game. This should be added to
this special tile.

• initialize the last tile of the game to be an instance of such a class.

18.27 Playing one move

Before automating the play of the game we should make sure that a die roll
will not bring our player outside the board.

Here is a simple test covering the situations.

SLGameTest >> testCanMoveToPosition

| game |
game := SLGame new tileNumber: 12.
self assert: (game canMoveToPosition: 8).
self assert: (game canMoveToPosition: 12).
self deny: (game canMoveToPosition: 13).

Define the method canMoveToPosition:. It takes as input the position of
the potential move.

SLGame >> canMoveToPosition: aNumber
... Your code ...

Playing one game step

Now we are finally ready to finish the implementation of the game. Here are
two tests that check that the game can play a step correctly, i.e., picking the
correct player and moving it in the correct place.

253

Snakes and ladders

SLGameTest >> testPlayOneStep

| jill jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
self assert: jill position equals: 1.
game playOneStepWithRoll: 3.
self assert: jill position equals: 4.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 4) includesPlayer: jill)

SLGameTest >> testPlayTwoSteps

| jill jack game |
game := SLGame new tileNumber: 12.
jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game playOneStepWithRoll: 3.
game playOneStepWithRoll: 2.
"nothing changes for jill"
self assert: jill position equals: 4.
self assert: ((game tileAt: 4) includesPlayer: jill).
"now let us verify that jack moved correctly to tile 3"
self assert: (game tileAt: 1) players size equals: 0.
self assert: jack position equals: 3.
self assert: ((game tileAt: 3) includesPlayer: jack)

Here is a possible implementation of the method playOneStepWithRoll:.
SLGame >> playOneStepWithRoll: aNumber

| currentPlayer |
turn := turn + 1.
currentPlayer := self currentPlayer.
Transcript show: currentPlayer printString, 'drew ', aNumber

printString, ': '.
(self canMoveToPosition: currentPlayer position + aNumber)
ifTrue: [self movePlayer: currentPlayer distance: aNumber].

Transcript show: self; cr.

Now we can verify that when a player lands on a ladder it is getting up.

SLGameTest >> testPlayOneStepOnALadder

| jill jack game |
game := SLGame new

254

18.27 Playing one move

Figure 18-10 Playing step by step inside the inspector.

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game playOneStepWithRoll: 1.
self assert: jill position equals: 6.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 6) includesPlayer: jill).

You can try this method inside an inspector and see the result of the moves
displayed in the transcript as shown in Figure 18-10.

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
game inspect

255

Snakes and ladders

Figure 18-11 Automated play.

18.28 Automated play

Now we can can define the playmethod as follows and use it as shown in
Figure 18-11.

SLGame >> play

Transcript show: self; cr.
[self isOver not] whileTrue: [
self playOneStepWithRoll: 6 atRandom]

Some final tests

We would like to make sure that the player is not moved when it does not
land on the last tile or that the game is finished when one player lands on the
last tile. Here are two tests covering such behavior.

SLGameTest >> testPlayOneStepOnExactFinish

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.

game playOneStepWithRoll: 11.
"jill lands on the finish tile!"
self assert: jill position equals: 12.
self assert: (game tileAt: 1) players size equals: 1.
self assert: ((game tileAt: 12) includesPlayer: jill).

256

18.29 Variations

self assert: game isOver.

SLGameTest >> testPlayOneStepOnInexactFinish

| jill jack game |
game := SLGame new

tileNumber: 12;
setLadderFrom: 2 to: 6;
setLadderFrom: 7 to: 9;
setSnakeFrom: 11 to: 5.

jack := SLPlayer new name: 'Jack'.
jill := SLPlayer new name: 'Jill'.
game addPlayer: jill.
game addPlayer: jack.
"jill moves"

game playOneStepWithRoll: 9.
self assert: jill position equals: 10.
self assert: ((game tileAt: 10) includesPlayers: jill).
"jack moves"
game playOneStepWithRoll: 2.
"jill tries to move but in fact stays at her place"
game playOneStepWithRoll: 5.
self assert: jill position equals: 10.
self assert: ((game tileAt: 10) includesPlayer: jill).
self deny: game isOver.

18.29 Variations

As you see this single game has multiple variations. Here are some of the
ones you may want to implement:

• A player who lands on an occupied tile must go back to its originating
tile.

• If you roll a number higher than the number of tiles needed to reach
the last square, you must continue moving backwards from the end.

You will see that such extensions can be implemented in different manner.
We suggest to avoid conditions but define objects responsible for this behav-
ior and its variations.

18.30 Conclusion

This chapter went step by step to the process of getting from requirements
to an actual implementation covered by tests.

This chapter shows that design is an iterative process. What is also impor-
tant is that without tests we would be a lot more worried about breaking
something without be warned immediately. With tests we were able to change

257

Snakes and ladders

some parts of the design and rapidly make sure that the previous specifica-
tion still hold.

This chapter shows that identifying objects and their interactions is not al-
ways straightforward and multiple designs are often valid.

258

CHA P T E R 19
TinyChat: a fun and small chat

client/server

Pharo allows the definition of a REST server in a couple of lines of code thanks
to the Teapot package by zeroflag, which extends the superb HTTP clien-
t/server Zinc developed by BetaNine and was given to the community. The
goal of this chapter is to make you develop, in five small classes, a clien-
t/server chat application with a graphical client. This little adventure will
familiarize you with Pharo and show the ease with which Pharo lets you de-
fine a REST server. Developed in a couple of hours, TinyChat has been de-
signed as a pedagogical application. At the end of the chapter, we propose a
list of possible improvements.

TinyChat has been developed by O. Auverlot and S. Ducasse with a lot of fun.

19.1 Objectives and architecture

We are going to build a chat server and one graphical client as shown in Fig-
ure 19-1.

The communication between the client and the server will be based on HTTP
and REST. In addition to the classes TCServer and TinyChat (the client), we
will define three other classes: TCMessage which represents exchanged mes-
sages (as a future exercise you could extend TinyChat to use more structured
elements such as JSON or STON (the Pharo object format), TCMessageQueue
which stores messages, and TCConsole the graphical interface.

259

TinyChat: a fun and small chat client/server

Figure 19-1 Chatting with TinyChat.

19.2 Loading Teapot

We can load Teapot using the Configuration Browser, which you can find
in the Tools menu item of the main menu. Select Teapot and click ”Install
Stable”. Another solution is to use the following script:

Gofer it
smalltalkhubUser: 'zeroflag' project: 'Teapot';
configuration;
loadStable.

Now we are ready to start.

19.3 Message representation

A message is a really simple object with a text and sender identifier.

Class TCMessage

We define the class TCMessage in the package TinyChat.
Object subclass: #TCMessage
instanceVariableNames: 'sender text separator'
classVariableNames: ''
category: 'TinyChat'

The instance variables are as follows:

• sender: the identifier of the sender,

• text: the message text, and

• separator: a character to separate the sender and the text.

260

19.4 Instance initialisation

Accessor creation

We create the following accessors:

TCMessage >> sender
^ sender

TCMessage >> sender: anObject
sender := anObject

TCMessage >> text
^ text

TCMessage >> text: anObject
text := anObject

19.4 Instance initialisation

Each time an instance is created, its initializemethod is invoked. We re-
define this method to set the separator value to the string >.
TCMessage >> initialize

super initialize.
separator := '>'.

Now we create a class method named from:text: to instantiate a message
(a class method is a method that will be executed on a class and not on an
instance of this class):

TCMessage class >> from: aSender text: aText
^ self new sender: aSender; text: aText; yourself

The message yourself returns the message receiver: this way we ensure
that the returned object is the new instance and not the value returned by
the text: message. This definition is equivalent to the following:

TCMessage class >> from: aSender text: aText
| instance |
instance := self new.
instance sender: aSender; text: aText.
^ instance

19.5 Converting a message object into a string

We add the method printOn: to transform a message object into a character
string. The model we use is sender-separator-text-crlf. Example: ’john>hello
!!!’. The method printOn: is automatically invoked by the method printString.
This method is invoked by tools such as the debugger or object inspector.

261

TinyChat: a fun and small chat client/server

TCMessage >> printOn: aStream

aStream
<< self sender; << separator;
<< self text; << String crlf

19.6 Building a message from a string

We also define two methods to create a message object from a plain string of
the form: 'olivier>tinychat is cool'.

First we create the method fromString: filling up the instance variables
of an instance. It will be invoked like this: TCMessage new fromString:
'olivier>tinychat is cool', then the class method fromString: which
will first create the instance.
TCMessage >> fromString: aString
"Compose a message from a string of this form 'sender>message'."
| items |
items := aString subStrings: separator.
self sender: items first.
self text: items second.

You can test the instance method with the following expression TCMessage
new fromString: 'olivier>tinychat is cool'.
TCMessage class >> fromString: aString
^ self new
fromString: aString;
yourself

When you execute the following expression TCMessage fromString: 'olivier>tiny-
chat is cool' you should get a message. We are now ready to work on the
server.

19.7 Starting with the server

For the server, we are going to define a class to manage a message queue.
This is not really mandatory but it allows us to separate responsibilities.

Storing messages

Create the class TCMessageQueue in the package TinyChat-Server.

Object subclass: #TCMessageQueue
instanceVariableNames: 'messages'
classVariableNames: ''
category: 'TinyChat-server'

262

19.7 Starting with the server

The messages instance variable is an ordered collection whose elements are
instances TCMessage. An OrderedCollection is a collection which dynam-
ically grows when elements are added to it. We add an instance initialize
method so that each new instance gets a proper messages collection.

TCMessageQueue >> initialize
super initialize.
messages := OrderedCollection new.

Basic operations on message list

We should be able to add, clear the list, and count the number of messages,
so we define three methods: add:, reset, and size.
TCMessageQueue >> add: aMessage

messages add: aMessage

TCMessageQueue >> reset
messages removeAll

TCMessageQueue >> size
^ messages size

List of messages from a position

When a client asks the server about the list of the last exchanged messages,
it mentions the index of the last message it knows. The server then answers
the list of messages received since this index.

TCMessageQueue >> listFrom: aIndex
^ (aIndex > 0 and: [aIndex <= messages size])
ifTrue: [messages copyFrom: aIndex to: messages size]
ifFalse: [#()]

Message formatting

The server should be able to transfer a list of messages to its client given an
index. We add the possibility to format a list of messages (given an index).
We define the method formattedMessagesFrom: using the formatting of a
single message as follows:

TCMessageQueue >> formattedMessagesFrom: aMessageNumber

^ String streamContents: [:formattedMessagesStream |
(self listFrom: aMessageNumber)

do: [:m | formattedMessagesStream << m printString]
]

Note how the streamContents: lets us manipulate a stream of characters.

263

TinyChat: a fun and small chat client/server

19.8 The Chat server

The core of the server is based on the Teapot REST framework. It supports
the sending and receiving of messages. In addition this server keeps a list of
messages that it communicates to clients.

TCServer class creation

We create the class TCServer in the TinyChat-Server package.

Object subclass: #TCServer
instanceVariableNames: 'teapotServer messagesQueue'
classVariableNames: ''
category: 'TinyChat-Server'

The instance variable messagesQueue represents the list of received and sent
messages. We initialize it like this:

TCServer >> initialize
super initialize.
messagesQueue := TCMessageQueue new.

The instance variable teapotServer refers to an instance of the Teapot
server that we will create using the method initializePort:
TCServer >> initializePort: anInteger
teapotServer := Teapot configure: {
#defaultOutput -> #text.
#port -> anInteger.
#debugMode -> true

}.
teapotServer start.

The HTTP routes are defined in the method registerRoutes. Three opera-
tions are defined:

• GET messages/count: returns to the client the number of messages
received by the server,

• GET messages/<id:IsInteger>: the server returns messages from an
index, and

• POST /message/add: the client sends a new message to the server.

TCServer >> registerRoutes
teapotServer
GET: '/messages/count' -> (Send message: #messageCount to: self);
GET: '/messages/<id:IsInteger>' -> (Send message: #messagesFrom:
to: self);
POST: '/messages/add' -> (Send message: #addMessage: to: self)

264

19.9 Server logic

Here we express that the path message/count will execute the message mes-
sageCount on the server itself. The pattern <id:IsInteger> indicates that
the argument should be expressed as number and that it will be converted
into an integer.

Error handling is managed in the method registerErrorHandlers. Here we
see how we can get an instance of the class TeaResponse.
TCServer >> registerErrorHandlers

teapotServer
exception: KeyNotFound -> (TeaResponse notFound body: 'No such
message')

Starting the server is done in the class method TCServer class>>startOn:
that gets the TCP port as argument.

TCServer class >> startOn: aPortNumber
^self new
initializePort: aPortNumber;
registerRoutes;
registerErrorHandlers;
yourself

We should also offer the possibility to stop the server. The method stop
stops the teapot server and empties the message list.

TCServer >> stop
teapotServer stop.
messagesQueue reset.

Since there is a chance that you may execute the expression TCServer star-
tOn: multiple times, we define the class method stopAll which stops all the
servers by iterating over all the instances of the class TCServer. The method
TCServer class>>stopAll stops each server.

TCServer class >> stopAll
self allInstancesDo: #stop

19.9 Server logic

Now we should define the logic of the server. We define a method addMes-
sage that extracts the message from the request. It adds a newly created
message (instance of class TCMessage) to the list of messages.

TCServer >> addMessage: aRequest
messagesQueue add: (TCMessage from: (aRequest at: #sender) text:

(aRequest at: #text)).

The method messageCount gives the number of received messages.

265

TinyChat: a fun and small chat client/server

Figure 19-2 Testing the server.

TCServer >> messageCount
^ messagesQueue size

The method messageFrom: gives the list of messages received by the server
since a given index (specified by the client). The messages returned to the
client are a string of characters. This is definitively a point to improve - us-
ing string is a poor choice here.

TCServer >> messagesFrom: request
^ messagesQueue formattedMessagesFrom: (request at: #id)

Now the server is finished and we can test it. First let us begin by starting it:

TCServer startOn: 8181

Now we can verify that it is running either with a web browser (Figure 19-2),
or with a Zinc expression as follows:

ZnClient new url: 'http://localhost:8181/messages/count' ; get

Shell lovers can also use the curl command:
curl http://localhost:8181/messages/count

We can also add a message the following way:

266

19.10 The client

ZnClient new
url: 'http://localhost:8181/messages/add';
formAt: 'sender' put: 'olivier';
formAt: 'text' put: 'Super cool ce tinychat' ; post

19.10 The client

Now we can concentrate on the client part of TinyChat. We decomposed the
client into two classes:

• TinyChat is the class that defines the connection logic (connection,
send, and message reception),

• TCConsole is a class defining the user interface.

The logic of the client is:

• During client startup, it asks the server the index of the last received
message,

• Every two seconds, it requests from the server the messages exchanged
since its last connection. To do so, it passes to the server the index of
the last message it got.

TinyChat class

We now define the class TinyChat in the package TinyChat-client.
Object subclass: #TinyChat

instanceVariableNames: 'url login exit messages console
lastMessageIndex'

classVariableNames: ''
category: 'TinyChat-client'

This class defines the following instance variables:

• url that contains the server url,

• login a string identifying the client,

• messages is an ordered collection containing the messages read by the
client,

• lastMessageIndex is the index of the last message read by the client,

• exit controls the connection. While exit is false, the client regularly
connects to the server to get the unread messages

• console refers to the graphical console that allows the user to enter
and read messages.

We initialize these variables in the following instance initializemethod.

267

TinyChat: a fun and small chat client/server

TinyChat >> initialize
super initialize.
exit := false.
lastMessageIndex := 0.
messages := OrderedCollection new.

HTTP commands

Now, we define methods to communicate with the server. They are based on
the HTTP protocol. Two methods will format the request. One, which does
not take an argument, builds the requests /messages/add and /messages/-
count. The other has an argument used to get the message given a position.

TinyChat >> command: aPath
^'{1}{2}' format: { url . aPath }

TinyChat >> command: aPath argument: anArgument
^'{1}{2}/{3}' format: { url . aPath . anArgument asString }

Now that we have these low-level operations we can define the three HTTP
commands of the client as follows:
TinyChat >> cmdLastMessageID
^ self command: '/messages/count'

TinyChat >> cmdNewMessage
^self command: '/messages/add'

TinyChat >> cmdMessagesFromLastIndexToEnd
"Returns the server messages from my current last index to the

last one on the server."
^ self command: '/messages' argument: lastMessageIndex

Now we can create commands but we need to emit them. This is what we
look at now.

19.11 Client operations

We need to send the commands to the server and to get back information
from the server. We define two methods. The method readLastMessageID
returns the index of the last message received from the server.

TinyChat >> readLastMessageID
| id |
id := (ZnClient new url: self cmdLastMessageID; get) asInteger.
id = 0 ifTrue: [id := 1].
^ id

268

19.11 Client operations

The method readMissingMessages adds the last messages received from the
server to the list of messages known by the client. This method returns the
number of received messages.

TinyChat >> readMissingMessages
"Gets the new messages that have been posted since the last

request."
| response receivedMessages |
response := (ZnClient new url: self cmdMessagesFromLastIndexToEnd;

get).
^ response
ifNil: [0]
ifNotNil: [

receivedMessages := response subStrings: (String crlf).
receivedMessages do: [:msg | messages add: (TCMessage

fromString: msg)].
receivedMessages size.

].

We are now ready to define the refresh behavior of the client via the method
refreshMessages. It uses a light process to read the messages received from
the server at a regular interval. The delay is set to 2 seconds. (The message
fork sent to a block (a lexical closure in Pharo) executes this block in a light
process). The logic of this method is to loop as long as the client does not
specify to stop via the state of the exit variable.

The expression (Delay forSeconds: 2) wait suspends the execution of
the process in which it is executed for a given number of seconds.

TinyChat >> refreshMessages
[
[exit] whileFalse: [

(Delay forSeconds: 2) wait.
lastMessageIndex := lastMessageIndex + (self

readMissingMessages).
console print: messages.

]
] fork

The method sendNewMessage: posts the message written by the client to the
server.
TinyChat >> sendNewMessage: aMessage

^ ZnClient new
url: self cmdNewMessage;
formAt: 'sender' put: (aMessage sender);
formAt: 'text' put: (aMessage text);
post

This method is used by the method send: that gets the text written by the
user. The string is converted into an instance of TCMessage. The message

269

TinyChat: a fun and small chat client/server

is sent and the client updates the index of the last message it knows, then it
prints the message in the graphical interface.

TinyChat >> send: aString
"When we send a message, we push it to the server and in addition

we update the local list of posted messages."

| msg |
msg := TCMessage from: login text: aString.
self sendNewMessage: msg.
lastMessageIndex := lastMessageIndex + (self readMissingMessages).
console print: messages.

We should also handle the server disconnection. We define the method dis-
connect that sends a message to the client indicating that it is disconnecting
and also stops the connecting loop of the server by putting exit to true.

TinyChat >> disconnect
self sendNewMessage: (TCMessage from: login text: 'I exited from

the chat room.').
exit := true

19.12 Client connection parameters

Since the client should contact the server on specific ports, we define a method
to initialize the connection parameters. We define the class method Tiny-
Chat class>>connect:port:login: so that we can connect the following
way to the server: TinyChat connect: 'localhost' port: 8080 login:
'username'
TinyChat class >> connect: aHost port: aPort login: aLogin

^ self new
host: aHost port: aPort login: aLogin;
start

TinyChat class>>connect:port:login: uses the method host:port:lo-
gin:. This method just updates the url instance variable and sets the login
as specified.

TinyChat >> host: aHost port: aPort login: aLogin
url := 'http://' , aHost , ':' , aPort asString.
login := aLogin

Finally we define a method start: which creates a graphical console (that
we will define later), tells the server that there is a new client, and gets the
last message received by the server. Note that a good evolution would be to
decouple the model from its user interface by using notifications.

270

19.13 User interface

TinyChat >> start
console := TCConsole attach: self.
self sendNewMessage: (TCMessage from: login text: 'I joined the

chat room').
lastMessageIndex := self readLastMessageID.
self refreshMessages.

19.13 User interface

The user interface is composed of a window with a list and an input field as
shown in Figure 19-1.

ComposableModel subclass: #TCConsole
instanceVariableNames: 'chat list input'
classVariableNames: ''
category: 'TinyChat-client'

Note that the class TCConsole inherits from ComposableModel. This class is
the root of the user interface logic classes. TCConsole defines the logic of the
client interface (i.e. what happens when we enter text in the input field...).
Based on the information given in this class, the Spec user interface builder
automatically builds the visual representation. The chat instance variable
is a reference to an instance of the client model TinyChat and requires a
setter method (chat:). The list and input instance variables both require
an accessor. This is required by the User Interface builder.

TCConsole >> input
^ input

TCConsole >> list
^ list

TCConsole >> chat: anObject
chat := anObject

We set the title of the window by defining the method title.
TCConsole >> title

^ 'TinyChat'

Now we should specify the layout of the graphical elements that compose the
client. To do so we define the class method TCConsole class>>default-
Spec. Here we need a column with a list and an input field placed right be-
low.
TCConsole class >> defaultSpec

<spec: #default>

^ SpecLayout composed
newColumn: [:c |

271

TinyChat: a fun and small chat client/server

c add: #list; add: #input height: 30]; yourself

We should now initialize the widgets that we will use. The method initial-
izeWidgets specifies the nature and behavior of the graphical components.
The message acceptBlock: defines the action to be executed then the text
is entered in the input field. Here we send it to the chat model and empty it.

TCConsole >> initializeWidgets

list := ListModel new.
input := TextInputFieldModel new
ghostText: 'Type your message here...';
enabled: true;
acceptBlock: [:string |

chat send: string.
input text: ''].

self focusOrder add: input.

The method print displays the messages received by the client and assigns
them to the list contents.
TCConsole >> print: aCollectionOfMessages
list items: (aCollectionOfMessages collect: [:m | m printString

])

Note that this method is invoked by the method refreshMessages and that
changing all the list elements when we add just one element is rather ugly
but ok for now.

Finally we need to define the class method TCConsole class>>attach:
that gets the client model as argument. This method opens the graphical el-
ements and puts in place a mechanism that will close the connection as soon
as the client closes the window.
TCConsole class >> attach: aTinyChat
| window |
window := self new chat: aTinyChat.
window openWithSpec whenClosedDo: [aTinyChat disconnect].
^ window

19.14 Now chatting

Now you can chat with your server. The example resets the server and opens
two clients.
| tco tcs |
TCServer stopAll.
TCServer startOn: 8080.
tco := TinyChat connect: 'localhost' port: 8080 login: 'olivier'.
tco send: 'hello'.
tcs := TinyChat connect: 'localhost' port: 8080 login: 'Stef'.

272

19.15 Conclusion and ideas for future extensions

Figure 19-3 Server access.

tcs send: 'salut olivier'

19.15 Conclusion and ideas for future extensions

We show that creating a REST server is really simple with Teapot. TinyChat
provides a fun context to explore programming in Pharo and we hope that
you like it. We designed TinyChat so that it favors extensions and explo-
ration. Here is a list of possible extensions.

• Using JSON or STON to exchange information and not plain strings.

• Making sure that the clients can handle a failure of the server.

• Adding only the necessary messages to the list in the graphical client.

• Managing concurrent access in the server message collection (if the
server should handle concurrent requests the current implementation
is not correct).

• Managing connection errors.

• Getting the list of connected users.

• Editing the delay to check for new messages.

There are probably more extensions and we hope that you will have fun ex-
ploring some. The code of the project is available at http://www.smalltalkhub.
com/#!/~olivierauverlot/TinyChat.

273

http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat
http://www.smalltalkhub.com/#!/~olivierauverlot/TinyChat

	Illustrations
	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Resources
	Conclusion

	Syntax summary
	Six reserved words only
	Reserved syntactic constructs
	Message Sending
	Three Types of Messages: Unary, Binary, and Keyword
	Message Precedence
	Cascade: Sending Muliple Messages to the Same Object
	Blocks
	Common Constructs: Conditionals
	Common Constructs: Loops/Iterators
	Files and Streams

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Developing a simple counter
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Add a repository
	Saving your package

	Adding more messages
	Better object description
	Instance initialization method
	Define an initialize method

	Conclusion

	Tests, tests and tests
	Writing a test in 2 minutes
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Write a test method
	Step 3: Run the test
	Step 4: Write more tests
	Step 5: Run all the tests
	Step 6: Alternative ways to execute tests
	Step 7: Looking at a bug
	Step 8: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to the superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes are known by their address
	Links are one-way connections between nodes
	Making our objects more understandable
	Simulating the steps of packet delivery
	Sending a packet
	Transmitting across a link
	The loopback link
	Modeling the network itself
	Connecting nodes.

	Looking up nodes
	Looking up links
	Final check.

	Packet delivery with forwarding
	Introducing a new kind of node
	Other examples of specialized nodes
	Workstations counting received packets
	Printers accumulating printouts
	Servers answering requests

	Conclusion

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

