16.1

CHAPTER I 6

A little expression interpreter

In this chapter you will build a small mathematical expression interpreter.
You will be able to build an expression such as (3 + 4) = 5and then ask
the interpreter to compute its value. You will revisit tests, classes, messages,
methods, and inheritance. You will also see an example of expression trees
similar to the ones that are used to manipulate programs. Compilers and
code refactorings as offered in Pharo and many modern IDEs work by per-
forming manipulations on these trees. In volume two of this book, we will
extend this example to present the Visitor design pattern.

Starting with constant expressions and a test

We start with constant expressions. A constant expression is an expression
whose value is always the same, obviously.

Let us start by defining a test case class as follows:

TestCase subclass: #EConstantTest
instanceVariableNames: "'
classVariableNames: ''
package: 'Expressions'

We decided to define one test case class per expression class, even if the
classes will not contain many tests to begin with. This way makes it easier
to define new tests and navigate them.

Let us write a first test making sure that when we create a constant, sending
it the evaluate message returns its value:

EConstantTest >> testEvaluate
self assert: (EConstant new value: 5) evaluate equals: 5

173

16.2

A little expression interpreter

When you compile such a test method, the system should prompt you define
the class EConstant. Let the system drive you. Since we need to store the
value of a constant expression, let us add an instance variable value to the
class definition.

At the end you should have the following definition for the class EConstant:

Object subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: "'
package: 'Expressions'

We define the method value: to set the value of the instance variable value.
It is simply a method that takes one argument and stores it in the value in-
stance variable:

EConstant >> value: anInteger
value := anInteger

You should define the method evaluate to return the value of the constant.

EConstant >> evaluate
. Your code ...

Your test should now pass.

Negation

Now we can start to work on negation of expressions. Let us write a test. De-
fine a new test case class named ENegationTest.

TestCase subclass: #ENegationTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions’

The test testEvaluate shows that negation applies to an expression (here a
constant), and that when we evalute it we get the negated value of the con-
stant:

ENegationTest >> testEvaluate

self
assert:
(ENegation new expression: (EConstant new value: 5)) evaluate
equals: -5

Let us execute the test and let the system help us to define the class. A nega-
tion defines an instance variable to hold the expression that it negates:

174

16.3 Adding expression addition

Figure 16-1

EObject subclass:
instanceVariableNames:
classVariableNames:
package:

We define a setter method to be able to set the negated expression:

Object

/N

Constant Negation Addition Multiplication
value expression | |left left
value: expression: | [right right
evaluate evaluate left: left:
right: right:
evaluate evaluate

A flat collection of classes (with a suspect duplication).

#ENegation

'Expressions’

[ENegation >> expression:

expression := anExpression

'expression’

anExpression

Now the evaluate method should request the evaluation of the expression

and negate it. To negate a number we would suggest sending the message

negated:

ENegation >> evaluate
. Your code ...

Following the same steps as above, we will now add addition and multiplica-
tion of expressions. Then we will make the system a bit easier to manipulate,
and revisit its design.

Adding expression addition

To add an expression that supports addition we start by defining a test case
class and a simple test:

TestCase subclass:
instanceVariableNames:
classVariableNames:
package:

A simple test for addition is to make sure that we add correctly two con-

stants:

#EAdditionTest

'Expressions’

175

A little expression interpreter

EAdditionTest >> testEvaluate

| epl ep2 |

epl := EConstant new value: 5.

ep2 := EConstant new value: 3.

self assert: (EAddition new right: epl; left: ep2) evaluate
equals: 8

You should define the class EAddition. It will have two instance variables
for the two subexpressions it adds:
EExpression subclass: #EAddition

instanceVariableNames: 'left right'

classVariableNames: ''

package: 'Expressions'

Define the two corresponding setter methods right: and left:.
Now you can define the evaluate method for addition:
EAddition >> evaluate

. Your code ...

To make sure that our implementation is correct we can also test that we can
add negated expressions. It is always good to add tests that cover different
scenarios:

[EAdditionTest >> testEvaluateWithNegation

| epl ep2 |
epl := ENegation new expression: (EConstant new value: 5).
ep2 := EConstant new value: 3.
self
assert: (EAddition new right: epl; left: ep2) evaluate
equals: -2
Multiplication

We do the same for multiplication. Create a test case class named EMulti-
plicationTest, a test, a new class EMultiplication, a couple of setter
methods and finally a new evaluate method. Let us do so quickly and with-
out further comment:

[TestCase subclass: #EMultiplicationTest

instanceVariableNames: "'

classVariableNames: "'

package: 'Expressions'

EEMultiplicationTest >> testEvaluate

| epl ep2 |
epl := (EConstant new value: 5).
ep2 := (EConstant new value: 3).
self

assert:

176

16.5 Stepping back

anEConstant

value

5+3

anEConstant

Figure 16-2 Expressions are composed of trees.

(EMultiplication new right: epl; left: ep2) evaluate
equals: 15

EObject subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: ''

package: 'Expressions'

[EMultiplication >> right: anExpression
right := anExpression

[EMultiplication >> left: anExpression
left := anExpression

[EMultiplication >> evaluate
. Your code ...

16.5 Stepping back

It is interesting to look at what we have built so far. We have a group of classes
whose instances can be combined to create complex expressions. Each ex-
pression is, in fact, a tree of subexpressions as shown in Figure 16-2. The fig-
ure shows two main trees: one for the constant expression 5, and one for the
expression -5 + 3. Note that the diagram represents the number 5 as an ob-
ject because in Pharo even small integers are objects, in the same way that

the instances of EConstant are objects.

177

A little expression interpreter

Object
Constant Negation Addition Multiplication
value expression left left
value: expression: right right
evaluate evaluate left: left:
right: right:
evaluate evaluate

evaluate evaluate evaluate evaluate
Avalue A expression evaluate negated A right evaluate + left evaluate A right evaluate * left evaluate

Figure 16-3 Evaluation: one message and multiple method implementations.

Messages and methods

The implementation of the evaluate message is worth discussing. What we
can see is that different classes understand the same message but execute
different methods as shown in Figure 16-3.

Important A message represents an intent: it represents what should
be done. A method represents a specification of how something should be
executed.

What we see is that sending the message evaluate to an expression is mak-
ing a choice out of the different available implementations of the message.
This point is central to object-oriented programming.

Important Sending a message is making a choice from among all the
methods with the same name.

About common superclass

Up until now we did not see the need to have an inheritance hierarchy, be-
cause there is not much that can be shared or reused. But at this point adding
a common superclass would be useful to convey to the reader of the code, or
someone who wanted to extend the library, that some concepts in our pack-
age, represented as messages, are related, and are variations of a general
idea.

Design corner: About the addition and multiplication model

We could have just one class called, for example, BinaryOperation, and it
could have an operator instance variable, either addition or multiplication.
This solution would work but, as usual, having a working program does not
mean that its design is any good.

178

16.6 Negated as a message

In particular having a single class would force us to start to write conditional
logic in evaluate based on the operator as follows:

BinaryExpression >> evaluate
operator = #+
ifTrue: [left evaluate + right evaluate]
ifFalse: [left evaluate * right evaluate]

There are ways in Pharo to make such code more compact but we do not
want to use them at this stage. (For the interested reader, look for the mes-
sage perform: that can execute a method based on its name).

This is annoying because the execution engine itself is made to select meth-
ods for us so we want to bypass it using an explicit conditional. In addition
when we add power, division, and subtraction we will also have to add more
cases to our conditional, making the code less readable and more fragile.

As we will see as we read further, one of the key messages of this book is
sending a message is making a choice between different implementations. To
be able make that choice we should have different implementations, which
implies having different classes.

Important Classes represent choices whose methods can be selected in
reaction to a message. Having many little classes is better than few large
ones.

What we could do is to introduce a common superclass between EAddition
and EMultiplication but keep the two subclasses. We will do this later in
the chapter.

16.6 Negated as a message

Negating an expression is expressed in a verbose way. We have to create ex-
plicitly each time an instance of the class ENegation as shown in the follow-
ing snippet:

[ENegation new expression: (EConstant new value: 5)

We propose defining a message negated on the expressions themselves that
will create such instance of ENegation. With this new message, the previous
expression can be reduced to:

[(EConstant new value: 5) negated

negated message for constants

Let us write a test to make sure that we capture what we want.

179

A little expression interpreter

EConstantTest >> testNegated
self assert: (EConstant new value: 6) negated evaluate equals: -6

And now we can simply implement it as follows:

EConstant >> negated
* ENegation new expression: self

negated message for negations

ENegationTest >> testNegationNegated
self assert: (EConstant new value: 6) negated negated evaluate
equals: 6

ENegation >> negated
* ENegation new expression: self

This definition is not the best we can do since, in general, it is bad practice to
hardcode the class usage inside the class. A better definition would be:

ENegation >> negated
* self class new expression: self

But for now we will keep the first one for the sake of simplicity.

negated message for additions

We proceed similarly for additions:

[EEAdditionTest >> testNegated

| epl ep2 |
epl := EConstant new value: 5.
ep2 := EConstant new value: 3.

self assert: (EAddition new right: epl; left: ep2) negated
evaluate equals: -8

[EAddition >> negated
Your code

negated message for multiplications

And finally for multiplications:

[EMultiplicationTest >> testEvaluateNegated

| epl ep2 |
epl := EConstant new value: 5.
ep2 := EConstant new value: 3.

self assert: (EMultiplication new right: epl; left: ep2) negated
evaluate equals: -15

[EMultiplication >> negated
. Your code ...

180

16.7

16.7 Annoying repetition

Object

/

Constant Negation Addition | | Multiplication

value expression | |left left

value: expression: | |right right

evaluate evaluate left: left:

negated | negated , | |right: right:
evaluate evaluate
negated \| |[negated

negated
A ENegation new expression: self

negated
A ENegation new expression: self

negated

negated A ENegation new expression: self

A ENegation new expression: self

Figure 16-4 Code repetition is a bad smell.

Now all your tests should pass, and it is a good moment to save your package.

Annoying repetition

Let us step back and look at what we have. We have a working program - but
object-oriented design is meant to bring the code up to a higher standard
than merely working!

Similar to the situation with the evaluate message and methods, we see that
the functionality of negated is distributed over different classes. What is an-
noying is that we repeat the exact same code over and over (see Figure 16-4).
This is a poor design because, if we want to change the behavior of negation
tomorrow, we will have to change it four times while really only once should
be enough.

What are the solutions?

+ We could define another class, Negator, that would do the job. Each of
our current classes would delegate to it. But it does not really solve our
problem since we will have to duplicate all the message sends to call
Negator instances.

« If we define the method negated in the superclass (Object) we only
need one definition and it will work. Indeed, when we send the mes-
sage negated to an instance of EConstant or EAddition the system
will not find it locally but in the superclass Object. So no need to de-
fine it four times but only once in class Object. This solution is nice
because it reduces the number of similar definitions of the method
negated, but it is not good because, even if we can add methods to the
class Object, this is really not a good idea; Object is a class shared by

181

16.8

A little expression interpreter

Object

A

N negated ﬁ
EXpI’ESSIOI’I I A ENegation new expression: self
negated

Constant Negation Addition | | Multiplication
value expression | |left left
value: expression: | [right right
evaluate evaluate left: left:
right: right:
evaluate evaluate

Figure 16-5 Introducing a common superclass.

the entire system and so we should take care not to add behavior that
only makes sense for a single application.

» The solution is to introduce a new superclass between our classes and
the class Object. It will have the same properties of the above solution
using Object, but without polluting it (see Figure 16-5). This is what
we do in the next section.

Introducing the Expression class

Let us introduce a new class to obtain the situation depicted by Figure 16-5.
We can simply do it by adding a new class:

Object subclass: #EExpression
instanceVariableNames: "'
classVariableNames: "'
package: 'Expressions'

and changing all the previous definitions to inherit from EExpression in-
stead of Object. For example the class EConstant is then defined as follows:

EExpression subclass: #EConstant
instanceVariableNames: 'value'
classVariableNames: "'
package: 'Expressions'

For the first transformation we could also use the class refactor Insert super-
class. Refactorings are code transformations that do not change the behavior
of a program. You can find it under the Refactorings list when you open the
context menu on a class. In this case it is only useful for the first change, cre-
ating the EExpression class.

182

16.9 Class creation messages

Once the classes EConstant, ENegation, EAddition, and EMultiplication
are subclasses of EEXpression, we should focus on the method negated.
Now the method refactoring Push up will really help us.

+ Select the method negated in one of the classes
« Select the refactoring Push up

The system will define the method negated in the superclass (EExpression)
and remove all the negated methods in the classes. Now achieved the hierar-
chy described in Figure 16-5. It is a good time to run all your tests again; they
should all pass.

Now you may also be thinking that we could introduce a new class named
ArithmeticExpression as a superclass of EAddition and EMultiplica-
tion. Indeed this is something that we could do to factor out common struc-
ture and behavior between the two classes. But we will do so later as it would
be repetitive to do it now.

Class creation messages

So far to create an instance we have always sent a class the message new, fol-
lowed by a setter method, as shown below:

[EConstant new value: 5

This is a good opportunity to demonstrate that we can define simple class
methods that improve the class instance creation interface. While this case
is simple, and has few benefits, we think that it makes a nice example. With
this in mind we can write the previous example in the following way:

[EConstant value: 5

Notice the important difference: in the first case the message is sent to the
newly created instance while in the second case it is sent to the class itself.

We define a class method in the same way we define an instance method. The
only difference is that, using the code browser, you need to click on the Class
side button to define the method on the class instead of an instance of the
class. The class itself is an object; just like its instances, it can also be sent
messages and execute methods.

Better instance creation for constants

Define the following method on the class EConstant. Notice the definition
now uses EConstant class and not just EConstant to stress that we are
defining the class method:

EConstant class >> value: anInteger
* self new value: anInteger

183

A little expression interpreter

Now define a new test to make sure that our method works correctly:

EConstantTest >> testCreationWithClassCreationMessage
self assert: (EConstant value: 5) evaluate equals: 5

Better instance creation for negations

We do the same for the class ENegation:

ENegation class >> expression: anExpression
. Your code ...

Of course we write a new test as follows:

EENegationTest >> testEvaluateWithClassCreationMessage
self assert: (ENegation expression: (EConstant value: 5)) evaluate
equals: -5

Better instance creation for additions

For addition we shall add a class method left:right: that takes two argu-
ments:

[left: anEExpression right: anEExpression2
~ self new left: anEExpression; right: anEExpression2

Since by now we are addicted to tests, we add a new one.

| EEAdditionTest >> testEvaluateWithClassCreationMessage
| epl ep2 |
epl := EConstant value: 5.
ep2 := EConstant value: 3.
self assert: (EAddition left: epl right: ep2) evaluate equals: 8

Better instance creation for multiplications

We will let you do the same for multiplication:

[EMultiplication class >> left: anEExpression right: anEExpression2
. Your code ...

And another test to check that everything is ok.

[EMultiplicationTest >> testEvaluateWithClassCreationMessage
| epl ep2 |
epl := EConstant value: 5.
ep2 := EConstant value: 3.
self assert: (EMultiplication left: epl right: ep2) evaluate
equals: 15

Run your tests! They should all pass.

184

16.10 Introducing examples as class messages

16.10 Introducing examples as class messages

As you saw when writing the tests, it is quite annoying to repeat all the ex-
pressions to generate a given tree. This is especially the case in the tests re-
lated to addition and multiplication as we can see below:

EEAdditionTest >> testNegated

| epl ep2 |
epl := EConstant new value: 5.
ep2 := EConstant new value: 3.

self assert: (EAddition new right: epl; left: ep2) negated
evaluate equals: -8

One simple solution is to define some class methods returning typical in-
stances of their classes. To define a class method remember that you should
click the Class side button.

[EConstant class >> constant5
~ self new value: 5

[EConstant class >> constant3
~ self new value: 3

This way we can define the test as follows:

[EEAdditionTest >> testNegated

| epl ep2 |
epl := EConstant constant5.
ep2 := EConstant constant3.
self
assert: (EAddition new right: epl; left: ep2) negated
evaluate
equals: -8

The tools in Pharo support such a practice. If we tag a class method with the
special annotation <sampleInstance>, the browser will show a little icon
on the side and, when we click on it, it will open an inspector on the new in-
stance:

[EConstant class >> constant3
<sampleInstance>
" self new value: 3

[EConstant class >> constant3
<sampleInstance>
~ self new value: 3

Using the same idea we can define the following class methods to return ex-
amples of our classes:

185

16.11

A little expression interpreter

[EAddition class >> fivePlusThree

<sampleInstance>

| epl ep2 |

epl := EConstant new value: 5.
ep2 := EConstant new value: 3.

~ self new left: epl ; right: ep2

EEMultiplication class >> fiveTimesThree
<sampleInstance>
| epl ep2 |
epl := EConstant constant5.
ep2 := EConstant constant3.
* EMultiplication new left: epl ; right: ep2

What is nice about these sample instances is that they:
» help document the class by providing objects that we can directly use.

+ support the creation of tests by providing objects that can serve as in-
put for tests.

+ simplify the writing of tests.

So consider using them!

Printing

It is quite annoying that we cannot really see an expression when we inspect
it. We would like to get something better than 'an EConstant' and 'an
EAddition' when we debug our programs. To display this information the
debugger and inspector sends the message printString to objects, which by
default prefix the name of the class with "an’ or "a’.

Let us change this. To do so, we will specialize the method printOn: as-
tream. The message printOn: is sent to an object when a program or the
system sends the message printString. From that perspective printOn:
is a point of system customization that developers can take advantage of to
enhance their programming experience.

Note that we do not redefine the method printString because it is more
complex and printString is reused for all the objects in the system. We

just have to implement the part that is specific to a given class, in this case
printOn:. In object-oriented design jargon, printString is a template method,
in the sense that it sets up a context which is shared by other objects, and it
hosts hook methods which are program customization points. printOn: is
such a hook method. The term hook comes from the fact that code of sub-
classes are invoked in the hook place (see Figure 16-6).

The default definition of the method printOn: as defined on the class Ob-
ject is as follows: it takes the class name, checks if it starts with a vowel or

186

16.11 Printing

printString
ObleCt self printOn: aStream
printString —
printOn:
printOn: aStream

| title |
title := self class name.
aStream

Expression nextPutAll: (title first isVowel ifTrue: ['an TifFalse: ['a]);
nextPutAll: title

negated

I\

Constant Negation Addition Multiplication
value expression | |left left
value: expression: | |right right
evaluate evaluate left: left:
printOn: printOn: right: right:
evaluate evaluate

printOn: aStream printOn: printOn:
aStream nextPutAll: value printString

BrintOn: aStream printOn: amﬁ printOn: amﬁ
aStream nextPutAll: - .
aStream nextPutAll: exp! ion printString

Figure 16-6 printOn: and printString a "hooks and template” in action.

not, and writes ’a’ or "an’ to the stream, followed by the class name. This is
why we got 'an EConstant' when we printed a constant expression.

[Object >> printOn: aStream
"Append to the argument, aStream, a sequence of characters that
identifies the receiver."

| title |

title := self class name.

aStream
nextPutAll: (title first isVowel ifTrue: ['an '] ifFalse: ['a
"1);

nextPutAll: title

A word about streams

A stream is basically a container for a sequence of objects. Once we get a
stream we can either read from it or write to it. In our case we will write to
the stream. Since the stream passed to printOn: is a stream expecting char-
acters, we will add characters or strings (sequences of characters) to it. We
will use the messages nextPut: aCharacter and nextPutAll: aString.
They add their arguments to the stream at the next and following positions.
Don’t worry - it is simple enough and we will guide you through it. You can
find more information in the streams chapter of Pharo by Example available at
http://books.pharo.org

187

http://books.pharo.org

A little expression interpreter

Printing constant

Let us start with a test. Here we check that a constant is printed as its value.

EConstantTest >> testPrinting
self assert: (EConstant value: 5) printString equals: '5'

The implementation is then simple. We just need to put the value converted
as a string to the stream.

EConstant >> printOn: aStream
aStream nextPutAll: value printString

Printing negation

For negation we should first put a ’-’ and then recurvisely call the printing
process on the negated expression. Remember that sending the message
printString to an expression should return its string representation. At
least until now it will work for constants.

[(EConstant value: 6) printString
>>> '6'

Here is a possible definition:

[ENegation >> printOn: aStream
aStream nextPutAll: '- '.
aStream nextPutAll: expression printString

But, since all the messages are sent to the same object, this method can be
rewritten as:

[ENegation >> printOn: aStream
aStream
nextPutAll: '- ';
nextPutAll: expression printString

We can also define it as follows:

EENegation >> printOn: aStream
aStream nextPutAll: '- '.
expression printOn: aStream

The difference between the first two solutions and the third is as follows:

In the solution using printString, the system creates two streams: one

for each invocation of the message printString. One for printing the ex-
pression and one for printing the negation. Once the first stream is used the
message printString converts the stream contents into a string. This new
string is then put inside the second stream which, at the end, is yet again
converted to a string. So the first two solutions are not really efficient, as
they keep converting between string and stream.

188

16.12 Revisiting the negated message for Negation

With the third solution, only one stream is created; each of the methods just
put the needed string elements into it. At the end of the process, a single
printString message converts it into a string.

Printing addition
Now let us write a test for printing addition:

[EAdditionTest >> testPrinting
self
assert: EAddition fivePlusThree printString
equals: '(5+ 3)'.
self
assert: EAddition fivePlusThree negated printString
equals: '- (5+ 3)"

To print an EAddition: put an open parenthesis, print the left expression,
put ' + ', print the right expression and put a closing parenthesis in the
stream.

EAddition >> printOn: aStream
. Your code ...

Printing multiplication

And now we do the same for multiplication.

[EMultiplicationTest >> testPrinting
self
assert: EMultiplication fiveTimesThree negated printString
equals: '- (5 % 3)"

[EMultiplication >> printOn: aStream
. Your code ...

16.12 Revisiting the negated message for Negation

Now we can go back on negating an expression. Our implementation is not
nice even if we can negate any expression and get the correct value. If you
look at it carefully negating a negation could be better. Printing a negated
negation illustrates well the problem: we get two minuses instead of none.

(EConstant value: 11) negated
>> - 11!

(EConstant value: 11) negated negated
>> - - 11"

One way to fix this would be to change the print0On: definition to check if
the expression that is negated is an ENegation, and not to print the '- "' if it

189

A little expression interpreter

is. This solution is not ideal as we do not want to write code that explicitly
checks if an object is of a given class in a conditional. Remember: we just
want to send messages and then let receiving objects perform actions.

A good solution is to specialize the message negated so that when it is sent

to a negation it does not create a new ENegation that wraps the receiver, but
instead returns the original negated expression. If negated is sent to any of
our other expressions, the method implemented in EExpression will be ex-
ecuted. This way the trees created by a negated message can never contain
a "negated negation”, but the arithmetic values obtained are still correct. To
implement this solution, we just need to implement a different version of the
method negated for ENegation.

Let’s write a test! Since evaluating a single expression or a double negated
one gives the same results, we need to define a structural test. This is what
we do with the expression exp negated class = ENegation below.

[NegationTest >> testNegatedStructureIsCorrect
| exp |
exp := EConstant constant5.
self assert: exp negated class = ENegation.
self assert: exp negated negated equals: exp.

Now you should be able to implement the negated method for ENegation.

[ENegation >> negated
. Your code ...

Understanding method override

When we send a message to an object, the system looks for the correspond-
ing method in the class of the receiver. If it is not defined there, the lookup
continues in the superclass of the previous class.

By adding a method in the class ENegation, we have created the situation
shown in Figure 16-7. We say that the message negated is overridden in ENega-
tion because, for instances of ENegation, it hides the method defined in the
superclass EExpression.

It works in following way:

» When we send the message negated to a constant, the message is not
found in the class EConstant, so it is looked up in the class EExpres-
sion, where it is found and its corresponding method is applied to the
receiver (the instance of EConstant).

» When we send the message negated to a negation, the message is
found in the class ENegation, and the method is then executed on the
receiver, the negation expression.

190

16.13

16.13 Introducing the BinaryExpression class

Object

A

Expression | rrgozieg
A ENegation new expression: self
negated =

Constant Negation Addition | | Multiplication
value expression | |left left
value: expression: | |right right
evaluate evaluate left: left:
negated right: right:
evaluate evaluate

negated
A expression

Figure 16-7 The message negated is overridden in the class ENegation.

Introducing the BinaryExpression class

Now we will take a moment to improve our first design. We will factor out
the behavior of EAddition and EMultiplication.

[EExpression subclass: #EBinaryExpression
instanceVariableNames: "'
classVariableNames: "'

package: 'Expressions'

[EBinaryExpression subclass: #EAddition
instanceVariableNames: 'left right'
classVariableNames: '’
package: 'Expressions'

EEBinaryExpression subclass: #EMultiplication
instanceVariableNames: 'left right'
classVariableNames: "'

package: 'Expressions'

Now we can use again a refactoring to pull up the instance variables left
and right, as well as the methods 1eft: and right:.

Select the class EMuplication, bring up the menu and, under the Refactor-
ing menu, select the instance variable refactoring Push Up. Then select the
instance variables you want to push up.

Now you should get the following class definitions, where the instance vari-
ables are defined in the new class and removed from the two subclasses.

191

Expression

negated

S

A little expression interpreter

Binary
l Expression
Constant Negation left
value expression right
value: expression:
evaluate evaluate ﬂ K
printOn: printOn:

Addition | | Multiplication
left: left:
right: right:
evaluate evaluate
printOn: printOn:

Figure 16-8 Factoring instance variables.

EEExpression subclass: #EBinaryExpression
instanceVariableNames: 'left right'
classVariableNames: ''
package: 'Expressions’

[EBinaryExpression subclass: #EAddition
instanceVariableNames: "'
classVariableNames: "'
package: 'Expressions'

[EBinaryExpression subclass: #EMultiplication
instanceVariableNames: "'
classVariableNames: "'

package: 'Expressions'

We should get a situation similar to the one described by Figure 16-8. All
your tests should still pass.

Now we can move the methods up in the same way. Select the method left:
and apply the refactoring Pull Up Method. Do the same for the method right:.

Creating a template and hook method

Now we can look at the method printOn: in additions and multiplications.
The definitions are very similar, only the operator changes. We cannot sim-
ply copy one of the definitions because it will not work for the other one,

but what we can do is to apply the same design idea that worked between
printString and printOn:: we can create a template and hooks that will be
specialized in the subclasses.

192

16.14 What did we learn

We will use the method printOn: as a template with a hook redefined in
each subclass.

Let define the method printOn: in EBinaryExpression and remove the
other ones from the two classes EAddition and EMultiplication.

EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: ' + '.
right printOn: aStream.
aStream nextPutAll: ')'

You you can do the next bit manually or use the Extract Method refactoring,
which creates a new method from a part of an existing method and sends
a message to the new created method: select the ' + ' inside the method
pane and bring the menu and select the Extract Method refactoring, and
when prompt give the name operatorString.

Here is the result you should get:

>EBinaryExpression >> printOn: aStream
aStream nextPutAll: '('.
left printOn: aStream.
aStream nextPutAll: self operatorString.
right printOn: aStream.
aStream nextPutAll: ')'

[EBinaryExpression >> operatorString

A

Now we can just redefine this method in the EMultiplication class to re-
turn the required string.

EMultiplication >> operatorString

A e

16.14 What did we learn

The introduction of the class EBinaryExpression is a rich experience in
terms of lessons that we can learn.

« Refactorings are more than simple code transformations. Refactor-
ings ensure that their application does not change the behavior of pro-
grams. As we have seen, refactorings are powerful operations that re-
ally help us perform complex transformations.

+ We saw that the introduction of a new superclass, and moving instance
variables or method to the superclass, does not change the structure
or behavior of the subclasses. This is because (1) for internal state, the
structure of an instance is based on the states described by its class and

193

A little expression interpreter

Figure 16-9 Factoring instance variables and behavior.

Binary
Expression Expression
<p—left
negated right
left:
right:
printOn:
operatorString
Constant Negation
value expression Addition | [Multiplication
value: expression:
evaluate evaluate evaluate evaluate
printOn: printOn: operatorString

all its superclasses, (2) the lookup starts in the class of the receiver and
then looks in its superclasses.

+ While the method printOn: is, in itself, a hook for the method printString,
it can also play the role of a template method. The method opera-
torString reuses the context created by the printOn: method which
acts as a template method. In fact, each time we do a self send we cre-
ate a hook method that subclasses can then specialize.

16.15 About hook methods

When we introduced EBinaryExpression we defined the method opera-

torString as follows:

{ EBinaryExpression >> operatorString
N 1 + 1l

{EMultiplication >> operatorString

A

And you may wonder if it was worth creating a new method in the superclass
so that only one subclass redefines it.

Creating hooks is always good

Firstly, creating a hook is always a good idea because you rarely know how
your system will be extended in the future. To show this, we suggest you to
add raising to power and division, and see how this can now be done with

one class and two methods per new operator.

194

|
|

16.15 About hook methods

Binary
Expression Expression
<F——left
negated right
left:
right:
printOn: operatorString T
operatorString -
A self subclassResponsibili
Constant | [Negation
value expression | ™ aggition | [Multiplication
value: expression:
evaluate evaluate evaluate evaluate
printOn: printOn: operatorString | |operatorString

operalorStringﬁ operatorSergﬁ
Figure 16-10 Better design: Declaring an abstract method as a way to document
a hook method.

Avoid not documenting hooks

Secondly, we could have just defined one method operatorString in each
subclass and no method in the superclass EBinaryExpression. It would
have worked because EBinaryExpression is not meant to have direct in-
stances. Therefore there is no risk that a printOn: message is sent to one of
its instance and cause an error because no method operatorString is found.

The code would have looked like the following:

EAddition >> operatorString

A

EMultiplication >> operatorString

But such a design is not great because, when extending from the class, devel-
opers will have to guess by reading the subclass definitions that they should
also define a method operatorString. A better solution would be to define
an abstract method in the superclass:

EBinaryExpression >> operatorString
* self subclassResponsibility

Using the message subclassResponsibility declares that a method is ab-
stract and does nothing except force its redefinition in subclasses; a subclass
must redefine it explicitly. Using this approach we get the final situation
represented in Figure 16-10.

In the solution presented before (section 16.13) we decided to go for the sim-
plest fix by using one of the operator strings (* + ') as a default definition
for the hook in the superclass EExpression. We did this on purpose in order
to have this discussion. It was not a good solution since it used a value only

195

16.16

A little expression interpreter

useful to a specific subclass in the superclass. It is better to define a default
value for a hook in the superclass only when this default value can be used in
subclasses, both now and in the future.

Note that we should also define evaluate as an abstract method in EExpres-
sion to indicate clearly that each subclass should define an evaluate.

Variables

Up until now our mathematical expressions have been rather limited. We
have only manipulated constant-based expressions. What we would like is
to be able to manipulate variables too. Here is a simple test to show what we
mean: we define a variable named 'x' and then we can later specify that 'x'
should take a given value.

Let us create a new test class named EVariableTest and define a first test
testValueOfx.

EVariableTest >> testValueOfx
self
assert: ((Evariable new id: #x) evaluateWith: {#x -> 10}
asDictionary)
equals: 10.

Some technical points

Let us explain a bit what we are doing with the expression {#x -> 10} as-
Dictionary. We should be able to specify that a given variable name is as-
sociated with a given value. For this we create a dictionary. A dictionary is a
data structure for storing keys and their associated values. Here a key is the
variable name and the value its associated value. Let us present some details
first.

Dictionaries

A dictionary is a data structure containing pairs of keys and values, through
which we can access the value of a given key. It can use any object as key
and any object as a value. Here we simply use a symbol #x since symbols are
unique within the system and as such we are sure that we cannot have two
keys looking the same but having different values.

[d |

d := Dictionary new
at: #x put: 33;
at: #y put: 52;
at: #z put: 98.

d at: vy

>>> 52

196

16.16 Variables

The previous dictionary can be written more concisely as {#x -> 33 . #y
-> 52 . #z -> 98} asDictionary.

{#x -> 33 . #y -> 52 . #z -> 98} asDictionary at: #y
>>> 52

Dynamic Arrays

The expression { } creates a dynamic array. Dynamic arrays execute their
expressions and store the resulting values.

{2+3.6-2.7-21}
>>> #(5 4 5)

Pairs
The expression #x -> 10 creates a pair with a key and a value.

I p |

p := #x -> 10.
p key

>>> #x

p value

>>> 10

Back to variable expressions

If we go a step further, we want to be able to build more complex expres-
sions where, instead of only having constants, we can manipulate variables.
This way we will be able to build more advanced behavior such as expression
derivations.

[EExpression subclass: #EVariable
instanceVariableNames: 'id'
classVariableNames: "'
package: 'Expressions'

[Evariable >> id: aSymbol
id := aSymbol

[Evariable >> printOn: aStream
aStream nexPutAll: id asString

We need to pass bindings (a binding is a key-value pair) when evaluating a
variable. The value of a variable is the value of the binding whose key is the
name of the variable.

EVariable >> evaluateWith: aBindingDictionary
~ aBindingDictionary at: id

197

A little expression interpreter

Your tests should all pass at this point.
For more complex expressions (the ones that interest us) here are two tests:

EVariableTest >> testValueOfxInNegation
self assert: ((EVariable new id: #x) negated
evaluateWith: {#x -> 10} asDictionary) equals: -10

What the second test shows is that we can have an expression and given a
different set of bindings the value of the expression will differ.

[EvariableTest >> testEvaluateXplusY
| epl ep2 add |
epl := EVariable new id: #x.
ep2 := EVariable new id: #y.
add := EAddition left: epl right: ep2.

self
assert: (add evaluateWith: { #x -> 10 . #y -> 2 }
asDictionary)
equals: 12.
self
assert: (add evaluateWith: { #x -> 10 . #y -> 12 }
asDictionary)

equals: 22

Non working approaches

A non-working solution would be to add the following method to EExpres-
sion
EEXpression >> evaluateWith: aDictionary

* self evaluate

However it does not work for at least the following reasons:

» It does not use its argument, and so it only works for trees composed
exclusively of constants.

+ When we send a message evaluateWith: to an addition, this message
is then turned into an evaluate message sent to each of its subexpres-
sions, not an evaluateWith message.

Alternatively we could add the binding to the variable itself, and only pro-
vide an evaluate message as follows:

[(EVariable new id: #x) bindings: { #x -> 10 . #y -> 2 } asDictionary

But it defeats the purpose of what a variable is! We should be able to give
different values to a variable embedded inside a complex expression.

198

16.16 Variables

The solution: adding evaluateWith:

The solution is simple but far-reaching: we should change all the implemen-
tations and message sends from evaluate to evaluateWith:! But since
this is a tedious task we will use the refactor Add Parameter on our evaluate
method.

Since a refactoring applies itself on the complete system, we need to be a bit
cautious because other Pharo classes also implement methods named evalu-
ate, and we really do not want to impact them.

So here are the steps that we should follow:
« Select the Expression package.
¢ Choose Scoped View from the toggle underneath the packages section.

+ Select one of the implementations of evaluate.

Select the Add argument refactoring: type evaluateWith: as method

selector and proceed when prompted for a default value Dictionary

new. This last expression is needed because the engine will rewrite all
the messages evaluate but evaluateWith: Dictionary new.

+ The system is performing many changes. Check that they only affect
your classes and accept them all.

A test like the following one:
[EConstant >> testEvaluate

self assert: (EConstant constant5) evaluate equals: 5

is transformed to:

[EConstant >> testEvaluate
self assert: ((EConstant constant5) evaluateWith: Dictionary new)
equals: 5

Your tests should nearly all pass except the ones on variables. Why do they
fail? Because the refactoring transformed message sends of evaluate to
evaluateWith: Dictionary new; it did not forward the bindings dictionary
to the evaluateWith messages sent to the subexpressions.

EAddition >> evaluateWith: anObject
~ (right evaluateWith: Dictionary new) + (left evaluateWith:
Dictionary new)

This method should be transformed as follows: we should pass the binding to
each of the recursive evaluateWith: message sends.

EAddition >> evaluateWith: anObject
* (right evaluateWith: anObject) + (left evaluateWith: anObject)

Do the same for the multiplications:

199

A little expression interpreter

EMultiplication >> evaluateWith: anObject
* (right evaluateWith: anObject) * (left evaluateWith: anObject)

And finally negations:

A

{ENegation >> evaluateWith: anObject

(expression evaluateWith: anObject) negated

16.17 Conclusion

This little exercise was full of learning potential. Here is a little summary:

200

* A message specifies an intent while a method is a named list of Pharo
instructions. We often have one message and many methods with the
same name.

» Sending a message is finding the method corresponding to the message
selector: this selection is based on the class of the object receiving the
message. When we look for a method we start in the class of the re-
ceiver and go up through the inheritance chain.

Tests are a good way to specify what we want to achieve and then to
verify after each change that we did not break something. Tests do not
prevent bugs, but they help build confidence in the changes we make.

Refactorings are more than simple code transformations. Usually refac-
torings sufficiently aware of their context that their application does
not change the behavior of the program. As we saw, refactorings are
powerful operations that really help us perform complex changes.

+ We saw that the introduction of a new superclass, and moving instance
variables or methods to that superclass, does not change the structure
or behavior of the subclasses. This is because (1) for instance variables,
the internal structure of an instance is based on the state of its class
and all of its superclasses, and (2) the lookup starts in the class of the
receiver and then goes through the superclasses in order.

+ Each time we send a message we create a potential place (a hook) for
subclasses to get their code definition used in place of the superclass’s
one (the template).

	Illustrations
	About this book
	A word of presentation
	Structure of the book
	Fast track

	What you will learn
	Pharo version
	Growing software
	Syntax, blocks and iterators

	Typographic conventions
	Videos
	Thanks

	Getting in touch with Pharo
	Pharo syntax in a nutshell
	Simplicity and elegance of messages
	Sending a message & the receiver
	Evaluating code and convention for showing results
	Other messages & return values
	The selector & unary messages
	A first keyword-based message
	Keyword-based messages with multiple arguments
	Binary messages

	Which message is executed first?
	Sending messages to classes
	Local variables and statement sequences
	About literal objects
	Sending multiple messages to the same object
	Blocks
	Control structures
	Methods
	Resources
	Conclusion

	Syntax summary
	Six reserved words only
	Reserved syntactic constructs
	Message Sending
	Three Types of Messages: Unary, Binary, and Keyword
	Message Precedence
	Cascade: Sending Multiple Messages to the Same Object
	Blocks
	Common Constructs: Conditionals
	Common Constructs: Loops/Iterators
	Files and Streams

	Challenge yourself
	Challenge: Message identification
	Challenge: Literal objects
	Challenge: Kind of messages
	Challenge: Results
	Challenge: unneeded parentheses

	Developing a simple counter
	Companion videos
	Our use case
	Create your own class
	Create a package
	Create a class

	Define protocols and methods
	Create a method
	Adding a setter method

	Define a Test Class
	Saving your work
	Saving using Monticello
	Add a repository
	Saving your package

	Adding more messages
	Instance initialization method
	Define an initialize method

	Better object description
	Conclusion

	Tests, tests and tests
	Writing a test in 2 minutes
	How do we declare a test in Pharo?

	Test Driven Design
	Why testing is important
	What makes a good test?
	SUnit by example
	Step 1: Create the test class
	Step 2: Write a test method
	Step 3: Run the test
	Step 4: Write more tests
	Step 5: Run all the tests
	Step 6: Alternative ways to execute tests
	Step 7: Looking at a bug
	Step 8: Interpret the results

	The SUnit cookbook
	About assert:equals:
	Other assertions
	Running a single test
	Running all the tests in a test class
	Must I subclass TestCase?

	Defining a fixture
	Step 1: Define the class and context
	Step 2: Setting a reusable context
	Step 3: Write some test methods

	Chapter summary

	Some collection katas with words
	Isogram
	About strings
	A solution using sets
	Hints
	Checking expression
	Adding a method to the class String

	Defining a test
	Testing several strings

	Some fun: Obtaining french isograms
	Pangrams
	Imagine a solution
	A first version
	A better version

	Handling alphabet
	Identifying missing letters
	About the return values of detectFirstMissingLetterFor:
	Detecting all the missing letters

	Palindrome as exercise
	Some possible implementations

	Conclusion

	About objects and classes
	Objects and classes
	Objects: Entities reacting to messages
	Turtles as an example
	Creating an object
	Sending messages
	Multiple instances: each with its own state.

	Messages and Methods
	Message: what should be executed
	Method: how we execute it

	An object is a protective entity
	An object protects its data
	With counters
	A class: blueprint or factory of objects
	Object structure
	Object behavior
	Self is the message receiver

	Class and instances are really different
	Conclusion

	Revisiting objects and classes
	A simple and naive file system
	Studying a first scenario
	Defining a class
	A first little analysis

	Printing a directory
	Adding files
	An example first
	A new class definition

	One message and multiple methods
	Objects: stepping back
	Examples of distribution of responsibilities
	File size
	Search

	Important points
	Modular thinking
	Sending a message is making a choice
	Polymorphic objects

	Distribution of responsibilities
	Procedural

	So far so good? Not fully!
	Conclusion

	Converter
	First a test
	Define a test method (and more)
	The class TemperaturConverter
	Converting from Farhenheit to Celsius
	About floats
	Printing rounded results
	Building a map of degrees
	Spelling Fahrenheit correctly!
	Adding logging behavior
	Discussion
	Conclusion

	An electronic wallet
	A first test
	Adding coins
	Looking at Bag
	Using a bag for a wallet
	More tests
	Testing money
	Checking to pay an amount
	Biggest coin
	Biggest below a value
	Improving the API
	Better string representation
	Easier addition
	Removing coins

	Coins for paying: First version
	Better heuristics
	Conclusion

	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Role playing syntax
	About class extensions

	Handle's addition
	Conclusion

	Sending messages
	Sending a message is making a choice
	Negation: the not message
	Implementing not
	A first hint.
	A second hint.
	Studying the implementation

	Implementing disjunction
	When receiver is true.
	When receiver is false.

	About ifTrue:ifFalse: implementation
	Implementation.
	Optimisation.

	What is the point?
	Classes represent choices

	Conclusion

	Looking at inheritance
	Inheritance: Incremental definition and behavior reuse
	Inheritance
	Improving files/directories example design
	Objectives

	Transformation strategies
	Factoring out state
	Moving instance variable name to superclass
	Moving parent to superclass

	Factoring similar methods
	Sending a message and method lookup
	Inheritance properties

	Basic method overrides
	self-send messages and lookup create hooks
	Example
	Describe implementation

	Hook/Template explanations
	Essence of self and dispatch
	Solutions

	Instance variables vs. messages
	Conclusion

	Extending superclass behavior
	Revisiting printOn:
	Improving the situation
	Why self does not work!

	Extending superclass behavior using super
	Another example
	Really understanding super
	Solution

	Conclusion

	A little expression interpreter
	Starting with constant expressions and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About the addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing the Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting the negated message for Negation
	Understanding method override

	Introducing the BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Little projects
	A simple network simulator
	Basic definitions and a starting point
	Packets are simple value objects
	Nodes are known by their address
	Links are one-way connections between nodes
	Making our objects more understandable
	Simulating the steps of packet delivery
	Sending a packet
	Transmitting across a link
	The loopback link
	Modeling the network itself
	Connecting nodes.

	Looking up nodes
	Looking up links
	Final check.

	Packet delivery with forwarding
	Introducing a new kind of node
	Other examples of specialized nodes
	Workstations counting received packets
	Printers accumulating printouts
	Servers that answer a request

	Conclusion

	Snakes and ladders
	Game rules
	Game possible run
	Potential objects and responsibilities
	Possible class candidates
	About representation

	About object-oriented design
	CRC cards
	Some heuristics
	Kind of data passed around
	Agility to adapt

	Let us get started
	A first real test
	Accessing one tile
	Adding players
	Avoid leaking implementation information
	About tools
	Displaying players
	Preparing to move players
	Finding the tile of a player
	Moving to another tile
	About our implementation

	Snakes and ladders
	A hierarchy of tiles
	Split Tile class in two
	Adding snake and ladder tiles

	New printing hook
	Using the new hook
	super does not have to be the first expression

	About hooks and templates
	Snake and ladder declaration
	Better tile protocol
	Another little improvement

	Active tile actions
	Alternating players
	Player turns and current player
	How to find the logic of currentPlayer?
	Game end
	Alternate solution

	Playing one move
	Playing one game step

	Automated play
	Some final tests

	Variations
	Conclusion

	TinyChat: a fun and small chat client/server
	Objectives and architecture
	Loading Teapot
	Message representation
	Class TCMessage
	Accessor creation

	Instance initialisation
	Converting a message object into a string
	Building a message from a string
	Starting with the server
	Storing messages
	Basic operations on message list
	List of messages from a position
	Message formatting

	The Chat server
	TCServer class creation

	Server logic
	The client
	TinyChat class
	HTTP commands

	Client operations
	Client connection parameters
	User interface
	Now chatting
	Conclusion and ideas for future extensions

	Bibliography

