
CHA P T E R 8
Understanding Visitors

In a previous chapter, you built a simple mathematical expression inter-
preter. You were able to build an expression such as (3 + 4) * 5 and then
ask the interpreter to compute its value. In this chapter we will introduce
Visitors. A Visitor is a way to represent an action on a structure (often a
tree) as its own object. The action can be complex and need its own specific
state. What is nice about a visitor is that it embeds its own state and behav-
ior which would be otherwise mixed with the ones of the structure and other
actions. In addition we can have multiple visitors visiting the same structure
without mixing their concerns. Finally a visitor is modular because you may
execute one and not another one or even load another one.

value:
printOn:
evaluateWith:

value
Constant

operatorString
evaluateWith:

Addition

expression:
printOn:
evaluateWith:

expression
Negation

operatorString
evaluateWith:

Multiplication

negated

Expression

left:
right:
printOn:
operatorString

left
right

Binary
Expression

printOn:
evaluateWith:

id
Variable

Figure 8-1 A simple hierarchy of expressions.

You will build two simple visitors that evaluate and print an expression.

Let us start with the previous situation.

75

Understanding Visitors

8.1 Existing situation: expression trees

Figure 8-1 shows the simple hierarchy of expressions that we developed in a
previous chapter. We basically have the different possible parts of an expres-
sion (variable, addition, value...) represented by their own node. Each node
holds some state and in addition specifies how it computes its value. This is
often done by a recursive call sending message evaluateWith: to subex-
pressions.

Note that expression trees are similar to the ones that are used to manipu-
late programs. For example, compilers and code refactorings as offered in
Pharo and many modern IDEs are doing such manipulation with trees repre-
senting code (often called Abstract Syntax Trees).

In the rest of this chapter we will introduce step by step a visitor and we will
incrementally replace the recursive calls by calls to the a visitor. Doing so we
will make sure that all the tests still pass.

8.2 Visitor’s key principle

The previous solution is using a simple recursive process to compute the
value of an expression. Now we will define the evaluation using a visitor.

The key principle about visitor is the following one: a visitor declares to a
structure that it wants to visit it (i.e., apply a treatment to it) and then the
structure replies by indicating to the visitor how this visitor should visit
it. This interaction is a double dispatch: it means that given a visitor and a
structure, the correct method will be executed without having to explicitly
test the class of the structure.

You do not have to deeply understanding this now. This interaction will
emerge from the exercise.

Here is a typical illustration: The class EConstant defines the method ac-
cept: to say to the visitor that it should visit the expression using the mes-
sage visitConstant:.
EConstant >> accept: aVisitor
^ aVisitor visitConstant: self

The visitor defines the specific action that he will perform:

EEvaluatorVisitor >> visitConstant: aConstant
^ aConstant value

Here is how the interaction starts: We ask the structure to accept a visitor.

| constant |
constant := EConstant value: 5.
constant accept: EEvaluatorVisitor new.

76

8.3 Introducing an Evaluating Visitor

Object

value:
accept:

value
Constant

accept:

Addition

…

accept:

Multiplication

negated
accept: aVisitor

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
…

Visitor

left:
right:
printOn:
operatorString

left
right

Binary
Expression

accept: aVisitor
 ^ aVisitor visitConstant: self

visitConstant: aConstant
 ^ aConstant value

Figure 8-2 Visitor principle.

Let us step by step implement an evaluating visitor.

8.3 Introducing an Evaluating Visitor

We start by adding an abstract method accept: in the Expression class to
document that any expression can welcome a visitor and tells it how to react.

Here is the definition of the the abstract method accept::
EExpression >> accept: aVisitor

self subclassResponsibility

Now we take a concrete node expression: we start with constant expressions.
When the visitor visit a constant, the constant tells the visitor that it should
visit the constant as a constant. This is literaly what the following method is
doing.

EConstant >> accept: aVisitor

^ aVisitor visitConstant: self

Defining the visitor class

Now it is time to define class representing the evaluating visitor.

77

Understanding Visitors

Object subclass: #EEvaluatorVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

Once the class is created we can define what is it to visit a constant expres-
sion. This is simple, it is just to return the constant value. We define the
visitConstant: as follows:
EEvaluatorVisitor >> visitConstant: aConstant

^ aConstant value

Adding a test class

To make sure that we control what we are doing, we add a test class.

TestCase subclass: #EEvaluatorVisitorTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Test'

We are ready to write our first test

EEvaluatorVisitorTest >> testVisitConstantReturnsConstantValue

| constant result |
constant := EConstant value: 5.
result := constant accept: EEvaluatorVisitor new.
self assert: result equals: 5

We can rewrite the old method evaluateWith: method to invoke the visitor.
EConstant >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

You can execute your new and old tests and both should work. Note that
once the visitor is in place, we will remove this method and only define it
once in the superclass.

8.4 Now handling addition

We will do the same with adddition. First we define a new accept: method
on the Addition class to say to the visitor which method it should execute
on the structure.
EAddition >> accept: aVisitor

... Your code ...

78

8.5 Supporting negation

Notice again that the visitor announces itself and that the addition tells it
that it should be treated this time as an addition. This pattern is key to the
visitor logic. You will see that we will repeat again and again. Each expres-
sion will declare how it should considered by the visitor.

Adding a new test

Now we can define a new test to validate that the execution of an addition is
correct.
EEvaluatorVisitorTest >> testVisitAdditionReturnsAdditionResult

| expression result |
expression := EAddition
left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 5

We create the accessors left and right.
EBinaryExpression >> left
^ left

EBinaryExpression >> right
^ right

Defining visitAddition:

Now we are ready to define the method visitAddition: so that it adds the
value returned by each sub expression:

EEvaluatorVisitor >> visitAddition: anEAddition
... Your code ...

The method visitAddition: should pass the visitor to each subexpression.
And once each value is known the visitor will perform the addition.

We also redefine the method evaluateWith: to use the visitor. As you rec-
ognize it, it is the same as in the class EConstant. We will remove it later.

EAddition >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new

Again all your new and old tests should pass.

8.5 Supporting negation

We will focus on the negation. Again we start by defining a test method.

79

Understanding Visitors

EEvaluatorVisitorTest >> testVisitNegationReturnsNegatedConstant

| expression result |
expression := (EConstant value: 7) negated.
result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -7

We follow the same process. We define the accept: method for the nega-
tion.
ENegation >> accept: aVisitor
... Your code ...

We add the expression accessor.
ENegation >> expression
^ expression

Defining visitNegation:

We define the visitNegation: as follows:

EEvaluatorVisitor >> visitNegation: anENegation
... Your code ...

What you should see is that again the method visitNegation: is invoking
the visitor on a subexpression, here the negated expression.

Again redefining evaluateWith:

We redefine the evaluateWith: method on a negation to invoke the visitor.

ENegation >> evaluateWith: anObject
^ self accept: EEvaluatorVisitor new

8.6 Supporting Multiplication

You start to get it and we will do exactly the same for multiplication.

Adding a test

EEvaluatorVisitorTest >>
testVisitMultiplicationReturnsMultiplicationResult

| expression result |
expression := EMultiplication
left: (EConstant value: 7)
right: (EConstant value: -2).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: -14

80

8.7 Supporting Division

Defining the accept: method

We define the accept: method on the Multiplication class.
EMultiplication >> accept: aVisitor

... Your code ...

Defining the visitMultiplication

We are not ready to define the method visitMultiplication: on the eval-
uating visitor. Its logic is similar to the one of the addition: get the value of
the children and multiplying it.

EEvaluatorVisitor >> visitMultiplication: anEMultiplication

... Your report ...

Figure @fig:ExpressionsVisitorBeforeBindings describes the situation.

accept:
value

Constant

accept:

Addition

…

accept:

Multiplication

accept: aVisitor
negated

Expression

visitConstant: aConstant
visitNegation: aNegation
visitAddition: anAddition
visitMultiplication: aMultiplication
…

Visitor

printOn:
operatorString

left
right

Binary
Expression

accept: aVisitor
 ^ aVisitor visitConstant: self

visitConstant: aConstant
 ^ aConstant value

accept: aVisitor
 ^ aVisitor visitAddition: self

accept: aVisitor
 ^ aVisitor visitMultiplication: self

Figure 8-3 Visitor at work.

8.7 Supporting Division

As you can guess the logic is exaclty the same to support division. You should
start to get the pattern.

81

Understanding Visitors

First two tests
EEvaluatorVisitorTest >> testVisitDivisionReturnsDivisionResult

| expression result |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 3).

result := expression accept: EEvaluatorVisitor new.
self assert: result equals: 2

EEvaluatorVisitorTest >> testVisitDivisionByZeroThrowsException

| expression result |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 0).

self
should: [expression accept: EEvaluatorVisitor new]
raise: EZeroDenominator

EEvaluatorVisitorTest >> testVisitDivisionByZeroThrowsException

| expression |
expression := EDivision
numerator: (EConstant value: 6)
denominator: (EConstant value: 0).

self
should: [expression accept: EEvaluatorVisitor new]
raise: EZeroDenominator

Improving the creation API

We introduce the class message numerator:denominator: to ease division
creation.
EDivision class >> numerator: aNumeratorExpression denominator:

aDenominatorExpression

^ self new
numerator: aNumeratorExpression;
denominator: aDenominatorExpression;
yourself

We define accessors so that the visitor can access to subexpression.

EDivision >> numerator
^ numerator

EDivision >> denominator
^ denominator

82

8.8 Moving up evaluateWith:

Defining accept:

Then we define the method accept: for divisions.

EDivision >> accept: aVisitor

... Your code ...

Defining the visitDivision:

We define the visitDivision: method as follows. It is similar to others. In
addition here we prevent division by Zero and raise an exception instead.

EEvaluatorVisitor >> visitDivision: aDivision
... Your code ...

8.8 Moving up evaluateWith:

Since we get bored to always redefine the method evaluateWith: we de-
fine it in the superclass, the class Expression and we remove it from all the
subclasses except Variable since we will still have to transform it.

EExpression >> evaluateWith: anObject

^ self accept: EEvaluatorVisitor new

8.9 Supporting variables

Now we can focus on supporting variable in the expression. The following
test show that we can have an expression which is a variable (here named
answerToTheQuestion) and that we can set the value of this variable using
the message at:put:. The test then shows that when we are evaluating the
expression we should get the corresponding value, (here 42).

EEvaluatorVisitorTest >> testVisitVariableReturnsVariableValue
| expression result visitor |
expression := EVariable id: #answerToTheQuestion.

visitor := EEvaluatorVisitor new.
visitor at: #answerToTheQuestion put: 42.

result := expression accept: visitor.
self assert: result equals: 42

Extending the visitor state

To support variable the visitor should hold a kind of environment with the
value of each variable. We introduce an instance variable named bindings.

83

Understanding Visitors

This is a good example that shows that a visitor is the natural place to store
state about the specific behavior it represents.

Object subclass: #EEvaluatorVisitor
instanceVariableNames: 'bindings'
classVariableNames: ''
package: 'Expressions-Model'

We initialize this variable to a dictionary.

EEvaluatorVisitor >> initialize

super initialize.
bindings := Dictionary new

We define a little helper to set the value of a variable.

EEvaluatorVisitor >> at: anId put: aValue
bindings at: anId put: aValue

We define a class method id: to name a variable.
EVariable class >> id: anId

^ self new id: anId; yourself

Visiting a variable

We have to define a method accept: on the class EVariable.
EVariable >> accept: aVisitor
... Your code ...

Now we are ready to define the meaning of evaluating a variable. The method
visitVariable: of the EEvaluatorVisitor is responsible of this.
EEvaluatorVisitor >> visitVariable: aVariable

... Your code ...

8.10 Redefine evaluateWith:

We modify the method evaluateWith: to make sure that the initial bindings
are stored in the visitor.
EExpression >> evaluateWith: anEnvironment

| visitor |
visitor := EEvaluatorVisitor new.
visitor bindings: anEnvironment.
^ self accept: visitor.

84

8.11 A new visitor

EEvaluatorVisitor >> bindings: aDictionary

bindings := aDictionary

8.11 A new visitor

Using a visitor is particularly interesting when we have multiple behavior
that we want to encapsulate. Such behaviors are applied on a structure with-
out mixing the state of the structure with the state of the behavior or mixing
multiple behaviors together.

Now that each kind of expression is declaring in its respective methods how
a visitor should visit it, other visitors can be easily expressed. And this is
what we will show now.

Defining a new visitor

Now we show how we can have another visitor, an expression printer. Let us
define the following class.

Object subclass: #EPrinterVisitor
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

Define some tests to make sure that you are getting the correct results. We
let you do it.

TestCase subclass: #EPrinterVisitorTest
instanceVariableNames: ''
classVariableNames: ''
package: 'Expressions-Model'

8.12 Visiting methods

We start by defining some typical visit methods as follows:

EPrinterVisitor >> visitConstant: aConstant
^ aConstant value asString

EPrinterVisitor >> visitMutiplication: aMultiplication

| left right |
left := aMultiplication left accept: self.
right := aMultiplication right accept: self.
^ '(', left , ' * ', right, ')'

Now you should be in position to finish the implementation.

85

Understanding Visitors

EPrinterVisitor >> visitAddition: anAddition
... Your code ...

EPrinterVisitor >> visitDivision: aDivision
... Your code ...

EPrinterVisitor >> visitNegation: aNegation
... Your code ...

EPrinterVisitor >> visitVariable: aVariable
... Your code ...

8.13 Conclusion

In this chapter we show how you can pass from a behavior inside a class hi-
erarchy to a separate object and how once this architecture is in place (basi-
cally the accept: methods) other visitors can be easily expressed.

The visitor pattern is a nice design. It supports encapsulate behavior on com-
plex structure. In addition it lets users develop their own functionality inde-
pently of others.

Now you should pay attention not to over use it. It is also more suitable for
systems whose domain does not change because else each time you add a
kind of object in your composite (here the expression) you would have to
touch each visitor.

86

	Illustrations
	About this book
	Structure of the book
	Typographic conventions
	Thanks

	Getting started
	Crafting a simple embedded DSL with Pharo
	Getting started
	Create a test
	Define the class Die

	Rolling a die
	Creating another test
	Instance creation interface
	Defining a class method
	[Optional] Alternate instance creation definition

	First specification of a die handle
	Testing a die handle

	Defining the DieHandle class
	Improving programmer experience
	Optimization Remark.

	Rolling a die handle
	About Dice and DieHandle API
	About composition

	Handle's addition
	Role playing syntax
	About class extensions

	Conclusion

	A little expression interpreter
	Starting with constant expression and a test
	Negation
	Adding expression addition
	Multiplication
	Stepping back
	Messages and methods
	About common superclass
	Design corner: About addition and multiplication model

	Negated as a message
	negated message for constants
	negated message for negations
	negated message for additions
	negated message for multiplications

	Annoying repetition
	Introducing Expression class
	Class creation messages
	Better instance creation for constants
	Better instance creation for negations
	Better instance creation for additions
	Better instance creation for multiplications

	Introducing examples as class messages
	Printing
	A word about streams
	Printing constant
	Printing negation
	Printing addition
	Printing multiplication

	Revisiting negated message for Negation
	Understanding method override

	Introducing BinaryExpression class
	Creating a template and hook method

	What did we learn
	About hook methods
	Creating hooks is always good
	Avoid not documenting hooks

	Variables
	Some technical points
	Dictionaries
	Dynamic Arrays
	Pairs

	Back to variable expressions
	Non working approaches
	The solution: adding evaluateWith:

	Conclusion

	Power of Messages
	Stone Paper Scissors
	Starting with a couple of tests
	Creating the classes
	With messages
	playAgainstStone:
	Scissors now
	Paper now

	About double dispatch
	A Better API
	About alternative implementations
	Conclusion

	Stone Paper Scissors Solution
	Stone
	Scissors
	Paper

	Revisiting the Die DSL: a Case for Double Dispatch
	A little reminder
	New requirements
	Turning requirements as tests
	The first implementation
	Sketching double dispatch
	Adding two dice
	Adding a die and a die or a handle
	When the argument is a die handle
	Stepping back
	Now a DieHandle as receiver
	sumWithHandle: on Die class
	Conclusion

	Revisiting the Die DSL: a Case for Double Dispatch

	Playing with Visitors
	Understanding Visitors
	Existing situation: expression trees
	Visitor's key principle
	Introducing an Evaluating Visitor
	Defining the visitor class
	Adding a test class

	Now handling addition
	Adding a new test
	Defining visitAddition:

	Supporting negation
	Defining visitNegation:
	Again redefining evaluateWith:

	Supporting Multiplication
	Adding a test
	Defining the accept: method
	Defining the visitMultiplication

	Supporting Division
	First two tests
	Improving the creation API
	Defining accept:
	Defining the visitDivision:

	Moving up evaluateWith:
	Supporting variables
	Extending the visitor state
	Visiting a variable

	Redefine evaluateWith:
	A new visitor
	Defining a new visitor

	Visiting methods
	Conclusion

	Playing with Interpreters

