Advanced Object-Oriented Design

Some Visitor advanced
points

S. Ducasse

Phar@

ttp://www.pha

http://www.pharo.org

Goals

Let us chew a bit more Visitor

e What about navigation control
e About better hooks
e Not shortcutting double dispatch

2
»” 2022 2/15

Controlling the traversal

A visitor embeds a structure traversal

e There are different places where the traversal can be implemented:

o in the visitors
o in the items themselves

Usually the visitor is under control but may be the domain logic is more important.

%
»” 2022 3/15

Visitor in control

A\

2022 4/15

Visitor

Expression

visitNumber: aConstant

visitPlus: anAddition

visitTimes: aMultiplication

acceptVisitor: aVisitor

Number

Operation

Evaluator

left

acceptVisitor: right

visitNumber: aConstant

visitPlus: anAddition

visitTimes: aMultiplication

5

3

Plus

Times

visitPlus: aPlus

Irl

Ar+l

acceptVisitor:

acceptVisitor:

| := aPlus left acceptVisitor: self.

T : i acceptVisitor: aVisitor
r := aPlus right acceptVisitor: self. A aVisitor visitPlus: self

acceptVisitor: aVisitor
A aVisitor visitPlus: self

Items in control

Visitor

Expression

visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

acceptVisitor: aVisitor

Evaluator

stack

visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

| visitPlus: aPlus
A self sumStack

~

| visitNumber: aNumber
A self push: aNumber

A\

2022 5/15

Number Operation
value left
acceptVisitor: right
Plus Times
acceptVisitor: acceptVisitor:

acceptVisitor: aVisitor
self left visit: aVisitor.
self right visit: aVisitor.
aVisitor visitPlus: self.

Visitor vs. class extension

e Even if a language such Pharo supports class extension: defining methods on a
class from another package than the class package),
e Using a Visitor is better because:

o Each Visitor encapsulates a complex operation
o Each Visitor has its own state

2
»” 2022 6/15

A basic trolling point

Some people may tell you that Visitor is not OO because Visitor externalizes
behavior out of objects.

e Yes operations applied on objects are defined outside the objects.

® Are you ready to lose

o clear separation of operation related state from the domain object?
o package multiple behaviors separately?
o define incrementally new operations?

¢ If you have a lot of orthogonal treatments, then better separate them

2
»” 2022 7/15

VisitMethods encode a context

e The granularity of visit methods has an impact on the hooks they offer
e visit* methods can be used to provide context

%
»” 2022 8/15

Example: visitTemporariesNode: vs. visitNode:

Compare

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode temporaries do: [:each | self visitNode: each].
aSequenceNode statements do: [:each | self visitNode: each]

VS.

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitNode: each]

e visitTemporaryNodes: encodes the fact that it is only invoked on temporaries
e No need to guess by looking at parent or other information

22022 9/15

Short cutting double dispatch

Compare:

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitNode: each]

RBProgramNodeVisitor >> visitVariable: aNode
A aNode

VS.

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitVariable: each]

In the second version, the use of visitVariable: aNode

e short cuts the double dispatch
e Cuts the possibility of letting any object participates by telling the visitor how to
handle it

$
22022 10/15

Building generic Visitors can be difficult

e Should we return always a result?
e Should collect the values on collection?

There is no definitive solution

e Often the solution is to have an abstract visitor and to redefine most of the logic
per families of tasks

%
»” 2022 11/15

Should we promote collections as domain nodes?

e When we iterate on a collection (e.g. of nodes), the collection is not part of the
composite domain

Should we turn such a collection into a domain element?
It depends of the domain
and if there is the benefit

%
»” 2022 12/15

[Type] Do not use overloaded ==visit== methods

As a summary, overloading does not really work in Java and you will have to
explicitly cast your visitor or use getClass everywhere.

e Better define method visitNumber(), visitPlus(), visitTimes()
e than visit()

e Static type may prevent subclass redefinitions to be invoked
Trust an expert :)

%
»” 2022 13/15

Conclusion

e Visitor can be tricky to master
o use accept/visit vocabulary to really help you
e Visitor is powerful for complex structure operations

%
»” 2022 14/15

'lJ nive F’SI{T@V B UENsEianEmenT

n

. PERIEUR,
DE LA RECHERCHE
merigu ET BE LINNOVATION

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

©10Ie)

V4

inlarmqntiques/mathémmiques %
é Z W INSTITUT

Mines-Télécom

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

(3]
MINISTER FONDATION

ZUNIT

SUPERIEUR,

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

