
Advanced Object-Oriented Design

Some Visitor advanced
points
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goals

Let us chew a bit more Visitor
 What about navigation control
 About better hooks
 Not shortcutting double dispatch

2022 2 / 15

Controlling the traversal

A visitor embeds a structure traversal
 There are different places where the traversal can be implemented:

◦ in the visitors
◦ in the items themselves

Usually the visitor is under control but may be the domain logic is more important.

2022 3 / 15

Visitor in control

acceptVisitor:
value

Number

acceptVisitor:

Plus

acceptVisitor:

Times

acceptVisitor: aVisitor

Expression
visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

Visitor

…

left
right

Operation

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

Evaluator

visitPlus: aPlus

 | l r |
 l := aPlus left acceptVisitor: self.
 r := aPlus right acceptVisitor: self.
 ^ r + l

2022 4 / 15

Items in control

acceptVisitor:
value

Number

acceptVisitor:

Plus

acceptVisitor:

Times

acceptVisitor: aVisitor

Expression
visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

Visitor

…

left
right

Operation

acceptVisitor: aVisitor
 self left visit: aVisitor.
 self right visit: aVisitor.
 aVisitor visitPlus: self.

visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication

stack
Evaluator

visitPlus: aPlus
 ^ self sumStack

visitNumber: aNumber
 ^ self push: aNumber

2022 5 / 15

Visitor vs. class extension

 Even if a language such Pharo supports class extension: defining methods on a
class from another package than the class package),

 Using a Visitor is better because:
◦ Each Visitor encapsulates a complex operation
◦ Each Visitor has its own state

2022 6 / 15

A basic trolling point

Some people may tell you that Visitor is not OO because Visitor externalizes
behavior out of objects.
 Yes operations applied on objects are defined outside the objects.
 Are you ready to lose

◦ clear separation of operation related state from the domain object?
◦ package multiple behaviors separately?
◦ define incrementally new operations?

 If you have a lot of orthogonal treatments, then better separate them

2022 7 / 15

VisitMethods encode a context

 The granularity of visit methods has an impact on the hooks they offer
 visit* methods can be used to provide context

2022 8 / 15

Example: visitTemporariesNode: vs. visitNode:

Compare

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode temporaries do: [:each | self visitNode: each].
aSequenceNode statements do: [:each | self visitNode: each]

vs.

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitNode: each]

 visitTemporaryNodes: encodes the fact that it is only invoked on temporaries
 No need to guess by looking at parent or other information

2022 9 / 15

Short cutting double dispatch
Compare:

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitNode: each]
RBProgramNodeVisitor >> visitVariable: aNode
^ aNode

vs.
RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
self visitTemporaryNodes: aSequenceNode temporaries.
aSequenceNode statements do: [:each | self visitVariable: each]

In the second version, the use of visitVariable: aNode
 short cuts the double dispatch
 Cuts the possibility of letting any object participates by telling the visitor how to

handle it

2022 10 / 15

Building generic Visitors can be difficult

 Should we return always a result?
 Should collect the values on collection?

There is no definitive solution
 Often the solution is to have an abstract visitor and to redefine most of the logic

per families of tasks

2022 11 / 15

Should we promote collections as domain nodes?

 When we iterate on a collection (e.g. of nodes), the collection is not part of the
composite domain

 Should we turn such a collection into a domain element?
 It depends of the domain
 and if there is the benefit

2022 12 / 15

[Type] Do not use overloaded ==visit== methods

As a summary, overloading does not really work in Java and you will have to
explicitly cast your visitor or use getClass everywhere.
 Better define method visitNumber(), visitPlus(), visitTimes()
 than visit()
 Static type may prevent subclass redefinitions to be invoked

Trust an expert :)

2022 13 / 15

Conclusion

 Visitor can be tricky to master
◦ use accept/visit vocabulary to really help you

 Visitor is powerful for complex structure operations

2022 14 / 15

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

