
Advanced Object-Oriented Design

Visitor
Modular and extensible first class actions

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal

 Studying examples
 Understanding Visitor
 Pros and Cons

2022 2 / 25

Example: basic arithmetic expressions

Imagine a simple mathematical system
 a Composite
 with number and operation

expressions

…

Number

…

Plus

…

Times

…

Expression

…

left
right

Operation

2022 3 / 25

Some expressions

1

ENumber value: 1

(3 * 2)

Times le�: (ENumber value: 3) right: (ENumber value: 2)

1 + (3 * 2)

Plus
le�: (ENumber value: 1)
right: (Times le�: (ENumber value: 3) right: (ENumber value: 2))

In Pharo we can just extend Number so no need of ENumber value: but this is a
detail

2022 4 / 25

Operations on the structure

We want to evaluate expressions, and print them
Evaluating

1 + (3 * 2)
gives 7

Printing

+1*32

2022 5 / 25

First design: behavior define in the domain

print
evaluate

Number

print
evaluate

Plus

print
evaluate

Times

…

Expression

…

left
right

Operation

2022 6 / 25

First design analysis

What if we need a stack to print well the expressions?
 Should we define the stack in the expression classes even if this is related only

to print?

Should we mix the information about the treatment of items and the items
themselves?
 What if we need a table for mathematical expressions specific to the LaTeX

generation?
 What if we need a table for mathematical expression specific to the RDF

generation?

2022 7 / 25

Let us see on a real system: Pillar

We have
 the core hierarchy is about 50 classes
 export to LaTeX (two versions)
 export to HTML
 export to Beamer
 export to ASCIIdoc, Markdown, Microdown
 transform trees for expansion

2022 8 / 25

First design conclusion

Putting all the behavior inside the domain objects
 Blows up the class API / state / methods
 Mixes concerns
 Is not modular: we cannot have one operation only
 Prevents extension: To add a new behavior I should change the domain

2022 9 / 25

Alternate design: using a visitor

A Visitor:
 decouples operation from the structure
 represents an operation
 Supports modularity

◦ can package visitors in separate packages
 Supports extension

◦ defines an extension protocol (set of messages to be defined)
◦ new visitors are easy to define

2022 10 / 25

Visitor’s intent

 Represents an operation to be performed on the elements of an object
structure in a class separate from the elements themselves.

 Visitor lets you define a new operation without changing the classes of the
elements on which it operates.

2022 11 / 25

Visitor’s design

acceptVisitor:
value

Number

acceptVisitor:

Plus

acceptVisitor:

Times

acceptVisitor: aVisitor

Expression
visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication
…

Visitor

left
right

Operation

acceptVisitor: aVisitor
 ^ aVisitor visitNumber: self

visitNumber: aNumber
 ^ aNumber value

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

2022 12 / 25

Visitor + Composite

A visitor requires a structure to perform different actions based on the kind of
element
 Perfect match with a composite
 Uses double dispatch

A visitor separates a treatment from the data structure (Composite) it applies to.

2022 13 / 25

Based on double dispatch

Each composite element accepts a visitor and tell it how to visit it

X >> accept: aVisitor
aVisitor visitX: self

Key to avoid terrible conditional checks

2022 14 / 25

Example: Evaluator Visitor

Evaluator >> visitNumber: aNumber
^ aNumber value

Evaluator >> visitPlus: anExpression
| l r |
l := anExpression le� acceptVisitor: self.
r := anExpression right acceptVisitor: self.
^ l + r

Evaluator >> visitTimes: anExpression
| l r |
l := anExpression le� acceptVisitor: self.
r := anExpression right acceptVisitor: self.
^ l * r

2022 15 / 25

Invoking the Visitor

Evaluator new evaluate:
(Plus
le�: (ENumber value: 1)
right: (Times le�: (ENumber value: 3) right: (ENumber value: 2)))

> 7

Evaluator >> evaluate: anExpression
^ anExpression acceptVisitor: self

2022 16 / 25

Example: Printer
Visitor subclass: #Printer
iv: 'stream level'

Printer >> visitNumber: aNumber
stream nextPutAll: aNumber value asString

Printer >> visitPlus: anExpression
stream nextPutAll: '+'.
anExpression le� acceptVisitor: self.
anExpression right acceptVisitor: self.

Printer >> visitPlus: anExpression
stream nextPutAll: '*'.
anExpression le� acceptVisitor: self.
anExpression right acceptVisitor: self.

2022 17 / 25

Expression Visitor analysis

 Each visitor knows what to do for a number, a plus, and times operation
 Each visitor manages its own specific state
 Each visitor is independent of other ones
 Double dispatch supports the decoupling

2022 18 / 25

A protocol for extension

To extend a visitor:
 Define a class which has the expected API i.e., visitX methods
 Apply the visitor to the structure

2022 19 / 25

Stepping back: double dispatch is the key point

 The Visitor knows the elementary operations (e.g., evaluating a plus, a minus,
and a value)

 The items mentions to the Visitor how they want to be visited

acceptVisitor:
value

Number

acceptVisitor:

Plus

acceptVisitor:

Times

acceptVisitor: aVisitor

Expression
visitNumber: aConstant
visitPlus: anAddition
visitTimes: aMultiplication
…

Visitor

left
right

Operation

acceptVisitor: aVisitor
 ^ aVisitor visitNumber: self

visitNumber: aNumber
 ^ aNumber value

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

2022 20 / 25

Visitor: another look at it

Visitor design provides a pluggable distributed recursive treatment of a
composite structure

Printer >> visitPlus: anExpression
stream nextPutAll: '*'.
anExpression le� acceptVisitor: self.
anExpression right acceptVisitor: self.

2022 21 / 25

When to use a Visitor

 Whenever you have a number of items on which you have to perform a number
of actions

Examples:
 Parse tree (ProgramNode) uses a visitor for

◦ the compilation (emitting code on CodeStream),
◦ pretty printing, syntax hilighting
◦ different analysis pass,
◦ rotten green test analysis

 Rendering documents (Document) in different formats
◦ nodes expansion, HTML, LaTeX, ...

2022 22 / 25

When using a Visitor is challenging

Changing node elements
 If the elements of the composite change, you will have to change all your

visitors
 Problem known as the expression problems in statically-typed languages

2022 23 / 25

Conclusion

Pros:
 Visitor is a good pattern
 It provides modular and extensible design
 Double dispatch makes it plug and play

Cons:
 Can look more complex
 It is not adapted to changing structures

2022 24 / 25

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

