
Advanced Object-Oriented Design

Composite
A nice and common design pattern

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Outline

 Composite Design Pattern
 Composite discussions

2022 2 / 19

Composite: Intent

 Compose objects into tree structures to represent part-whole hierarchies
 Composite lets clients treat individual objects and compositions of objects

uniformly

2022 3 / 19

Composite design essence

operation
Component

operation
add:
remove:

Composite
operation

Leaf

children

children
 do: [:each | each operation]

Client

2022 4 / 19

Composite motivation

A tree is a
 leave
 a node with trees as children

2022 5 / 19

Examples

A book is composed of
 title
 table of contents
 chapters

A chaper is composed of
 sections
 paragraph
 lists

2022 6 / 19

Composite motivation
 A diagram is composed of elements
 An element can be

◦ a circle
◦ a segment
◦ a text
◦ a group of elements

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

elements do: [:each | each draw]

draw
Text

draw
Segment

Client

2022 7 / 19

Composite participants: Client

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

elements do: [:each | each draw]

draw
Text

draw
Segment

Client

Client manipulates objects in the composition through the Component interface

2022 8 / 19

Composite participants: Component

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

elements do: [:each | each draw]

draw
Text

draw
Segment

Client

Component (here Graphic)
 declares the interface for objects in the composition
 may implement default behavior for common interfaces
 may declare an interface for accessing and managing its child components

2022 9 / 19

Composite participants: Leaf

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

elements do: [:each | each draw]

draw
Text

draw
Segment

Client

Leaf (Circle, Segment, Text, ...)
 represents leaf objects in the composition.
 has usually no children
 defines behavior for primitive objects in the composition

2022 10 / 19

Composite participants: Composite

draw
Graphic

draw
add:
remove:

Group
draw
Circle

elements

elements do: [:each | each draw]

draw
Text

draw
Segment

Client

Composite (Group)
 defines behaviour for components having children
 stores child components
 implements child-related operations (add/remove...)

2022 11 / 19

Collaborations

 Clients use the Component class interface to interact with objects in the
composite structure

 Leaves handle requests directly
 Composites ’forward’ requests to its child components

◦ they can implement different semantics

2022 12 / 19

Composite consequences

 Defines class hierarchies consisting of primitive and composite objects
 Makes the client simple. Composite and leaves objects are treated uniformly
 Eases the creation of new kinds of components
 Can make your design general

2022 13 / 19

Alternate extreme implementation

 Remember a Design Pattern is a name + intent
 It can have multiple implementations

Client operation
add:
remove:

children
Component children

 Now the gain treating a leave as a container with a single element is unclear

2022 14 / 19

In a dynamically-typed language

 add:, remove: do not need to be declared into Component but only on
Composite
◦ Avoid to have to define dummy behavior for children in superclass

(Component)

2022 15 / 19

Open questions

 Can Composite contain any type of child? (domain issues)
 Is the Composites number of children limited?
 Forward/Delegation

◦ Simple forward. Send the message to all the children and merge the results
without performing any other behavior

◦ Selective forward. Conditionally forward to some children
◦ Extended forward. Extra behavior
◦ Override. Instead of delegating

2022 16 / 19

Working well with

Composite and Visitors: Visitors walk on structured recursive objects:
composites
Composite and Factories Factories can create composite elements

2022 17 / 19

Conclusion

 Composite is a natural way of composing structural relationships
 Composite provide uniform API
 Basis for complex treatment expressed as Visitor

2022 18 / 19

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

