Advanced Object-Oriented Design

Learning from a
Sokoban
implementation

S.Ducasse

Phar@

ttp://www.pha

http://www.pharo.org

Goal

e Think about model
e Think about messages and condition

%
»” 2022 2/25

Studying a Sokoban Implementation

Sokoban is a puzzle video game genre in which the player pushes crates or boxes
around in a warehouse, trying to get them to storage locations.
https://en.wikipedia.org/wiki/Sokoban

%
»” 2022 3/25

https://en.wikipedia.org/wiki/Sokoban

Studying a Sokoban Implementation

e Developed by some students of I. Franko University (Lviv)
e Thank you so much!

2
202022 4/25

Looking the implemented core model

e Block

o EmptyBlock
o Wall

e GameModel
GameState
e Maze

MazeTemplate

MoveResult

o Move
Push

o NoMove

%
»” 2022 5/25

Let us ""Speculate about Design""

e Apply Speculate about Design
object-oriented reengineering pattern

¢ Intent: Progressively refine a design against
source code by checking hypotheses about the
design against the source code.

¢ Use your development expertise to conceive a b2 P
hypothetical class diagram representing the Patterns
design.

2
»” 2022 6/25

Take some minutes to sketch a list of classes

2
W2l2022 7/25

A possible implementation

e Wall
e Floor
® Box
e Robot
e Target
Board
And

e Template/Level
® Moves

2
W2 2022 8/25

Let us go back

e Block
o EmptyBlock
o Wall

e GameModel
e GameState
e Maze
e MazeTemplate
e MoveResult

o Move

Push
o NoMove

%
»” 2022 9/25

Gut feeling analysis

® The implemented Block model looks too shallow
e Remember classes
o are representing cases
o are the basis for dispatch
e Not enough classes leads to tricky conditionals and monolithic systems
®* Remember the lectures Implementing not, or...

Class

N \A
Fat Class o
Attribute
Attribute [A] [] C]
Operation1 Operation Attribute [Operation |
Operation2 |

B’] [C']

[
Operation Operation

2
»~” 2022 10/25

Let us check the class API

Classes define:

isEmptyBlock
isWall
hasPlayer
hasTarget
hasBox

Let us check the way this APl is used

%
»” 2022 11/25

Too many ifs....

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall
ifTrue: [self drawWall: aCanvas]
ifFalse: [aBlock isEmptyBlock
ifTrue: [aBlock hasPlayer
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndPlayer: aCanvas]
ifFalse: [self drawPlayer: aCanvas]]
ifFalse: [aBlock hasBox
ifTrue: [aBlock hasTarget
ifTrue: [self drawTargetAndBox: aCanvas]
ifFalse: [self drawBox: aCanvas]]
ifFalse:
aBlock hasTarget
ifTrue: [self drawTarget: aCanvas]
ifFalse: [self drawEmptyBlock: aCanvas]]]

) 2022 12/25

Analysis

The model only defines EmptyBlock and Wall

e No Player, no target, no box.

e Too much logic is put in EmptyBlock

e Too much Ask, not enough Tell (Do not Ask, Tell)

2
»” 2022 13/25

With a better model

e Block

o Box
BoxOnTarget
EmptyBlock
Player
Wall

e We can send messages to the 'correct’ object
e We can tell and not ask!

0O O O O

%
»” 2022 14/25

A first nicer solution

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall ifTrue: [self drawWall: aCanvas].
aBlock isEmptyBlock if True: [
aBlock hasPlayer ifTrue: [...

Becomes

GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas

Wall >> drawOn: aCanvas
"Cairo code"

EmptyBlock >> drawOn: aCanvas
"Cairo code"

$
22022 15/25

A solution supporting multiple canvases

To be able to have the rendering supporting multiple back-ends (morphic, Cairo...)
drawing should not be in the Block classes

%
»” 2022 16/25

A solution supporting multiple canvases

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall ifTrue: [self drawWall: aCanvas].
aBlock isEmptyBlock if True: [
aBlock hasPlayer ifTrue: [...

Becomes
GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas

Wall >> drawOn: aCanvas
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas
aView drawEmptyBlock: aCanvas

22022 17/25

Double dispatch

Each block tells the view how to draw it.

GameView >> drawBlock: aBlock on: aCanvas
aBlock drawOn: aCanvas view: self

Wall >> drawOn: aCanvas view: aView
aView drawWall: aCanvas

EmptyBlock >> drawOn: aCanvas view: aView
aView drawEmptyBlock: aCanvas

e We tell a block to draw itself and it tells how to the canvas
e Sending messages is powerful
e Modular

22022 18/25

Disguided kind testing method

Wall >>isWall
Atrue

EmptyBlock >>isWall
A false

and

GameView >> drawBlock: aBlock on: aCanvas
aBlock isWall if True: [self drawWall: aCanvas]

is nearly the same as

GameView >> drawBlock: aBlock on: aCanvas
(aBlock isKindOf: Wall) if True: [self drawWall: aCanvas].

22022 19/25

Back to the model

What are:

e MoveResult
o Move
Push
o NoMove

¢ Reification of player actions
e Could be good to record and replay

%
»” 2022 20/25

Let us study the API

MoveResult >> isMove
A false

MoveResult >> isPush
A false

MoveResult >> isNoMove

e Again testing kind methods
e Testing kind methods are the same as x class = MoveResult

2
»” 2022 21/25

Checking testing method use

GameState >> moveBy: aDirection
| move |
move := maze moveBy: aDirection.
move isMove ifTrue: [moves := moves +1].
move isPush ifTrue: [
pushes := pushes + 1.
moves :=moves +1].
self addMove: move

»” 2022 22/25

Do not ask, tell

GameState >> moveBy: aDirection
| move |
move := maze moveBy: aDirection.
move updateGameState: self.
self addMove: move

Move >> updateGameState: aGameState
aGameState incrementMoves

Push >> updateGameState: aGameState
super updateGameState: aGameState.
aGameState increasePushes

NoMove >> updateGameState: aGameState
self

2
»” 2022 23/25

Conclusion

Challenge classes

Little class hierarchies are good

Better many small classes than a big one
Challenge kind testing methods

Check their use

Messages act as dispatcher

2
»” 2022 24/25

'lJ nive F’SI{T@V B UENsEianEmenT

n

. PERIEUR,
DE LA RECHERCHE
merigu ET BE LINNOVATION

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

©10Ie)

V4

inlarmqntiques/mathémmiques %
é Z W INSTITUT

Mines-Télécom

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

(3]
MINISTER FONDATION

ZUNIT

SUPERIEUR,

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

