
Advanced Object-Oriented Design

Turning Procedure to
Objects
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Objects are powerful

 Super basic to say it but
 Objects are powerful
 An example: Behavior»printHierarchy vs. ClassHierarchyPrinter

◦ printHierarchy is a method
◦ ClassHierarchyPrinter is a little class

2022 2 / 13

Functionality we want

 Printing the hierarchy of class

>>> Rectangle printHierarchy
'ProtoObject #()
Object #()

Rectangle #(#origin #corner)
CharacterBlock #(#stringIndex #text #textLine)'

2022 3 / 13

Coded as...
Behavior >> printHierarchy
"Answer a description containing the names and instance variable names
of all of the subclasses and superclasses of the receiver."

| aStream index |
index := 0.
aStream := (String new: 16) writeStream.
self allSuperclasses reverseDo:
[:aClass |
aStream crtab: index.
index := index + 1.
aStream nextPutAll: aClass name.
aStream space.
aStream print: aClass instVarNames].
aStream cr.
self printSubclassesOn: aStream level: index.
^aStream contents

2022 4 / 13

With...
Behavior >> printSubclassesOn: aStream level: level
"As part of the algorithm for printing a description of the receiver, print the
subclass on the file stream, aStream, indenting level times."

| subclassNames |
aStream crtab: level.
aStream nextPutAll: self name.
aStream space; print: self instVarNames.
self == Class
ifTrue:
[aStream crtab: level + 1; nextPutAll: '[... all the Metaclasses ...]'.
^self].

subclassNames := self subclasses asSortedCollection:[:c1 :c2| c1 name <= c2 name].
"Print subclasses in alphabetical order"
subclassNames do:
[:subclass | subclass printSubclassesOn: aStream level: level + 1]

2022 5 / 13

Analyis

 Procedural decomposition
 Simple (two methods)
 State is passed as arguments

Does not work if we need
 To filter subclasses (RBLintRule printHierarchy)
 To cut above a given superclass or if class is from a given package
 Do not want to see instance variables

2022 6 / 13

Limits

 End up with too many arguments
 We cannot design a fluid API to configure the output
 We may not want or cannot add state to the domain object

◦ here we do not want to add state to Behavior just for printing

2022 7 / 13

Turning it into an object

We can simply do

ClassHierarchyPrinter new
forClass: Rectangle;
doNotShowState;
doNotShowSuperclasses

2022 8 / 13

A more complex scenario

ClassHierarchyPrinter new
forClass: RBNode;
doNotShowState;
doNotShowSuperclasses;
excludedClasses: (RBNode withAllSubclasses

select: [:each | each name beginsWith: RBPattern]);
limitedToClasses: (RBNode withAllSubclasses

select: [:each | each name beginsWith: RB]).

2022 9 / 13

Looking at ClassHierarchyPrinter

Object << #ClassHierarchyPrinter
slots: { #theClass . #excludedClasses . #limitedToClasses . #stream .
#level . #showSuperclasses . #showState };
tag: 'ForPharo';
package: 'Kernel−ExtraUtils'

API
 doNotShowState, doNotShowSuperclasses
 limitedToClasses: to offer specific scope
 excludedClasses: to remove unwanted subclasses
 cr, tab, nextPutAll: to let decorations

2022 10 / 13

Stepping back

 Created little objects that can be configured!
 The object holds the specific state for its computation
 The API can extended if needed
 Functionality can be removed from Behavior
 Functionality can be nicely tested and packaged outside of Kernel

2022 11 / 13

Further thought

 An object is a powerful entity
 If the functionality needs to behave differently on different objects (Classes,

Traits, Metaclasses...) we can use double dispatch between the objects that the
printers as it is done in the ClassDefinitionPrinter

2022 12 / 13

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

