
Advanced Object-Oriented Design

About Registration
When class method-based registration is too
much

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal

 Thinking about system dynamics
 Alternatives to class methods as registration mechanism
 Impact of dynamic registration

2022 2 / 12

Using class methods as registration

 Class is a real object
 We can send a message to a class
 Each class can answer specifically

Object allSubclasses collect: [:each | each foo]

Each class will be able
 to define its own foo method and
 to reuse the one of its superclass

2022 3 / 12

Remember the previous lectures

PillarParser >> documentClasses
^ DocumentItem allSubclasses
sorted: [:class1 :class2 | class1 priority < class2 priority]

PillarParser >> parse: line
self documentClasses
detect: [:subclass |
(subclass canParse: line)
ifTrue: [^ subclass newFromLine: line]]

2022 4 / 12

Registration for ’Free’

Pros:
 Each time a new class is loaded it is taken into account

Cons:
 We do it all the time for nothing
 We are querying the system for nothing!
 It is expensive

2022 5 / 12

Solution 1: Explicit static list

PillarParser >> documentClasses
^ { Section . List . Paragraph }
sorted: [:class1 :class2 | class1 priority < class2 priority]

2022 6 / 12

Statically sorting the list

In fact we could precompute priority too

PillarParser >> documentClasses
^ { Section . Paragraph . List }

Pros:
 Do not have to query all the classes all the time

Cons:
 You have to keep it up to date
 Watch out because we may not want to list explicitly class to avoid

dependencies to other packages

2022 7 / 12

Solution 2: Explicit registration mechanism

E.g., classes can explicit register to the parser

Section class >> initialize
PillarParser registerClass: self

List class >> initialize
PillarParser registerClass: self

PillarParser >> documentClasses
^ RegisteredClasses

 No need to maintain the list manually
 Dynamic but do not force to query the system all the time

2022 8 / 12

A registration mechanism supports extension

Extra class >> initialize
PillarParser registerClass: self

 External classes can also register
 Without introducing unwanted dependency
 Without scanning all the classes of the system

2022 9 / 12

Unregistration

With explicit registration, the unregistration can be also a concern.
 The registration holder (here PillarParser) should offer way to retract a

registration
 Registered classes have the responsibility to unregister themselves.

2022 10 / 12

Conclusion

 XXX subclasses is a cool pattern
 But it has a cost!
 Better use an explicit registration

◦ it is dynamic but does not query for nothing
 Design is about tradeoffs

2022 11 / 12

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

