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Goal

 Thinking about system dynamics
 Alternatives to class methods as registration mechanism
 Impact of dynamic registration
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Using class methods as registration

 Class is a real object
 We can send a message to a class
 Each class can answer specifically

Object allSubclasses collect: [ :each | each foo ]

Each class will be able
 to define its own foo method and
 to reuse the one of its superclass
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Remember the previous lectures

PillarParser >> documentClasses
^ DocumentItem allSubclasses
sorted: [ :class1 :class2 | class1 priority < class2 priority ]

PillarParser >> parse: line
self documentClasses
detect: [ :subclass |
(subclass canParse: line)
ifTrue: [ ^ subclass newFromLine: line ] ]
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Registration for ’Free’

Pros:
 Each time a new class is loaded it is taken into account

Cons:
 We do it all the time for nothing
 We are querying the system for nothing!
 It is expensive
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Solution 1: Explicit static list

PillarParser >> documentClasses
^ { Section . List . Paragraph }
sorted: [ :class1 :class2 | class1 priority < class2 priority ]
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Statically sorting the list

In fact we could precompute priority too

PillarParser >> documentClasses
^ { Section . Paragraph . List }

Pros:
 Do not have to query all the classes all the time

Cons:
 You have to keep it up to date
 Watch out because we may not want to list explicitly class to avoid

dependencies to other packages
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Solution 2: Explicit registration mechanism

E.g., classes can explicit register to the parser

Section class >> initialize
PillarParser registerClass: self

List class >> initialize
PillarParser registerClass: self

PillarParser >> documentClasses
^ RegisteredClasses

 No need to maintain the list manually
 Dynamic but do not force to query the system all the time
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A registration mechanism supports extension

Extra class >> initialize
PillarParser registerClass: self

 External classes can also register
 Without introducing unwanted dependency
 Without scanning all the classes of the system
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Unregistration

With explicit registration, the unregistration can be also a concern.
 The registration holder (here PillarParser) should offer way to retract a

registration
 Registered classes have the responsibility to unregister themselves.
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Conclusion

 XXX subclasses is a cool pattern
 But it has a cost!
 Better use an explicit registration

◦ it is dynamic but does not query for nothing
 Design is about tradeoffs
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