
Advanced Object-Oriented Design

Avoid Null Checks
S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal

 Understanding the implication behind returning nil
 Object initialization avoids nil propagation
 Null Object

2022 2 / 22

nil?

 Unique instance of the class UndefinedObject
 In Pharo, a real object, as anybody else
 Default value of uninitialized instance variables
 Still we should be careful when to use it

2022 3 / 22

Example

Imagine an inferencer that looks for rules that can be applied to a fact.

Inferencer >> rulesForFact: aFact
self noRule ifTrue: [^ nil]
^ self rulesAppliedTo: aFact

 Here rulesForFact: returns nil to indicate that there is no rules for a fact.

2022 4 / 22

Consequences!

 Returning nil (e.g., ifTrue: [^ nil]) forces EVERY client to check for nil:

(inferencer rulesForFact: 'a')
ifNotNil: [:rules |
rules do: [:each | ...]

 Code ends up full of nil checks

2022 5 / 22

Solution: Return polymorphic objects

When possible, return polymorphic objects:
 when returning a collection, return an empty one
 when returning a number, return 0

2022 6 / 22

Solution: Return polymorphic objects

Inferencer >> rulesForFact: aFact
self noRule ifTrue: [^ #()]
^ self rulesAppliedTo: aFact

Your clients can just iterate and manipulate the returned value

(inferencer rulesForFact: 'a') do: [:each | ...]

2022 7 / 22

For exceptional cases, use exceptions

For exceptional cases, replace nil by exceptions:
 avoid error codes because they require if in clients
 exceptions may be handled by the client, or the client’s client, or ...

FileStream >> nextPutAll: aByteArray
canWrite ifFalse: [self cantWriteError].
...
FileStream >> cantWriteError
(CantWriteError file: file) signal

2022 8 / 22

About nil

Limit the propagation of nil
 by having method returning nil
 avoid storing nil

2022 9 / 22

Initialize your object state

Avoid nil checks by initializing your variables:
 By default instance variables are initialized with nil
 The responsibility of an object is to correctly initialize its state

Archive >> initialize
super initialize.
members := OrderedCollection new

2022 10 / 22

Use Lazy Initialization when Necessary

You can defer initialization of a variable to its first use:

FreeTypeFont >> descent
^ cachedDescent ifNil: [
cachedDescent := (self face descender * self pixelSize //

self face unitsPerEm) negated]

 This is only when the method descent is executed that cachedDescent will be
initialized.

2022 11 / 22

Solution: Use Lazy Initialization when Necessary

 Lazy initialization trades time vs runtime cost (ifNil: check)
 You should always use this accessor
 Pay attention you should NOT access directly an instance variable used in a

lazy setting
 Else you can get exposed to nil value

2022 12 / 22

Sometimes you have to check...

 Sometimes you have to check some conditions before doing an action
 When possible, you can turn the default case into an object, a Null Object.

2022 13 / 22

Example

ToolPalette >> nextAction
self selectedTool
ifNotNil: [:tool | tool attachHandles]

ToolPalette >> previousAction
self selectedTool
ifNotNil: [:tool | tool detachHandles]

Here we are forced to check that there is a selected tool.
 Why not having always one selected?
 Even one doing nothing?

2022 14 / 22

Example

attach
detach

Creation

Tool

attach
detach

NewNode

ToolPalette

 self selectedTool
 ifNotNil: [:tool | tool attachHandles

2022 15 / 22

Solution: Use NullObject

 A null object proposes a polymorphic API and embeds default actions/values.
 Woolf, Bobby (1998). "Null Object". In Pattern Languages of Program Design 3.

Addison-Wesley.

Let us create a NoTool class whose behavior is to do nothing.

2022 16 / 22

Solution: NoTool

AbstractTool << #NoTool

NoTool >> attachHandles
^ self

NoTool >> detachHandles
^ self

2022 17 / 22

Solution: Use NullObject

Initialize the ToolPalette with a NoTool instance.

ToolPalette >> initialize
self selectedTool: NoTool new

And we get no forced ifNil: tests anymore

ToolPalette >> nextAction
self selectedTool attachHandles

ToolPalette >> previousAction
self selectedTool detachHandles

2022 18 / 22

Solution: With initialization and NoTool

attach
detach

Creation

Tool

attach
detach

NewNode

ToolPalette

 self selectedTool attachHandles

attach
detach

NoTool

2022 19 / 22

Difficulty with NullObject

Sometimes it is difficult to apply the NullObject
 Too large API
 Or would need too many NullObjects
 Unclear default "no behavior"

2022 20 / 22

Conclusion

 A message acts as a better if
 Avoid null checks, return polymorphic objects instead
 Initialize your variables
 If you can, create objects representing default behavior

2022 21 / 22

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

