
Advanced Object-Oriented Design

About Global Variables
S. Ducasse

http://www.pharo.org

http://www.pharo.org


Outline

 Singleton/Global is not nice because globally shared
 Difficult to test
 Singleton may take different forms
 Study some cases
 Think modular
 Messages need different instances to dispatch

2022 2 / 18



Autopsy of an Error

MyApp >>menu
...
icon: (Smalltalk icons iconNamed: #window)

...

2022 3 / 18



Case 1: Global Variable

 One global variable
 What if as an application I want to extend, slightly change icons for my

application only
 What if I want to be able to have two icon sets and the same time to compare

2022 4 / 18



Case 2: A Disguised Global Variable

Since in Pharo we can extend core libraries we could think this is any better.

MyApp >>menu
...
icon: #window asIcon

...

Symbol >> asIcon
^ Smalltalk icons iconNamed: self

2022 5 / 18



Case 2: A Disguised Global Variable

MyApp >>menu
...
icon: #window asIcon

...

 Does not duplicate Smalltalk icons iconNamed:
 This is already something!
 But still a global

2022 6 / 18



Case 2: A Disguised Global Variable

 One global variable but disguished: only one place to edit but still fundamentally
one giant global

 There is only one icon table
 MyApp cannot extend or slightly change icons for my application only!
 I cannot simply have two icon sets at the same time to compare them

2022 7 / 18



A much better approach

MyApp >>menu
...
icon: (self iconNamed: #window)

...

MyAppSuperclass >> iconNamed: aSymbol
...
look for my icons (andmay be delegate to an iconmanager instance)
potentially do a
super iconNamed: #window
...

2022 8 / 18



Why is this better?

 Modular
 Each receiver may do something different
 Each user may be configured differently
 Still we can share the common behavior

2022 9 / 18



Case 3: asClass

Accessing programmatically a class is usually done as:

Smalltalk globals at: #Point

People wanted a shorter version

#Point asClass

Symbol >> asClass
^ Smalltalk globals at: self

 Shorter for scripting
 But there is a difference!
 A huge one...

2022 10 / 18



Case 3: asClass Analysis

 Another global entry point
 What if we want to remotely access a class in another system
 We can only have one namespace
 We cannot inject a special namespace for test for example
 No way to dispatch to a different object

2022 11 / 18



Case 3: Possible solution

Delegate to the class to get its environment

self class environment at: #Point

This supports different environments

2022 12 / 18



Case 4: Smalltalk tools - The ugly

browseMethodFull
"Create and schedule a full Browser and then select the current class andmessage."

self currentClassOrMetaClass ifNotNil: [
Smalltalk tools browser
openOnClass: self currentClassOrMetaClass
selector: self currentMessageName ]

2022 13 / 18



Case 4: Smalltalk tools Analysis

browseMethodFull
"Create and schedule a full Browser and then select the current class andmessage."

self currentClassOrMetaClass ifNotNil: [
Smalltalk tools browser
openOnClass: self currentClassOrMetaClass
selector: self currentMessageName ]

 One global entry point
 Everybody refers to this single point!
 Yes this is called monolithic thinking
 Only one toolset possible at the same time (could be ok).

2022 14 / 18



Case 4: Smalltalk tools Possible Solution

 Each object that should refer to tools should do it via a parameter / instance
variable and messages

 Avoid direct reference to a global singleton

Browser >> initialize
toolEnvironment := ToolEnvironment new

Browser >> openDebugger
self toolEnvironment debugger

2022 15 / 18



Points to consider

 With a global, when it changes, all its users are updated
 How to manage the fact that a tool may change?
 Browsers may register to ToolEnvironment to be notified and update its instance

2022 16 / 18



Conclusion

 Avoid Singleton as a global
 Think modular
 Give a chance to objects to specialize messages

2022 17 / 18



A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

