
Advanced Object-Oriented Design

Essence of Dispatch
Taking Pharo Booleans as Example

S. Ducasse and L. Fabresse

http://www.pharo.org

http://www.pharo.org


Objectives

 Understanding of message passing (late binding) for real this time
 The heart of OOP
 Insight at how beautiful Pharo’s implementation is

2022 2 / 21



Context: Booleans

In Pharo, Booleans have a superb implementation!
You get the classical message
 &, |, not (eager)
 or:, and: (lazy)

And some less traditional
 ifTrue:ifFalse:, ifFalse:ifTrue:

◦ Yes conditionals are message sent to boolean objects

2022 3 / 21



Three exercises

1. Implement not (Not)
2. Implement | (Or)
3. What is the goal of these exercises?

2022 4 / 21



Exercise 1: Implement Not

Propose an implementation of Not in a world where:
 You have: true, false
 You only have objects and messages

How would you implement the message not?

false not
−> true

true not
−> false

2022 5 / 21



Hint 1: No conditionals

The solution does not use conditionals (i.e., no if)

2022 6 / 21



Hint 2: How do we express choice in OOP?

In OOP, choice is expressed
 By defining classes with compatible methods
 By sending a message to an instance of such class
 Let the receiver decide

Example

x open

 x can be a file, a window, a tool,...
 The method is selected based on x’s class

2022 7 / 21



Hint 3: With at least two classes

 The Pharo implementation uses three classes:
◦ Boolean (abstract), True and False

 true is the singleton instance of True
 false is the singleton instance of False

2022 8 / 21



Hint 3: With at least two classes
 Boolean is not needed per se but it improves reuse

2022 9 / 21



Implementation of Not in two methods

False >> not
"Negation −− answer true since the receiver is false."
^ true

True >> not
"Negation −− answer false since the receiver is true."
^ false

2022 10 / 21



Implementation hierarchy

2022 11 / 21



Message lookup is choosing the right method

2022 12 / 21



Boolean implementation

 Boolean is abstract
 True and False implement

◦ logical operations &, not
◦ control structures and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:

Boolean >> not
"Abstract method. Negation: Answer true if the receiver is false, answer false if the
receiver is true."

self subclassResponsibility

2022 13 / 21



Behavior of Or

true | true −> true
true | false −> true
true | anything −> true

false | true −> true
false | false −> false
false | anything −> anything

2022 14 / 21



Implementation of Or in Boolean

Boolean >> | aBoolean
"Abstract method. Evaluating Or: Evaluate the argument.
Answer true if either the receiver or the argument is true."
self subclassResponsibility

2022 15 / 21



Implementation of Or in class False

false | true −> true
false | false −> false
false | anything −> anything

False >> | aBoolean
"Evaluating Or −− answer with the argument, aBoolean."
^ aBoolean

2022 16 / 21



Implementation of Or in class True

true | true −> true
true | false −> true
true | anything −> true

True >> | aBoolean
"Evaluating Or −− answer true since the receiver is true."
^ true

2022 17 / 21



Real implementation of Or in class True

The object true is the receiver of the message!

True>> | aBoolean
"Evaluating disjunction (Or) −− answer true since the receiver is true."
^ true

So we can write it like the following:

True >> | aBoolean
"Evaluating disjunction (Or) −− answer true since the receiver is true."
^ self

2022 18 / 21



Or Implementation in two methods

2022 19 / 21



Summary

 The solution to implement booleans’ operations:
◦ does NOT use conditionals (if)

 Do not ask, tell
◦ lets the receiver decide

2022 20 / 21



A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

