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Objectives

 Understanding of message passing (late binding) for real this time
 The heart of OOP
 Insight at how beautiful Pharo’s implementation is
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Context: Booleans

In Pharo, Booleans have a superb implementation!
You get the classical message
 &, |, not (eager)
 or:, and: (lazy)

And some less traditional
 ifTrue:ifFalse:, ifFalse:ifTrue:

◦ Yes conditionals are message sent to boolean objects
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Three exercises

1. Implement not (Not)
2. Implement | (Or)
3. What is the goal of these exercises?
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Exercise 1: Implement Not

Propose an implementation of Not in a world where:
 You have: true, false
 You only have objects and messages

How would you implement the message not?

false not
−> true

true not
−> false
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Hint 1: No conditionals

The solution does not use conditionals (i.e., no if)
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Hint 2: How do we express choice in OOP?

In OOP, choice is expressed
 By defining classes with compatible methods
 By sending a message to an instance of such class
 Let the receiver decide

Example

x open

 x can be a file, a window, a tool,...
 The method is selected based on x’s class
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Hint 3: With at least two classes

 The Pharo implementation uses three classes:
◦ Boolean (abstract), True and False

 true is the singleton instance of True
 false is the singleton instance of False
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Hint 3: With at least two classes
 Boolean is not needed per se but it improves reuse
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Implementation of Not in two methods

False >> not
"Negation −− answer true since the receiver is false."
^ true

True >> not
"Negation −− answer false since the receiver is true."
^ false
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Implementation hierarchy
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Message lookup is choosing the right method
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Boolean implementation

 Boolean is abstract
 True and False implement

◦ logical operations &, not
◦ control structures and:, or:, ifTrue:, ifFalse:, ifTrue:ifFalse:, ifFalse:ifTrue:

Boolean >> not
"Abstract method. Negation: Answer true if the receiver is false, answer false if the
receiver is true."

self subclassResponsibility
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Behavior of Or

true | true −> true
true | false −> true
true | anything −> true

false | true −> true
false | false −> false
false | anything −> anything
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Implementation of Or in Boolean

Boolean >> | aBoolean
"Abstract method. Evaluating Or: Evaluate the argument.
Answer true if either the receiver or the argument is true."
self subclassResponsibility
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Implementation of Or in class False

false | true −> true
false | false −> false
false | anything −> anything

False >> | aBoolean
"Evaluating Or −− answer with the argument, aBoolean."
^ aBoolean
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Implementation of Or in class True

true | true −> true
true | false −> true
true | anything −> true

True >> | aBoolean
"Evaluating Or −− answer true since the receiver is true."
^ true
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Real implementation of Or in class True

The object true is the receiver of the message!

True>> | aBoolean
"Evaluating disjunction (Or) −− answer true since the receiver is true."
^ true

So we can write it like the following:

True >> | aBoolean
"Evaluating disjunction (Or) −− answer true since the receiver is true."
^ self
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Or Implementation in two methods
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Summary

 The solution to implement booleans’ operations:
◦ does NOT use conditionals (if)

 Do not ask, tell
◦ lets the receiver decide
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