
Advanced Object-Oriented Design

Tests
Why testing is Important?

S. Ducasse

http://www.pharo.org

http://www.pharo.org

Goal

 Why tests are important?
 What are their advantages?
 What are the techniques to write good tests?

2 / 19

Why testing?

 Tests are your life insurance
 Increase trust that a change did not break something
 Reduce the fear of changes
 Support code understanding
 Tests do not avoid breaking your system
 But they show what you broke!

3 / 19

Remember...

A test that is not automated does NOT EXIST!

4 / 19

Automated tests are your life insurance

 Our brain is too small to remember everything
 Our brain focuses on our last action
 You write a test once and you execute it million times
 Programming is modeling the world and the world is changing

5 / 19

Automated tests ensure software can evolve

 Tests make you bold in regards of changes
 Tests lower the fear of breaking

◦ You can try and run the tests to get an idea
◦ You can explore alternatives
◦ You can understand that misunderstood something

6 / 19

Test positive properties (1)

 Find bugs when they appear
 improve customer trust
 Reproduce complex scenarii
 Guarantee old bugs are caught if reappear
 Isolate a problem

7 / 19

Some characteristics of a good test suite

 Check extreme cases (e.g., null, 0 and empty)
 Check complex cases (e.g., exceptions, network pbs)
 1 test for each bug (at least)
 Good coverage
 Check abstractions
 Check units independently

8 / 19

Understanding code: API and result

testConvert
self assert: Color white convert equals: '#FFFFFF'.
self assert: Color red convert equals: '#FF0000'.
self assert: Color black convert equals: '#000000'

9 / 19

fromString: and convert interplay

testFromStringIsCoherentWithConvert
| table aColorString |
table := #('0' '1' '2' '3' '4' '5' '6' '7' '8' '9' 'A' 'B' 'C' 'D' 'E' 'F').

table do: [:each |
aColorString := '#', each, each, '0000'.
self assert: ((Color fromString: aColorString) convert sameAs: aColorString)].

10 / 19

Understanding code

You do not have to know how numbers are implemented to understand that this
bitShi�: is working.

testBitShi�
self assert: (2r11 bitShi�: 2) equals: 2r1100.
self assert: (2r1011 bitShi�: −2) equals: 2r10.

11 / 19

Understanding code

You do not have to know how numbers are implemented to understand that this
bitShi�: is working.

testShi�OneLe�ThenRightGetsOne
"Shi� 1 bit le� then right and test for 1"

1 to: 100 do: [:i |
self
assert: ((1 bitShi�: i) bitShi�: i negated)
equals: 1].

12 / 19

Understanding code ;/

 Not always the case but this is ok too.
 Low-level tests are worth but you should know when

convert
| s |
s := '#000000' copy.
s at: 2 put: (Character digitValue: ((rgb bitShi�: −6 − RedShi�) bitAnd: 15)).
s at: 3 put: (Character digitValue: ((rgb bitShi�: −2 − RedShi�) bitAnd: 15)).
s at: 4 put: (Character digitValue: ((rgb bitShi�: −6 − GreenShi�) bitAnd: 15)).
s at: 5 put: (Character digitValue: ((rgb bitShi�: −2 − GreenShi�) bitAnd: 15)).
s at: 6 put: (Character digitValue: ((rgb bitShi�: −6 − BlueShi�) bitAnd: 15)).
s at: 7 put: (Character digitValue: ((rgb bitShi�: −2 − BlueShi�) bitAnd: 15)).
^ s

13 / 19

""Limit"" dependency to elements not under test

Imagine that we want to test a transformation of a piece of code
 If we depend on the compiler to get the test input
 It may break when the transformation is wrong, but also each time the compiler

changes something!

Better have a setup that is independent from the compiler
 Manually build the test input and store it in a test set up

Think about API even in the test setup

14 / 19

Positive and negative tests

Positive
 if I do no the normal stuff,
 It passes!
 Example: You can log with correct credentials

Negative
 If I do not behave correctly,
 It breaks!
 Example: You must not be able to load with incorrect credentials
 Example: It should raise an exception if given 0

15 / 19

Test positive properties (2)

 Give simple and reproducible examples
 Executable snippets
 Illustrate the API
 Give up-to-date documentation
 Check conformity of new code
 Offer a first client to new code
 Force a ’customizable’ design

16 / 19

Characteristics of a good test suite

 Deterministic
 Self-explained
 Simple/Unit/Short: with few assertions (not 10th not hundred)
 Change less frequently than the rest:

◦ Test the API not the implementation
◦ Limit dependency to other elements

 Good code coverage

17 / 19

Conclusion

 Tests are important
 In particular in dynamically-typed languages
 Help deliver complex projects

18 / 19

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

