Advanced Object-Oriented Design

Test 101

The minimum you should know
S.Ducasse

Phaf©

http://ww

http://www.pharo.org

Goal of the lecture

How can you trust that a change did not destroy something?
What is my confidence in the system?

What is unit testing?

How do | write tests?

3
20 2/ 20

Test main points

When there is a change

o Tests verify that what worked before still works
o Tests are your life insurance: you get aware of a side effect and regression

Tests are enablers of future evolution
Tests reduce the fear of change

e Per se tests do not prevent bugs to happen but they reduce unnoticed bugs or
side effects

3
s 20

About automation

7

A test that is not automated does NOT EXIST!
e Seriously!

e Repetition

e No human intervention

4/20

Unit tests

e Unit tests ensure that you get the specified behavior of a class
e Normally unit tests test a single class
e A test one scenario: one point!

3
s | 20

Anatomy of a test

A test:

e Creates a context
e Performs a stimulus: an action on the context
e Checks the result with assertions

3
G | 20

7

Example: Testing set addition

A test:

e Creates a context: Create an empty set
e Performs a stimulus: Add twice the same element
e Checks the results: Check that the set contains only one element

7120

Set testcase

TestCase subclass: #SetTest

SetTest >> testAdd
| empty |
empty := Set new. "Context"
empty add: 5. "Stimulus"
empty add: 5.
self assert: empty size equals: 1. "Check"

SetTest run: #testAdd

\\
©

/20

Success, failures, and errors

e Success: a test passes
e A failure is a failed assertion, i.e., an anticipated problem that you test failed
e An error is a condition you didnt check for, i.e., a runtime error.

3
20 9/20

A failure

If we get empty size returning 2 instead of 1.

SetTest >> testAdd
| empty |
empty := Set new.
empty add: 5.
empty add: 5.
self assert: empty size equals: 1.

2 10/20

An error

Sending the message foobar: raises an exception.

SetTest >> testAdd
| empty |
empty := Set new.
empty foobar: 5.
self assert: empty size equals: 1.

20041/ 20

How to reuse setting test context?

If a context is repeated among tests:
e duplication is never a good idea
e hampers future evolution

The framework offers the setUp method to create a context before any test
execution.

3
21 12/20

7

setUp and tearDown messages

Executed systematically before and after each test run

e setUp allows us to specify and reuse the context
e tearDown to clean after test execution

#setUp #tearDown

Test method

#setUp #tearDown #setUp #tearDown #setUp #tearDown

Test Test Test

jii8/ 20

Defining a setUp method

7

Just create a context, here an empty set.

SetTestCase >>setUp
empty := Set new

setUp is executed for you before any test execution

SetTestCase >> testOccurrences

self
assert: (empty occurrencesOf: 0)
equals: 0.

empty add: 5; add: 5.

self
assert: (empty occurrencesOf: 5)
equals: 1

14/ 20

About writing tests

e Remember: Tests represent your trust in the system

Build them incrementally

o Do not need to focus on everything
o When a new bug shows up, write a test

Even better write them before the code
o Act as your first client, produce better interface

Active documentation always in sync
It has a cost: writing them, maintain them, so make them worth
But pay off is Huge

3
s) 20

But | cant cover everything!

e Sure! Nobody can but:

o When someone discovers a defect in code, first write a test that demonstrates
the defect.
o Then debug until the test succeeds.

‘Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead.” Martin Fowler

3
N6 | 20

Testing style: TDD

7

"The style here is to write a few lines of code, then a test that should run, or even
better, to write a test that won’t run, then write the code that will make it run."

e Write unit tests that thoroughly test a single class
e Write tests as you develop (even before you implement your class!)
e Write tests for every new piece of functionality

‘Developers should spend 25-50% of their time developing tests.’
(see next lecture)

W7/ 20

Good tests

Repeatable
e No human intervention
"self-described"

Change less often than the system
Tells a story

3
21 18/20

Conclusion

e |nvest in tests

e Use Xtreme TDD: write a test, execute, debug and code in the debugger (see
following lecture)

e Tests are your best investment

3
21 19/20

'lJ nive F’SI{T@V B UENsEianEmenT

n

. PERIEUR,
DE LA RECHERCHE
merigu ET BE LINNOVATION

A course by

S. Ducasse, L. Fabresse, G. Polito, and Pablo Tesone

©10Ie)

V4

inlarmqntiques/mathémmiques %
é Z W INSTITUT

Mines-Télécom

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

(3]
MINISTER FONDATION

ZUNIT

SUPERIEUR,

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

