Advanced Object-Oriented Design

Class vs. Object-Oriented
Programming

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar@

http://ww

x ifTrue:[

A self] K

http://www.pharo.org

Goals

e Think about object-oriented programming
e Understand that class programming is not object-oriented programming
e Favor objects!

»” M9S6 2/ 11

Class-based programming design

Sometimes we get class-based programming design:

e Classes are used as data holder

e Instances of such class would share the same data

e Require a new class to represent a new instance or configuration of data
* No real instance specific state

%
»” M9S6 3/11

3
Z

Studying a class hierarchy

Changer

commandClass

order

multiFormClass

q;

M9S6 4/ 11

IdentifierChanger

commandClass
order
multiFormClass

BackgroundChanger

commandClass
order
multiFormClass

commandClass
A CommandBackground

multiFormClass
A FormColor

"PositionChanger

commandClass
order
multiFormClass

commandClass ——
A CommandPosition
| E—

multiFormClass
A FormPoint

order
2

order
M

commandClass ——

A CommandIdentifier
multiFormClass =
A FormText
|

Analysis

Data-oriented classes

Static: We have to create a new class for each new changer

A class represents one instance! Fishy

A class state should describe instance shape not instance values
Each instance can have a different state

2
» M9S6 5/ 11

Compare with instance-based design

Changer
commandClass

ordﬁ'rF o commandClass
multiFormClass A commandClass

commandClass

Ordﬁ'l;: o multiFormClass
/mu iFormClass A multiFormClass

aChanger (identifier)

aChanger (background)
aChanger (position)

2
» M9S6 6/ 11

Analysis

Pros:

e Just create instances
e Can represent multiple and different configurations
Changer new
command: CommandPosition;
multiFormClass: PropertyDuallnput ;

yourself

$
ZIMos6 7/ 11

With subclasses

Changer

—
commandClass commandClass
order A commandClass

multiFormClass -
commandClass multiFormClass "~
order A multiFormClass

/V multiFormClass

PositionChanger order
—— A order
initialize

aChanger (background)

initialize
order := 10.
multiFormClass := DuallnputPresenter.
commandClass := CommandPosition

aChanger (identifier)
aChanger (position)

Zlese 8/ 11

Need a discovery mechanism

e Class-based
o Annotation, hierarchy query, explicit registration

® |nstance-based

o Need to store instances somewhere
o Explicit registration

3
B2 ese 9/ 11

Conclusion

e When you need a new class to represent a new instance, this is fishy
e A class describes the shape of instance not their values
e Favor instances over classes

2
» M9S6 10/ 11

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

