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Goals

e Think about object-oriented programming
e Understand that class programming is not object-oriented programming
e Favor objects!

»” M9S6 2/ 11



Class-based programming design

Sometimes we get class-based programming design:

e Classes are used as data holder

e Instances of such class would share the same data

e Require a new class to represent a new instance or configuration of data
* No real instance specific state
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Studying a class hierarchy
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Analysis

Data-oriented classes

Static: We have to create a new class for each new changer

A class represents one instance! Fishy

A class state should describe instance shape not instance values
Each instance can have a different state
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Compare with instance-based design
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Analysis

Pros:

e Just create instances
e Can represent multiple and different configurations
Changer new
command: CommandPosition;
multiFormClass: PropertyDuallnput ;

yourself
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With subclasses

Changer

—
commandClass commandClass
order A commandClass

multiFormClass -
commandClass multiFormClass "~
order A multiFormClass

/V multiFormClass

PositionChanger order
—— A order
initialize

aChanger (background)

initialize
order := 10.
multiFormClass := DuallnputPresenter.
commandClass := CommandPosition

aChanger (identifier)
aChanger (position)
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Need a discovery mechanism

e Class-based
o Annotation, hierarchy query, explicit registration

® |nstance-based

o Need to store instances somewhere
o Explicit registration

3
B2 ese 9/ 11



Conclusion

e When you need a new class to represent a new instance, this is fishy
e A class describes the shape of instance not their values
e Favor instances over classes
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