
About Registration
When class method-based registration is too
much

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goal

 Thinking about system dynamics
 Alternatives to class methods as registration mechanism
 Impact of dynamic registration

M9S3 2 / 13

Using class methods as registration

 A class is a regular object
 We can send a message to a class
 Each class can answer specifically

Object allSubclasses collect: [:each | each foo]

Each class is able to:
 define its own foo method
 reuse the one of its superclass

M9S3 3 / 13

Remember...

An extensible design by iterating subclasses:

PillarParser >> documentClasses
^ DocumentItem allSubclasses
sorted: [:class1 :class2 |
class1 priority < class2 priority]

PillarParser >> parse: line
self documentClasses
detect: [:subclass |
(subclass canParse: line)
ifTrue: [^ subclass newFromLine: line]]

M9S3 4 / 13

Registration for ‘Free’

Pros:
 Each time a new class is loaded it is taken into account

Cons:
 We are querying the system each time
 Most of the time for nothing
 Expensive mechanism

M9S3 5 / 13

Solution 1: Explicit static list

PillarParser >> documentClasses
^ { Section. List. Paragraph }
sorted: [:class1 :class2 | class1 priority < class2 priority]

M9S3 6 / 13

Solution 1: Explicit static and ordered list

We could precompute the priority too:

PillarParser >> documentClasses
^ { Section. Paragraph. List }

M9S3 7 / 13

Solution 1: Evaluation

Pros:
 Do not have to query all the classes all the time

Cons:
 You have to keep this list up to date
 Listing explicitly classes may introduce undesired dependencies to other

packages!

M9S3 8 / 13

Solution 2: Explicit registration mechanism

Classes can explicitly register themselves to the parser:

PillarParser >> documentClasses
^ RegisteredClasses

PillarParser >> registerClass: aDocumentItemClass
self documentClasses add: aDocumentItemClass

Section class >> initialize
PillarParser registerClass: self

Paragraph class >> initialize
PillarParser registerClass: self

M9S3 9 / 13

Solution 2: Evaluation

 No need to maintain the list of classes manually
 Dynamic list without querying the system all the time
 Registration could support priority
 External classes can also register

Extra class >> initialize
PillarParser registerClass: self

 Do not introduce unwanted dependencies

M9S3 10 / 13

Unregistration is a concern

Explicit registration requires unregistration.
 The registration holder (here PillarParser) should offer a way to remove a

registration
 Registered classes have the responsibility to unregister themselves (e.g. class

unloading)

M9S3 11 / 13

Conclusion

 MySuperClass subclasses is a cool pattern
◦ but it has a cost!

 Better use an explicit registration mechanism
◦ it is dynamic and save expensive queries for nothing

 Design is about tradeoffs

M9S3 12 / 13

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

