
Class Methods At Work

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

What you will learn

 In Pharo, class methods are normal virtual methods
◦ methods are looked up dynamically

 Most class methods create new instances
◦ but they can be used for other things

M9S2 2 / 10

Case study: parsing a string

Imagine we want to parse the following string:

!Section Title
− list item
−− subitem

Any text here

and create the corresponding objects.

M9S2 3 / 10

A possible design

DocumentItem

canParse(t)
newFromLine(t)
priority()

content
level

ListItem

canParse(t)
newFromLine(t)
priority()

content
SectionTitle

canParse(t)
newFromLine(t)
priority()

content
Text

documentClasses()
parse(t)

Parser
creates

Each DocumentItem subclass knows
 if it can parse a line (canParse:)
 how to create an instance of itself (newFromLine:)

M9S2 4 / 10

Parsing lines
DocumentItem

canParse(t)
newFromLine(t)
priority()

content
level

ListItem

canParse(t)
newFromLine(t)
priority()

content
SectionTitle

canParse(t)
newFromLine(t)
priority()

content
Text

documentClasses()
parse(t)

Parser
creates

Parser >> documentClasses
^ DocumentItem allSubclasses
sorted: [:class1 :class2 |

class1 priority < class2 priority]

Parser >> parse: line
self documentClasses
detect: [:subclass |
(subclass canParse: line)
ifTrue: [^ subclass newFromLine: line]]

M9S2 5 / 10

The Pharo command-line interface (CLI)

$ pharo Pharo.image eval "10 factorial"
3628800

 it uses the same approach
 each subclass of CommandLineHandler

processes one type of command
 the correct subclass is selected by sending

messages to the class

M9S2 6 / 10

The command-line handler

CommandLineHandler class >> handlersFor: arguments
^ self allHandlers
select: [:handlerClass |
handlerClass isResponsibleFor: arguments]

CommandLineHandler class >> allHandlers
^ self allSubclasses
reject: [:handler | handler isAbstract]

CommandLineHandler class >> isResponsibleFor: arguments
^ arguments includesSubCommand: self commandName

EvaluateCommandLineHandler class >> commandName
^ 'eval'

M9S2 7 / 10

Evaluation

Pros:
 Modular design
 Extensible

Cons:
 Checking all subclasses all the times is costly
 Do you need such a dynamic behavior?

◦ For the command line, each application may define its own commands

M9S2 8 / 10

Conclusion

 Classes are objects and can be sent messages
 Method lookup is exactly the same as for all objects:

◦ go to the class of the receiver
◦ follow inheritance chain

 Pharo makes it easy to iterate over subclasses
◦ it enables modular and extensible design
◦ but this is costly

 Related to the lecture on Registration

M9S2 9 / 10

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

