
Shared Pools
Static sharing between hierarchies

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Revisit sharing
 Understand shared pools (SharedPools)

A question:
 Using shared variables, we can share values over multiple subclasses within the

same hierarchy.
 How can we share objects between different hierarchies?

M8S3 2 / 15

Remember: Sharing within a hierarchy

A shared variable can be accessed from
 Instance methods
 Class methods of the class defining it
 From its subclasses

Usually initialized from the class side of a root

M8S3 3 / 15

Remember ComponentMask

privateBlue
...

rgb
alpha
ColorRegistry
ComponentMask

Color

initialize

Color class

privateBlue
 "Private! Return the internal representation
 of my blue component."

 ^ rgb bitAnd: ComponentMask

initialize
ComponentMask := 1023.
HalfComponentMask := 512.
ComponentMax := 1023.0.
RedShift := 20.
GreenShift := 10.
BlueShift := 0.
RandomStream := Random new.
self initializeIndexedColors.
self initializeColorRegistry.
self initializeGrayToIndexMap.

instanceOf

M8S3 4 / 15

Need for sharing between different hierarchies

 Need to share values (generally constants) between multiple hierarchies:
◦ For example LF, CR, ... between the hierarchies of String and Text

 Don’t want to repeat the shared variables and their initialization

M8S3 5 / 15

SharedPools to the rescue

A SharedPool is a group of shared variables contains
 the shared pools definition
 the initialization of shared variables

Users (classes) just declare that they use a shared pool to access its shared
variables

M8S3 6 / 15

A SharedPool definition

SharedPool << #ChronologyConstants
slots: {};
sharedVariables: { #NanosInSecond . #MonthNames . #SecondsInHour .
#SecondsInDay . #DayNames . #DaysInMonth . #HoursInDay . #NanosInMillisecond
. #SecondsInMinute . #SqueakEpoch . #MinutesInHour . #MicrosecondsInDay };

tag: 'Chronology';
package: 'Kernel'

M8S3 7 / 15

A SharedPool initialization
ChronologyConstants class >> initialize

SqueakEpoch := 2415386. "Julian day number of 1 Jan 1901"
SecondsInDay := 86400.
MicrosecondsInDay := SecondsInDay * 1e6.
SecondsInHour := 3600.
SecondsInMinute := 60.
MinutesInHour := 60.
HoursInDay := 24.
NanosInSecond := 10 raisedTo: 9.
NanosInMillisecond := 10 raisedTo: 6.
DayNames := #(Sunday Monday Tuesday Wednesday Thursday Friday Saturday).
MonthNames := #(January February March April May June July
August September October November December).

DaysInMonth := #(31 28 31 30 31 30 31 31 30 31 30 31).

Shared pools are initialized at class load time.

M8S3 8 / 15

SharedPool users

Magnitude << #DateAndTime
slots: { #seconds . #o�set . #julianDayNumber . #nanos };
sharedVariables: { #ClockProvider . #LocalTimeZoneCache };
sharedPools: { ChronologyConstants };
package: 'Kernel'

DateAndTime
 defines some shared variables
 uses the shared pool ChronologyConstants

M8S3 9 / 15

SharedPool’s sharedVariable access

A shared variable defined in a shared pool is accessed as if defined in the class
itself

DateAndTime >> secondsSinceMidnightLocalTime
^ self localSeconds \\ SecondsInDay

Duration class >> days: aNumber
^ self seconds: aNumber * SecondsInDay nanoSeconds: 0

SecondsInDay is just accessed directly both from instance and class side

M8S3 10 / 15

SharedPool users (2)

Timespan << #Week
slots: {};
sharedVariables: { #StartDay };
sharedPools: { ChronologyConstants };
package: 'Kernel−Chronology−Extras'

Week class >> indexOfDay: aSymbol
^ DayNames indexOf: aSymbol

M8S3 11 / 15

Mixing shared variables and sharedPools

There is no problem mixing shared variables and shared pools

Timespan << #Week
sharedVariables: { #StartDay };
sharedPools: { ChronologyConstants };
package: 'Kernel−Chronology−Extras'

Week class >> startDay
^ StartDay ifNil: [StartDay := DayNames first]

M8S3 12 / 15

Warning! Only for constants

 Should only store constant objects in shared pools
 Else you are creating global variables and you are breaking testability in

isolation

M8S3 13 / 15

Conclusion

Shared pools are:
 Handy to share constants between multiple classes (potentially in different

inheritance trees)
 Handy to manage constants for bindings to C-libraries
 Only use them to share constants

M8S3 14 / 15

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

