
Sharing with instance
specific possibilities

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Thinking about sharing
 How can we share by default a resource?
 How can we share by default a resource and still get instance-based usage?

M8S2 2 / 15

Instance vs. class sharing

Instance specific
 An instance variable (most of the time) holds instance specific values

Shared between all instances of a class
 A shared variable (static or class variables) holds a value that is shared among

all instances of the class

M8S2 3 / 15

Is it shared or instance specific?

 How can we share by default a resource and still get instance-based use
possible?

 Imagine a solution...

M8S2 4 / 15

Case Study: Scanner

> Scanner new scanTokens: '#identifier #keyword: 25 string'
#(#identifier #keyword: 25 'string')

M8S2 5 / 15

The Scanner class enigma

Imagine the following class:

Object << #Scanner
slots: {#mark . #currentChar . #token . #tokenType . #typeTable};
sharedVariables: { #TypeTable }
package: 'Compiler'

 Why do we have a shared variable TypeTable and an instance variable
typeTable are defined at the instance

 A bug? - No! This is a nice design
 Do you see it?

M8S2 6 / 15

Let us explain key aspects

 TypeTable the shared variable
◦ is initialized once to hold the table of elements
◦ not used by any instance method

 typeTable the instance variable
◦ is used by every instance method
◦ is initialized by pointing to TypeTable
◦ All methods only access the instance variable and never the shared one

Do you see the idea?

M8S2 7 / 15

Explanation
 By default all instances share the same type table (a large object)
 All methods can access it via typeTable

typeTable
TypeTable

Scanner

:aScanner
typeTable

:aScanner
typeTable

M8S2 8 / 15

Specific state for specific instances
 Copy the state of typeTable and modify it per instance

typeTable
TypeTable

Scanner

:aScanner
typeTable

:aScanner
typeTable

:aScanner
typeTable

copied

:aScanner
typeTable

 Possible since all methods access instance specific modified state via typeTable
instance variable

M8S2 9 / 15

Shared variable points to the share table

Scanner class >> initialize
| newTable |
newTable := ScannerTable new: 255 withAll: #default.
newTable atAllSeparatorsPut: #separator.
newTable atAllDigitsPut: #digit.
...
newTable at: $(asInteger put: #le�Parenthesis.
newTable at: $^ asInteger put: #upArrow.
...
TypeTable := newTable

M8S2 10 / 15

And...

Instances only access the type table via the instance variable that points to the
shared table that has been initialized once.

Scanner >> initialize

super initialize.
typeTable := TypeTable

M8S2 11 / 15

One instance specific state

Scanner new setTypeTable: (Scanner defaultTypeTable copy) customizedForThisUse

M8S2 12 / 15

A subclass with instance with specific table

A subclass has just to specialize initialize method

MyScanner >> initialize
super initialize.
typeTable := typeTable copy.
self modifyTypeTable

All the instances of MyScanner will have their own table

M8S2 13 / 15

Conclusion

 Can get sharing by default
 but get instance specific if need it

M8S2 14 / 15

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

