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Objectives

 Think about objects
 Think about structure traversal
 Look at objects as accumulators
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The case: Validation

 We want to validate UI forms
 Nested components may want to validate or not their contents

◦ at input field or just at the pane level
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Questions

 How can we navigate a tree of instances (widgets)?
 Where children can decide to be skipped?
 What do we report?
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Validation

What should return the validation?
 Yes/no?
 Specific objects with semantics

◦ e.g. filepath is isValid?
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A formular: A tree of instances

container

input field 1

input field 2
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A first design

 Any presenter can validate its contents
 Per default does nothing

SpPresenter >> isValid
^ true

SpPresenter >> report
^ OkReport new

M7S4 7 / 17



A given item can refine it

MyFilePathPresenter >> isValid
^ self inputField isEndingBy: 'git'

MyFilePathPresenter >> report
^ WrongFileEndingReport new expecting: 'git' ; for: self path
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A first design: Container

A container defines the semantics of collection for its children

SpOptionPresenter >> isValid
^ self children allSatisfy: [:each | each isValid ]

SpOptionPresenter >> report
| report |
report := SpValidationReport new.
self children do: [ :childPresenter |
childPresenter isValid ifFalse: [ report add: childPresenter report ]].
^ report
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Flow’s first design
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Analysis

 To have a report we need to know if the validation failed or not
 Should isValid return a report?
 If isValid returns a report then we have to return an ok report for anybody
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Flow’s first design

report?

ok?

report?

ok?

report?

ok?
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Second design: provide an accumulator

Pass around a basket and let any sub instance decides if it wants to participate

report

report
report

report
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Second design: default

By default do not add to the report

SpPresenter >> validateInto: aReport
^ self
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Second design: Containers and leaves

Each validating subcomponent
 gets the responsibility to fill up the report
 can bring its information to the report

MyFilePathPresenter >> validateInto: aReport
^ aReport add: (WrongFileEndingReport new expecting: 'git'; for: self path)

SpOptionPresenter >> validateInto: aReport

self children do: [ :presenter | presenter validateInto: aReport ].
^ aReport
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Conclusion

 Question interrogative forms
 Let the object decides if it wants to join a process but passing a container
 You may also have some double dispatch between the report and the container
 Explore design

M7S4 16 / 17



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

