
Delegation of actions and
accumulator
Form validation as an example

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Objectives

 Think about objects
 Think about structure traversal
 Look at objects as accumulators

M7S4 2 / 17

The case: Validation

 We want to validate UI forms
 Nested components may want to validate or not their contents

◦ at input field or just at the pane level

M7S4 3 / 17

Questions

 How can we navigate a tree of instances (widgets)?
 Where children can decide to be skipped?
 What do we report?

M7S4 4 / 17

Validation

What should return the validation?
 Yes/no?
 Specific objects with semantics

◦ e.g. filepath is isValid?

M7S4 5 / 17

A formular: A tree of instances

container

input field 1

input field 2

M7S4 6 / 17

A first design

 Any presenter can validate its contents
 Per default does nothing

SpPresenter >> isValid
^ true

SpPresenter >> report
^ OkReport new

M7S4 7 / 17

A given item can refine it

MyFilePathPresenter >> isValid
^ self inputField isEndingBy: 'git'

MyFilePathPresenter >> report
^ WrongFileEndingReport new expecting: 'git' ; for: self path

M7S4 8 / 17

A first design: Container

A container defines the semantics of collection for its children

SpOptionPresenter >> isValid
^ self children allSatisfy: [:each | each isValid]

SpOptionPresenter >> report
| report |
report := SpValidationReport new.
self children do: [:childPresenter |
childPresenter isValid ifFalse: [report add: childPresenter report]].
^ report

M7S4 9 / 17

Flow’s first design

M7S4 10 / 17

Analysis

 To have a report we need to know if the validation failed or not
 Should isValid return a report?
 If isValid returns a report then we have to return an ok report for anybody

M7S4 11 / 17

Flow’s first design

report?

ok?

report?

ok?

report?

ok?

M7S4 12 / 17

Second design: provide an accumulator

Pass around a basket and let any sub instance decides if it wants to participate

report

report
report

report

M7S4 13 / 17

Second design: default

By default do not add to the report

SpPresenter >> validateInto: aReport
^ self

M7S4 14 / 17

Second design: Containers and leaves

Each validating subcomponent
 gets the responsibility to fill up the report
 can bring its information to the report

MyFilePathPresenter >> validateInto: aReport
^ aReport add: (WrongFileEndingReport new expecting: 'git'; for: self path)

SpOptionPresenter >> validateInto: aReport

self children do: [:presenter | presenter validateInto: aReport].
^ aReport

M7S4 15 / 17

Conclusion

 Question interrogative forms
 Let the object decides if it wants to join a process but passing a container
 You may also have some double dispatch between the report and the container
 Explore design

M7S4 16 / 17

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

