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Goals

More on Visitor:

Variations on navigation control
Visitor detractors

Visit methods granularity
About double dispatch shortcutting
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Controlling the traversal

A visitor embeds a structure traversal that can be
implemented:

® in the visitors
e in the domain elements themselves

Usually the visitor controls the traversal but
maybe the domain elements are more important
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Visitor in control

Visitor Domain
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Items in control

Visitor Domain
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Visitor detractors

Visitor is not object-oriented because it externalizes behavior out of objects.

e Yes, operations applied to objects are defined outside themselves
® Are you ready to lose:

o clear separation between operations related state and domain object state?
o the possibility to package multiple behaviors separately?
o the incremental definition of new operations?
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Visitor vs. class extension

e Pharo supports class extension
o i.e. defining methods on a class in another package than the class package

Should we use class extension instead of a Visitor?

® No, using a Visitor is better because:

o Each Visitor encapsulates a complex operation
o Each Visitor has its own state
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Visit methods granularity

Compare these two Visitors:

SimpleNodeVisitor ProgramNodeVisitor

visitNode(n) visitNode(n)
visitTemporaryVariable(n)
visitLocalVariable(n)

e SimpleNodeVisitor only provides visitNode which is
very high-level
o retrieving temporary variables would require testing
and filtering nodes
e ProgramNodeVisitor has richer API

o visitTemporaryVariable is only invoked on
temporaries
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Visit methods encode a context

The granularity of visit methods has an impact
Each visit* method provides a contextualized hook
A too high-level API requires a lot of tests

A too specialized API spreads information over multiple

visit methods which is not good too

o retrieving all variables involve a lot of hooks:
visitTemporaryVariable, visitLocalVariable, ...

SimpleNodeVisitor ProgramNodeVisitor
visitNode(n) visitNode(n)

visitTemporaryVariable(n)
visitLocalVariable(n)
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About shortcutting the double dispatch

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode statements do: [ :each | self visitVariable: each ]

Direct use of visitVariable:

e shortcuts the double dispatch
e does not let the domain decide

e prevents the use of a more specialized API: visitLocalVariable,
visitTemporaryVariable, visitinstanceVariable

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode

aSequenceNode statements do: [ :each |
each acceptVisitor: self ]
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Should we promote collections as domain nodes?

e When we iterate on a collection of nodes, the collection is not part of the
composite domain

e Should we turn such a collection into a domain element?
e Not necessarily, it depends

o can you change the domain?
o think in terms of the benefit e.g., having the possibility to define visitArrayOf...
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Building generic Visitors is difficult

There is no definitive solution. Usually, it is better to:

e have an abstract visitor
¢ redefine most of the logic per families of tasks
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Visit methods and static types

Two alternatives to implement visit methods in statically typed languages:
e Using overloading
o e.g., visit(Number), visit(Plus), visit(Times)
e Using different methods
o e.g., visitNumber(Number), visitPlus(Plus), visitTimes(Times)
Avoid using overloading because:
e you will have to explicitly cast your objects everywhere
e you might have the wrong method executed (overload vs override)
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Conclusion

Visitor can be tricky to master
o using accept/visit vocabulary helps readability
Visitor is powerful for complex structure operations

o it provides a pluggable recursive treatment of a
composite structure
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