Advanced Object-Oriented Design

Some discussions on
Visitor

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:

\

[\
A self] K

http://www.pharo.org

Goals

More on Visitor:

Variations on navigation control
Visitor detractors

Visit methods granularity
About double dispatch shortcutting

» M6S5 2/15

Controlling the traversal

A visitor embeds a structure traversal that can be
implemented:

® in the visitors
e in the domain elements themselves

Usually the visitor controls the traversal but
maybe the domain elements are more important

%
» M6S5 3/15

Visitor in control

Visitor Domain
r—-—-=—=="====7—7— LI
ExpressionVisitor Expression
acceptVisitor(v)
Evaluator Number Operation
left

evaluate(e) acceptV|S|tor(v right

visitPlus: aPlus visitNumber(n)
Irl __}visitPlus(p) /V b\ —
| := aPlus left acceptVisitor: self. |-y~ visitTimes(t) K aC(,?\eP“_/l_SltOF-_ ?VISItC_Jr .
r := aPlus right acceptVisitor: self. Times Plus / aVisitor visitPlus: sel
AM+r , — —
acceptVisitor(v) | | acceptVisitor(v)’ acceptVisitor: aVisitor
N /| MaVisitor visitTimes: self
e e e —— dem e == === /!
3
ZiMess 4/ 15

Items in control

Visitor Domain
rTTTTTT T T [:_ ___________________ |
1 —— -
| | ExpressionVisitor : 1 Expression :
| 1! I
___:, visit(e) :: acceptVisitor(v) :
o e ! !
visit: anExpression | 1! - |
A anExpression acceptVisitor: self| ! | : Number Operation |
! Evaluator " left !
| h acceptVisitor(v) right !
| evaluate(e) 1! |
. 1___lvisi !
visitNumber: aNumber T V!Sl.tNumber(n) | / K : acceptVisitor: aVisitor
A self push: aNumber | JVisitPlus(p)) aVisitor visit: self left.
A vieitTi) Times Plus I,
:/ visitTimesi(t) " 1| aVisitor visit: self right.
— - , | A . s X

VIS/I\IP|US. aPlus)) acceptVisitor(v) | | acceptVisitor(v)| | aVisitor visitPlus: self.

self sumStack L | L [S TR |

A\\ 2

M6S5 5/ 15

Visitor detractors

Visitor is not object-oriented because it externalizes behavior out of objects.

e Yes, operations applied to objects are defined outside themselves
® Are you ready to lose:

o clear separation between operations related state and domain object state?
o the possibility to package multiple behaviors separately?
o the incremental definition of new operations?

2
» M6S5 6/ 15

Visitor vs. class extension

e Pharo supports class extension
o i.e. defining methods on a class in another package than the class package

Should we use class extension instead of a Visitor?

® No, using a Visitor is better because:

o Each Visitor encapsulates a complex operation
o Each Visitor has its own state

» M6S5 7/15

Visit methods granularity

Compare these two Visitors:

SimpleNodeVisitor ProgramNodeVisitor

visitNode(n) visitNode(n)
visitTemporaryVariable(n)
visitLocalVariable(n)

e SimpleNodeVisitor only provides visitNode which is
very high-level
o retrieving temporary variables would require testing
and filtering nodes
e ProgramNodeVisitor has richer API

o visitTemporaryVariable is only invoked on
temporaries

2
» M6S5 8/ 15

Visit methods encode a context

The granularity of visit methods has an impact
Each visit* method provides a contextualized hook
A too high-level API requires a lot of tests

A too specialized API spreads information over multiple

visit methods which is not good too

o retrieving all variables involve a lot of hooks:
visitTemporaryVariable, visitLocalVariable, ...

SimpleNodeVisitor ProgramNodeVisitor
visitNode(n) visitNode(n)

visitTemporaryVariable(n)
visitLocalVariable(n)

2
» M6S5 9/15

About shortcutting the double dispatch

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode statements do: [:each | self visitVariable: each]

Direct use of visitVariable:

e shortcuts the double dispatch
e does not let the domain decide

e prevents the use of a more specialized API: visitLocalVariable,
visitTemporaryVariable, visitinstanceVariable

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode

aSequenceNode statements do: [:each |
each acceptVisitor: self]

2
» M6S5 10/15

Should we promote collections as domain nodes?

e When we iterate on a collection of nodes, the collection is not part of the
composite domain

e Should we turn such a collection into a domain element?
e Not necessarily, it depends

o can you change the domain?
o think in terms of the benefit e.g., having the possibility to define visitArrayOf...

%
IBiess 11/ 15

Building generic Visitors is difficult

There is no definitive solution. Usually, it is better to:

e have an abstract visitor
¢ redefine most of the logic per families of tasks

2
B2 ess 12/ 15

Visit methods and static types

Two alternatives to implement visit methods in statically typed languages:
e Using overloading
o e.g., visit(Number), visit(Plus), visit(Times)
e Using different methods
o e.g., visitNumber(Number), visitPlus(Plus), visitTimes(Times)
Avoid using overloading because:
e you will have to explicitly cast your objects everywhere
e you might have the wrong method executed (overload vs override)

%
» M6S5 13/15

3
2 M6S5

Conclusion

Visitor can be tricky to master
o using accept/visit vocabulary helps readability
Visitor is powerful for complex structure operations

o it provides a pluggable recursive treatment of a
composite structure

14 /15

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

