
Some discussions on
Visitor

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

More on Visitor:
 Variations on navigation control
 Visitor detractors
 Visit methods granularity
 About double dispatch shortcutting
 ...

M6S5 2 / 15

Controlling the traversal

A visitor embeds a structure traversal that can be
implemented:
 in the visitors
 in the domain elements themselves

Usually the visitor controls the traversal but
maybe the domain elements are more important

M6S5 3 / 15

Visitor in control

…

Times

…

Plus

…

left
right

Operation

…

Number

…

Expression

…

ExpressionVisitor

DomainVisitor

acceptVisitor(v)

acceptVisitor(v)

visitPlus: aPlus
 | l r |
 l := aPlus left acceptVisitor: self.
 r := aPlus right acceptVisitor: self.
^ l + r

acceptVisitor: aVisitor
 ^ aVisitor visitPlus: self

acceptVisitor(v) acceptVisitor(v)

…

Evaluator

evaluate(e)
visitNumber(n)
visitPlus(p)
visitTimes(t)

acceptVisitor: aVisitor
 ^ aVisitor visitTimes: self

M6S5 4 / 15

Items in control

…

Times

…

Plus

…

left
right

Operation

…

Number

…

Expression

…

ExpressionVisitor

DomainVisitor

acceptVisitor(v)

acceptVisitor(v)

acceptVisitor: aVisitor
 aVisitor visit: self left.
 aVisitor visit: self right.
 aVisitor visitPlus: self.

visit: anExpression
 ^ anExpression acceptVisitor: self

acceptVisitor(v) acceptVisitor(v)
…

Evaluator

evaluate(e)
visitNumber(n)
visitPlus(p)
visitTimes(t)

visitPlus: aPlus
 ^ self sumStack

visit(e)

visitNumber: aNumber
 ^ self push: aNumber

M6S5 5 / 15

Visitor detractors

Visitor is not object-oriented because it externalizes behavior out of objects.
 Yes, operations applied to objects are defined outside themselves
 Are you ready to lose:

◦ clear separation between operations related state and domain object state?
◦ the possibility to package multiple behaviors separately?
◦ the incremental definition of new operations?

M6S5 6 / 15

Visitor vs. class extension

 Pharo supports class extension
◦ i.e. defining methods on a class in another package than the class package

Should we use class extension instead of a Visitor?
 No, using a Visitor is better because:

◦ Each Visitor encapsulates a complex operation
◦ Each Visitor has its own state

M6S5 7 / 15

Visit methods granularity
Compare these two Visitors:

…

SimpleNodeVisitor

visitNode(n)

…

ProgramNodeVisitor

visitNode(n)
visitTemporaryVariable(n)
visitLocalVariable(n)

 SimpleNodeVisitor only provides visitNode which is
very high-level
◦ retrieving temporary variables would require testing

and filtering nodes
 ProgramNodeVisitor has richer API

◦ visitTemporaryVariable is only invoked on
temporaries

M6S5 8 / 15

Visit methods encode a context

 The granularity of visit methods has an impact
 Each visit* method provides a contextualized hook
 A too high-level API requires a lot of tests
 A too specialized API spreads information over multiple

visit methods which is not good too
◦ retrieving all variables involve a lot of hooks:
visitTemporaryVariable, visitLocalVariable, ...

…

SimpleNodeVisitor

visitNode(n)

…

ProgramNodeVisitor

visitNode(n)
visitTemporaryVariable(n)
visitLocalVariable(n)

M6S5 9 / 15

About shortcutting the double dispatch

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode statements do: [:each | self visitVariable: each]

Direct use of visitVariable:
 shortcuts the double dispatch
 does not let the domain decide
 prevents the use of a more specialized API: visitLocalVariable,
visitTemporaryVariable, visitInstanceVariable

RBProgramNodeVisitor >> visitSequenceNode: aSequenceNode
aSequenceNode statements do: [:each |
each acceptVisitor: self]

M6S5 10 / 15

Should we promote collections as domain nodes?

 When we iterate on a collection of nodes, the collection is not part of the
composite domain

 Should we turn such a collection into a domain element?
 Not necessarily, it depends

◦ can you change the domain?
◦ think in terms of the benefit e.g., having the possibility to define visitArrayOf...

M6S5 11 / 15

Building generic Visitors is difficult

There is no definitive solution. Usually, it is better to:
 have an abstract visitor
 redefine most of the logic per families of tasks

M6S5 12 / 15

Visit methods and static types

Two alternatives to implement visit methods in statically typed languages:
 Using overloading

◦ e.g., visit(Number), visit(Plus), visit(Times)
 Using different methods

◦ e.g., visitNumber(Number), visitPlus(Plus), visitTimes(Times)

Avoid using overloading because:
 you will have to explicitly cast your objects everywhere
 you might have the wrong method executed (overload vs override)

M6S5 13 / 15

Conclusion

 Visitor can be tricky to master
◦ using accept/visit vocabulary helps readability

 Visitor is powerful for complex structure operations
◦ it provides a pluggable recursive treatment of a

composite structure

M6S5 14 / 15

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

