
Blocks vs. Objects
Rethinking common abstractions

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Thinking about API
 Rethinking block usage
 Blocks are powerful and handy
 Small objects are better in the long run

M5-6 2 / 19

Blocks are powerful

Blocks
 Central to Pharo syntax and object model
 Iterators
 New iterator definition
 DSL-like APIs

M5-6 3 / 19

Central to message based syntax

 Remember that blocks freeze execution and give the power to decide when to
execute

 Controlling behavior of block execution is the key for Pharo compact syntax

False >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^ falseAlternativeBlock value

True >> ifTrue: trueAlternativeBlock ifFalse: falseAlternativeBlock
^ trueAlternativeBlock value

M5-6 4 / 19

Iterators

Blocks are the cornerstone of iterators

#(1 2) allSatisfy: [:each | each even]

(String streamContents: [:s | #(1 2 3)
do: [:each | s << each asString]
separatedBy: [s << ', ']])

M5-6 5 / 19

New iterator definition

Blocks support definition of new iterators

SequenceableCollection >> pairsDo: aBlock
"Evaluate aBlock with my elements taken two at a time. If there's an odd number of
items, ignore the last one. Allow use of a flattened array for things that naturally
group into pairs. See also pairsCollect:"

1
to: self size // 2
do: [:index | aBlock

value: (self at: 2 * index − 1)
value: (self at: 2 * index)]

M5-6 6 / 19

DSL like APIs

GLMCompositePresentation new tabulator with: [:t |
t transmit from: #index; to: #details; andShow: [:composite |
composite text
title: 'XML';
display: [:file | file contents].
composite list
title: 'Targets';
display: [:file | (XMLDOMParser parse: file contents) // 'target'];
format: [:xmlElement | xmlElement attributeAt: 'name'].
composite roassal2
title: 'Dependencies';
initializeView: [RTMondrian new];
painting: [:view :file |
...
]].

M5-6 7 / 19

Stepping back

Blocks are on the spot poor literal objects
 What is the difference between a block and a simple object understanding
value?

 With a block, no need to create a class, no need to define a method

But...

M5-6 8 / 19

Analysis

Blocks are nice but not a panacea:
 Storing and changing state is cumbersome
 One single message: value!
 They do not expose well the arguments they need
 It makes scripting easy but extension difficult
 Having richer API is impossible

Let us study the limits!

M5-6 9 / 19

Blocks are black boxes

 You can only send the messages value* to a block.
 It is hard and cumbersome to store and access the state in a block as in an

object
◦ Imagine passing a block around and wanting to accumulate information
◦ You can’t!

M5-6 10 / 19

Arguments?

 What if you want optional arguments?
◦ Then you are doomed to choose which arguments and which order

 cull: is reflective by nature
◦ Avoid using it

M5-6 11 / 19

Argument order requires to know the block
definition!

Blocks do not expose well the arguments they need

aCol inject: default into: [:a :b | ...]

What is a and b?

M5-6 12 / 19

Block limits

 Saving blocks is painful
 Adding behavior (i.e., offering another message) is impossible
 Extension via superclass / hook of block behavior is impossible

M5-6 13 / 19

Long blocks are missed reuse opportunity

 Impossible to turn into a template and modify
◦ Remember that sending a message is a plan for reuse

 Long blocks are a plague

M5-6 14 / 19

Long blocks are missed reuse opportunity

Instead of

... display: [:v |
| tmp |
tmp := v size + 100.
v
foo;
bar;
more]

Prefer

method: v
| tmp |
tmp := v size + 100.
v
foo;
bar;
more

... display: [:v | xxx method: v]
This way you can override method: in subclasses.

M5-6 15 / 19

Long blocks are missed reuse opportunity

... painting: [:view :file |
| tags |
tags := XMLDOMParser parse: file.
view shape label text: [:each | each
stringValue].

view nodes: tags.
view shape line color: (Color gray alpha
: 0.5).

view edges connectFromAll: [:aTag |
...]]

paintOnView: view file: file
| tags |
tags := XMLDOMParser parse: file.
view shape label text: [:each | each
stringValue].

view nodes: tags.
view shape line color: (Color gray alpha
: 0.5).

view edges connectFromAll: [:aTag |
...]]

... painting: [:view :file | self
paintOnView: view file: file]

M5-6 16 / 19

Is not a little object more powerful than a block?

With an object you can
 Design an API
 Accumulate state
 Specify optional / obligatory inputs
 Support extension by construction

M5-6 17 / 19

Conclusion

 When you use blocks, keep them as small as possible
 Use them to script DSLs but NOT to define your domain model
 Create classes and pass their instances around
 You will learn in the long run

M5-6 18 / 19

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

