
Turning Procedures to
Objects

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals/Objective

Super basic to say it but
 Objects are really powerful
 Basic for behavior reification
 An example: Behavior»printHierarchy vs. ClassHierarchyPrinter

◦ printHierarchy is a method
◦ ClassHierarchyPrinter is a little class

M5-5 2 / 17

Printing the hierarchy of class

Rectangle printHierarchy

'ProtoObject #()
Object #()

Rectangle #(#origin #corner)
CharacterBlock #(#stringIndex #text #textLine)'

M5-5 3 / 17

Coded as...
Behavior >> printHierarchy
"Answer a description containing the names and instance variable names
of all of the subclasses and superclasses of the receiver."

| aStream index |
index := 0.
aStream := (String new: 16) writeStream.
self allSuperclasses reverseDo:
[:aClass |
aStream crtab: index.
index := index + 1.
aStream nextPutAll: aClass name.
aStream space.
aStream print: aClass instVarNames].
aStream cr.
self printSubclassesOn: aStream level: index.
^aStream contents

M5-5 4 / 17

With...
Behavior >> printSubclassesOn: aStream level: level
"As part of the algorithm for printing a description of the receiver, print the
subclass on the file stream, aStream, indenting level times."

| subclassNames |
aStream crtab: level.
aStream nextPutAll: self name.
aStream space; print: self instVarNames.
self == Class
ifTrue:
[aStream crtab: level + 1; nextPutAll: '[... all the Metaclasses ...]'.
^self].

subclassNames := self subclasses asSortedCollection:[:c1 :c2| c1 name <= c2 name].
"Print subclasses in alphabetical order"
subclassNames do:
[:subclass | subclass printSubclassesOn: aStream level: level + 1]

M5-5 5 / 17

Analysis

Pros
 Procedural decomposition
 Simple (two methods)
 State is passed as arguments

M5-5 6 / 17

Limits

 Does not work:
◦ If we need to filter subclasses (RBLintRule printHierarchy)
◦ If we need to cut above a given superclass or if a class is from a given

package
◦ If do not want to see instance variables
◦ We end up with too many arguments

printSubclassesOn: aStream level: level filtering: aCol cut: above showVariable: bool

 We may not want or cannot add state to the domain object
◦ here we cannot add state to Behavior just for printing

 We cannot design a fluid API to configure the output

M5-5 7 / 17

Turning it into an object

We can simply do

ClassHierarchyPrinter new
forClass: Rectangle;
doNotShowState;
doNotShowSuperclasses

M5-5 8 / 17

A more complex scenario

ClassHierarchyPrinter new
forClass: RBNode;
doNotShowState;
doNotShowSuperclasses;
excludedClasses: (RBNode withAllSubclasses

select: [:each | each name beginsWith: 'RBPattern']);
limitedToClasses: (RBNode withAllSubclasses

select: [:each | each name beginsWith: 'RB']).

M5-5 9 / 17

Looking at ClassHierarchyPrinter

Object << #ClassHierarchyPrinter
slots: { #theClass . #excludedClasses . #limitedToClasses . #stream .
#level . #showSuperclasses . #showState };
tag: 'ForPharo';
package: 'Kernel−ExtraUtils'

API
 doNotShowState, doNotShowSuperclasses
 limitedToClasses: to offer specific scope
 excludedClasses: to remove unwanted subclasses
 cr, tab, nextPutAll: let us have decorations

M5-5 10 / 17

DatePrinter vs. Date printOn:

Different date formats

10 Janvier 2023
10 Jan 23
10 / 01 / 2023
10−01−2023
01 / 10 / 2023

 Should printOn: handle all this?
 mmddyyyy, ddmmyyyy support limited scenario
 Printing a date can be the responsibility of a specific object

M5-5 11 / 17

ZTimestampFormat

The class ZTimestampFormat is a nice example of reifying the complex
 I am ZTimestampFormat, an implementation of a textual representation for a

timestamp, date or time that can be used for formatting or parsing.

M5-5 12 / 17

ZTimestampFormat

Provides a template to shape the output

(ZTimestampFormat fromString: 'SAT, FEB 03 2001 (16:05:06)')
format: ZTimestamp now.
> 'FRI, OCT 28 2022 (06:43:11)'

M5-5 13 / 17

ZTimestampFormat

Another behavior: parsing date according to a template

(ZTimestampFormat fromString: '02/03/2001 (16:05:06)')
parse: '10/05/2022 (12:01:01)'.
> 2022−10−05T12:01:01Z

M5-5 14 / 17

Stepping back

 Created little objects that can be configured!
 The object holds the specific state for its computation
 The API can be extended if needed
 Functionality can be nicely tested and packaged in an autonomous manner

M5-5 15 / 17

Further thought

 Turning a method into an object is the key point of the Command Design pattern
 This is also the case in Visitor
 An object is a powerful entity

M5-5 16 / 17

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

