Advanced Object-Oriented Design

Delegation vs. Inheritance

Basic but worth

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

x ifTrue:

[\
A self] K

Phar®

http://www.pharo.org

http://www.pharo.org

Goals

¢ Delegation-based and inheritance-based designs
e Compare designs using criteria/hints

»” M5S4 2/ 16

Exercise setup

Imagine the class TextEditor and the definition of several algorithms:

e formatWithTeX(t) to color TeX

e formatFastColoring(t) to fastly color the text
e formatSlowButPreciseColoring(t) to color ...
o formatRTF(t)

How can we create an editor that will format differently different texts?

%
» M5S4 3/ 16

Agenda

Two first solutions:
o with inheritance
o with one class and conditionals

Define some criteria to compare solutions
A third solution with delegation
Evaluation

» M5S4 4/ 16

With inheritance

Object << #TextEditor
slots: { #text }

TextEditor >> format
self subclassResponsability

SlowFormatingTextEditor >> format
self formatSlowButPreciseColoring: text

FastFormatingTextEditor >> format
self formatFastColoring: text

NullFormatingTextEditor >> format
A self "do nothing"

A\\ 2

M5S4 5/ 16

TextEditor

text

format

[SlowFormatingTextEditor | | [FastFormatingTextEditor |

[format

[format

[NullFormatingTextEditor |

[format

With one class and conditionals

TextEditor

text _
currentSelection

formatSlowButPrecise: t
formatFastColoring: t
formatWithTex: t

TextEditor >> format
currentSelection = #slow
ifTrue: [self formatSlowButPreciseColoring: text]
ifFalse: [
currentSelection = #fast
ifTrue: [self formatFastColoring: text]

A\\ 2

M5S4 6/ 16

With one class, a registry and meta-programming

Object << #TextEditor
slots: { #currentSelection. #formatters. #text }

TextEditor class >> initialize
self formatters
at: #slow put: #slowFormat:;
at: #fast put: #fastFormat: ;
at: #null put: #nullFormat: ;
at: #tex put: #texFormat:

TextEditor >> format
self perform: (formatters at: currentSelection) with: text

2
»” M5S4 7/16

How to compare solutions?

Some criteria:
e Addition
o What is the cost to define a new formatting algorithm?
e Packaging
o Can | deploy a new formatting algorithm separately from others?
¢ Dynamic switch
o Can | dynamically switch to another formatting algorithm?

%
» M5S4 8/ 16

Evaluating inheritance-based solution

Pros:

e Addition: adding a new formatting algorithm is done by
subclassing

e Packaging: formatting algorithms are modularised in
separate classes

Cons:

e Dynamic switch

o Have to create the right TextEditor at beginning
o Difficult to change it dynamically (external references)
and we do not want to reopen the text editor

e Addition: combinatorial explosion

%
» M5S4 9/ 16

Evaluating inheritance-based solution

[text |
< JAN R
* Do not want a hierarchy for each text editor [lomFormatingTextEditor | [FastFomatingTextor |
features to be multiplied with previous A R M
. A H inglepaneFast...
ones (Single/Multi-Pane, completion, o —
grammatical verification, compilation,....)
e API of TextEditor can get large: no clear
identification of responsibilities <7

SpellMultipaneSlow...

L]
ExtraSpellMultipaneSlow...
L 1

2
» M5S4 10/16

Evaluating conditionals-based solution

Pros:

* Dynamic switch: we can use a different formatting
algorithm dynamically

Cons:

e Addition: adding a version requires to edit and
recompile the conditionals

e Packaging: we cannot package a new algorithm
separately

2
»” M5S4 11/16

Solution with delegation

Imagine a solution using delegation to another object (a formatter)

2
B2 Mss4 12/16

Delegating to a formatter

TextEditor Formatter
text format: t
formatter
_ -format
format BT
self formatter format: text FastFormatter NullFormatter
_ - -[Hormat: t format: t
- #formatFastColoring: t
format: text k\ SlowFormatter
self formatFastColoring: text format: t

#formatSlowButPreciseColoring: t

myEditor formatter: FastFormatter new.
myEditor format.
myEditor formatter: SlowFormatter new.

$
Zssa 13/ 16

Evaluating the delegation to a formatter

Pros:

Addition: just add a new formatter subclass

Packaging: formatting algorithms are well modularised in separate classes
Dynamic switch: just create a new formatter instance and set it in the editor
Uniform API between the Editors and the Formatters (format:)

Cons:

e The formatter should access the state of the text (i.e. the text, positions...
contained in the text editor)

e The API of the TextEditor should be opened to support it
BTW, this is a typical example of the Strategy Design Pattern ;-)

» M5S4 14 /16

Conclusion

Inheritance

¢ is about incremental static definition
e can lead to static design
¢ helps defining abstractions

Delegation
e brings runtime flexibility and modularity
but there’s no such thing as a free lunch!

2
»” M5S4 15/16

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

