
Delegation vs. Inheritance
Basic but worth

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Delegation-based and inheritance-based designs
 Compare designs using criteria/hints

M5S4 2 / 16

Exercise setup

Imagine the class TextEditor and the definition of several algorithms:
 formatWithTeX(t) to color TeX
 formatFastColoring(t) to fastly color the text
 formatSlowButPreciseColoring(t) to color ...
 formatRTF(t)
 ...

How can we create an editor that will format differently different texts?

M5S4 3 / 16

Agenda

 Two first solutions:
◦ with inheritance
◦ with one class and conditionals

 Define some criteria to compare solutions
 A third solution with delegation
 Evaluation

M5S4 4 / 16

With inheritance

Object << #TextEditor
slots: { #text }

TextEditor >> format
self subclassResponsability

SlowFormatingTextEditor >> format
self formatSlowButPreciseColoring: text

FastFormatingTextEditor >> format
self formatFastColoring: text

NullFormatingTextEditor >> format
^ self "do nothing"

format
FastFormatingTextEditor

format
SlowFormatingTextEditor

format
NullFormatingTextEditor

format
text

TextEditor

M5S4 5 / 16

With one class and conditionals

formatSlowButPrecise: t
formatFastColoring: t
formatWithTex: t

text
TextEditor

currentSelection

TextEditor >> format
currentSelection = #slow
ifTrue: [self formatSlowButPreciseColoring: text]
ifFalse: [
currentSelection = #fast
ifTrue: [self formatFastColoring: text]

....
]

M5S4 6 / 16

With one class, a registry and meta-programming

Object << #TextEditor
slots: { #currentSelection. #formatters. #text }

TextEditor class >> initialize
self formatters
at: #slow put: #slowFormat: ;
at: #fast put: #fastFormat: ;
at: #null put: #nullFormat: ;
at: #tex put: #texFormat:

TextEditor >> format
self perform: (formatters at: currentSelection) with: text

M5S4 7 / 16

How to compare solutions?

Some criteria:
 Addition

◦ What is the cost to define a new formatting algorithm?
 Packaging

◦ Can I deploy a new formatting algorithm separately from others?
 Dynamic switch

◦ Can I dynamically switch to another formatting algorithm?

M5S4 8 / 16

Evaluating inheritance-based solution

Pros:
 Addition: adding a new formatting algorithm is done by

subclassing
 Packaging: formatting algorithms are modularised in

separate classes

Cons:
 Dynamic switch

◦ Have to create the right TextEditor at beginning
◦ Difficult to change it dynamically (external references)

and we do not want to reopen the text editor
 Addition: combinatorial explosion

M5S4 9 / 16

Evaluating inheritance-based solution

 Do not want a hierarchy for each text editor
features to be multiplied with previous
ones (Single/Multi-Pane, completion,
grammatical verification, compilation,....)

 API of TextEditor can get large: no clear
identification of responsibilities

format
FastFormatingTextEditor

format
SlowFormatingTextEditor

format
NullFormatingTextEditor

format
text

TextEditor

MultipaneSlow...

SinglepaneSlow...

MultipaneNull...

SinglepaneNull...

MultipaneFast...

SinglepaneFast...

SpellMultipaneSlow...

ExtraSpellMultipaneSlow...

M5S4 10 / 16

Evaluating conditionals-based solution

Pros:
 Dynamic switch: we can use a different formatting

algorithm dynamically

Cons:
 Addition: adding a version requires to edit and

recompile the conditionals
 Packaging: we cannot package a new algorithm

separately

M5S4 11 / 16

Solution with delegation

Imagine a solution using delegation to another object (a formatter)

M5S4 12 / 16

Delegating to a formatter

format: text
 self formatFastColoring: text

format: t
#formatFastColoring: t

FastFormatter

format: t
Formatter

format: t
#formatSlowButPreciseColoring: t

SlowFormatter

format
 self formatter format: text

format: t
NullFormatter

formatter
text

TextEditor

format

myEditor formatter: FastFormatter new.
myEditor format.
myEditor formatter: SlowFormatter new.

M5S4 13 / 16

Evaluating the delegation to a formatter

Pros:
 Addition: just add a new formatter subclass
 Packaging: formatting algorithms are well modularised in separate classes
 Dynamic switch: just create a new formatter instance and set it in the editor
 Uniform API between the Editors and the Formatters (format:)

Cons:
 The formatter should access the state of the text (i.e. the text, positions...

contained in the text editor)
 The API of the TextEditor should be opened to support it

BTW, this is a typical example of the Strategy Design Pattern ;-)

M5S4 14 / 16

Conclusion

Inheritance
 is about incremental static definition
 can lead to static design
 helps defining abstractions

Delegation
 brings runtime flexibility and modularity

but there’s no such thing as a free lunch!

M5S4 15 / 16

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

