
Composite
A nice and common design pattern

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Outline

 Motivating examples
 Presentation of the Composite design pattern
 Discussions on Composite

M5S1 2 / 22



File entry examples

Pharo.image

MOOC_Files/
Pharo.image
Pharo.changes

MOOC_Files/
src/
doc/
images/
Pharo.image
Pharo.changes

A file entry is:
 a file
 or a folder with entries as children

M5S1 3 / 22



Documents
A document is composed of:
 a title
 a table of contents
 chapters

A chapter is composed of:
 sections

A section is composed of:
 paragraphs
 figures
 lists
 sub-sections

M5S1 4 / 22



Diagram

 A diagram is composed of elements
 An element is:

◦ a circle
◦ a segment
◦ a text
◦ a group of elements (i.e, diagram)

M5S1 5 / 22



Now the question!

 How do we draw diagram elements?
 How do we draw a diagram?

Can we draw diagram elements (circle, ...) and diagrams (composed of elements)
without explicitly checking?

M5S1 6 / 22



Composite motivation

Elements and diagrams should offer the same API!

draw
Graphic

draw
add:
remove:

Diagram
draw
Circle

elements

…
elements do: [:each | each draw ]
…

draw
Text

draw
Segment

Client

M5S1 7 / 22



Composite: Intent

 Compose objects into tree structures to represent part-whole hierarchies
 Let clients treat individual objects and compositions of objects uniformly

Client’s code:

aGraphic draw

aGraphic being a Text, Circle, ... or even Diagram (group of Graphics)

M5S1 8 / 22



Essence of the Composite design pattern

operation
Component

operation
add:
remove:

Composite

children

…
children do: [:each | each operation ]
…

operation
Leaf

Client

M5S1 9 / 22



Essence of the Composite desing pattern

What is key:
 Leaves offer the same API as the composite
 Each leave do something different but with the same API (polymorphism)
 The composite element offers the same API and some functionality to manage

children
 Leaves and the composite are substitutable

◦ Clients do not have to check

M5S1 10 / 22



Composite participants: Client

draw
Graphic

draw
add:
remove:

Diagram
draw
Circle

elements

…
elements do: [:each | each draw ]
…

draw
Text

draw
Segment

Client

Client manipulates objects in the composition through the Component interface
(here Graphic)

M5S1 11 / 22



Composite participants: Component
draw

Graphic

draw
add:
remove:

Diagram
draw
Circle

elements

…
elements do: [:each | each draw ]
…

draw
Text

draw
Segment

Client

Component (here Graphic)
 declares the interface for objects in the composition
 may implement a default behavior for common interface
 may declare an interface for accessing and managing its child components

◦ see Lecture on “Polymorphic objects”

M5S1 12 / 22



Composite participants: Leaf

draw
Graphic

draw
add:
remove:

Diagram
draw
Circle

elements

…
elements do: [:each | each draw ]
…

draw
Text

draw
Segment

Client

Leaf (here Circle, Segment, Text, ...)
 represents leaf objects in the composition
 usually has no children
 defines behavior for primitive objects in the composition using a polymorphic

API

M5S1 13 / 22



Composite participants: Composite
draw

Graphic

draw
add:
remove:

Diagram
draw
Circle

elements

…
elements do: [:each | each draw ]
…

draw
Text

draw
Segment

Client

Composite (here Diagram)
 defines behavior for components with children via a polymorphic API (here
draw)

 stores child components
 implements child-related operations (add,remove,...)

M5S1 14 / 22



Important!

A Design Pattern:
 is a name and an intent
 can have multiple implementations (pros/cons)

M5S1 15 / 22



Composite in dynamically-typed languages
 Polymorphism results from compatible API and not compile-time types checking

(see Lecture on Polymorphic objects)
 So, composite and leaves do not have to inherit from a common ancestor

◦ more difficult to recognize the composite but it works

operation
add:
remove:

Composite

operation
Leaf

children

children do: [:each | each operation]

Client

M5S1 16 / 22



Composite: extreme implementation

Extreme Composite implementation:
 a single class
 the components (leaves) are composite with no children
 the gain of such an implementation is unclear

Client operation
add:
remove:

children
Composite children

M5S1 17 / 22



Frequently Asked Questions

Can Composite contain any type of child?
 Yes if they implement the common API
 Wrappers or adapters can help with third-party objects

Can we limit the depth of a composite object (number of children)?
 Yes

Can we have different Composites within the same system?
 Yes and each Composite can have a different constraints, behavior, ...

M5S1 18 / 22



About Composite behavior

Variations on Composite behavior:
 Simple forward sends the message to all the children and merges the results

without performing any other behavior
 Selective forward conditionally forwards the message to some children
 Extended forward adds an extra behavior and delegates to leaves
 Overriding does not delegate to leaves

M5S1 19 / 22



Composite and other design patterns

Composite and Visitors
 Visitors walk on structured recursive objects e.g. composites
 see Lectures on Visitor

Composite and Factories
 Factories can create composite elements

M5S1 20 / 22



Conclusion

 Composite is about composing objects into tree structures to represent
part-whole hierarchies

 Composite provides a uniform API to clients for leaves and composite
 Composite is extensible (easy to add new leaves)
 Basis for complex treatments expressed as Visitors

◦ see Lectures on Visitor

M5S1 21 / 22



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

