
Global to parameter
Basic but important

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goals

 Verify that globals are not a fatality
 Some can be turned into computation parameters (such as instance variables)
 Understand pros and cons

M3S5 2 / 18

Roadmap

 Example: Transcript usage
 Cure
 Stepping back
 Other analysis
 Related to Singleton Design Pattern plague

M3S5 3 / 18

The case: Transcript

Remember: Transcript is a global variable pointing to a log stream instance

M3S5 4 / 18

Handy in development

myMethod
Transcript show: 'foo' ; cr.
self doSomething.

M3S5 5 / 18

The core of the problem on released soft

MicAbstractBlock >> iterate
...
Transcript
nextPutAll: 'Start ';
nextPutAll: step asString;
cr.
...
Transcript
nextPutAll: 'Stop ';
nextPutAll: step asString;
cr.

 What if I would like to have a specific log?
 What if we want to test that such logs are correct?

M3S5 6 / 18

Analysis

Some facts:
 You may not want the extra dependencies (such as Transcript) in your code
 Using Transcript, your log can be mixed with other logs
 You do not want to dirty build logs without a bit of control

Far worse and more important:
 You cannot reliably write tests to be sure that the log is correctly happening

M3S5 7 / 18

The solution: Use locality and encapsulation

 Think about object self-containment
 An object encapsulates a log stream
 Easy! Just add an instance variable to hold a stream

MicAbstractBlock >> initialize
super initialize.
logStream := WriteStream on: (String new: 1000)

 Use and write to THAT stream

MicAbstractBlock >> closeMe
logStream << 'Closing ' << self class name; cr

M3S5 8 / 18

Get the butter and the money

 Make sure that you can plug another stream as a logstream

MicAbstractBlock >> logStream: aStream
logStream := aStream

 Now you can pass a Transcript and get the same as before but better.
 Bonus: You can write tests in isolation

M3S5 9 / 18

From monolithic to parametrizable

Transcript Transcript

anotherStream

aStream

M3S5 10 / 18

Do you see the pattern?

RubScrollTextMorph >> defaultScrollTarget
| textArea |
textArea := self textAreaClass new.
textArea backgroundColor: Color lightGray veryMuchLighter.
^ textArea

Why Color lightGray veryMuchLighter is hardcoded?

M3S5 11 / 18

A solution

Make it configurable!

RubScrollTextMorph >> defaultScrollTarget
| textArea |
textArea := self textAreaClass new.
textArea backgroundColor: defaultBackgroundColor.
^ textArea

RubScrollTextMorph >> initialize
defaultBackgroundColor := Color lightGray veryMuchLighter

M3S5 12 / 18

Supporting personalization

RubScrollTextMorph >> setBackgroundColor: aColor
defaultBackgroundColor := aColor

Now each instance can have its specific value!

M3S5 13 / 18

Instance variables

 Instance variables are state of objects
 Instance variables are also parameters of your computation
 You can also share state with class scope variables (sharedVariables in Pharo)
 See lectures in Module Sharing objects

M3S5 14 / 18

About globals

Pros:
 You do not have to add an instance variable to your domain
 You do not have to initialize such global on your specific case

Cons:
 You have only one (e.g., if an entity belongs to one global model, you cannot

have two entites living in different models)
 Testing requires care and is sometimes not possible or cumbersome because

of side effects
 You cannot initialize, specialize the global for your context (there is only one)

M3S5 15 / 18

About parametrization

Sometimes you simply cannot add an instance variable to your objects
 Too many of them
 Fixed size inherited from old design
 About space consumption, check Lectures about Sharing and Flyweigth Design

Pattern
 Factor the global usage to ease future changes

M3S5 16 / 18

In general: Avoid globals

 Avoid Singleton
 Avoid globals
 They make your code less modular, less testable
 Check lectures on Singleton and Disguised Singleton

M3S5 17 / 18

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

