
An introduction to design
patterns

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goal

 What are design patterns?
 Why they are good?
 But patterns are not panacea
 Examples

M3S1 2 / 22

Influenced by work on architecture

C. Alexander, The Timeless Way of Building, Oxford
University Press, 1979
 tried to let people use patterns to build houses and

cities
 developed patterns and pattern languages
 failed in architecture but the idea is successful for

object-oriented design

M3S1 3 / 22

Design Patterns

Design patterns are recurrent solutions to design problems
 Identification of similar problems at design level
 Experts solved recurring problems in similar ways
 There are pros and cons
 Design Patterns are literature: Read them!

M3S1 4 / 22

What are design patterns?

 Elegant solutions that a novice would not think of
 Generic
 Independent of specific type system or language
 Well-proven

◦ Successfully tested in several systems
 Simple
 Can be combined together for more complex solutions

M3S1 5 / 22

Watchout!

 There are really stupid patterns (e.g., supersuper) in some books
 Stay sceptical

M3S1 6 / 22

The important points

Design Patterns are names
 They create a design vocabulary

◦ Hook and Template, Factory, Composite, Visitor, Observer, Decorator...
 You can talk at lunch/blackboard about your design in an abstract but precise

way
 Design patterns are literature:

◦ the books are good
◦ read them, reread them, and read them again!

M3S1 7 / 22

What design patterns are not

 A design pattern is not just one implementation
 A design pattern is illustrated using one possible implementation
 But alternate implementations exist

M3S1 8 / 22

Elements of a pattern

 Pattern name: Increase design vocabulary
 Pattern intent: Describe the goal
 Problem description: When to apply it, in what context to use it
 Solution description (generic):

◦ the elements that make up the design
◦ their relationships, responsibilities, and collaborations

 Consequences: Results and trade-offs of applying the pattern

M3S1 9 / 22

Example: Strategy

Intent:
 Define a family of algorithms
 Encapsulate each in a separate class and
 Define each class with the same interface so that they can be interchangeable

M3S1 10 / 22

Essence of Strategy

A possible implementation

operation()
strategy

User

operation(user)
StrategyOne

operation(user)
Strategy

operation(user)

StrategyTwo
operation()

 strategy.operation(this)

 Variation: Passing or not the user to the strategy?

M3S1 11 / 22

Strategy application

format(Text)

formatter: formatter
text

Editor

format: text

 self formatFastColoring: text

format: t
#formatFastColoring: t

FastFormatter

format: (Text)
Formatter

format: t
#formatSlowButPreci
seColoring: t

SlowFormatter
format: text

 self formatter format: text

format: t
NullFormatter

M3S1 12 / 22

Some categories

Creational Patterns
 Instantiation and configuration of classes and objects

Structural Patterns
 Usage of classes and objects in larger structures, separation of interfaces and

implementation

Behavioral Patterns
 Algorithms and division of responsibility

M3S1 13 / 22

Some creational patterns

 Abstract factory (how to create objects)
 Builder (provide a programmatic way to create objects)
 Factory Method
 Prototype
 Singleton (watch out most people get it wrong)

M3S1 14 / 22

Some structural patterns

 Adapter
 Bridge
 Composite (support nested structure and common api)
 Decorator
 Façade (only useful is super limited case)
 Flyweight (how to avoid creating too many objects)
 Proxy

M3S1 15 / 22

Some behavioral patterns
 Chain of responsibility
 Command (reify operations)
 Interpreter
 Iterator
 Mediator
 Memento
 Observer
 State
 Strategy (delegate behavior)
 Template Method (hook/template)
 Visitor (first class operation on composite)

Some others
 Null Object
 Type object

M3S1 16 / 22

Not a panacea!

 Do not apply Design Patterns when you do not need them
 They make software more complex

◦ more classes
◦ more indirections, more messages

 Try to understand when NOT applying them!

M3S1 17 / 22

Alert!

 Patterns are about intent and tradeoffs
 Do not confuse intent and implementation

M3S1 18 / 22

About books

 [Seminal one] Design Patterns (Gamma et al), also
known as GoF book (Gang of Four)

 [Really excellent] Smalltalk Design Pattern
Companion (Alpert et al)

M3S1 19 / 22

What readers said

M3S1 20 / 22

Conclusion

Reusable solutions to common problems based on experiences from real
systems
 Names of abstractions creating a common vocabulary for developers
 Often support modularity (separation of interface/implementation)
 A basis for frameworks and toolkits basic elements to improve reuse

M3S1 21 / 22

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

