Advanced Object-Oriented Design

Test 101

The minimum you should know

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Phar®

http://www.pharo.org

x ifTrue:

\

[\
A self] “

http://www.pharo.org

Goal of the lecture

How can you trust that a change did not destroy something?
What is my confidence in the system?

What is unit testing?

How do | write tests?

»” M2S1 2/21

Test main points

When there is a change

o Tests verify that what worked before still works
o Tests are your life insurance: you get aware of a side effect and regression

Tests are enablers of future evolution
Tests reduce the fear of change

e Per se tests do not prevent bugs to happen but they reduce unnoticed bugs or
side effects

2
»” M2S1 3/ 21

About automation

A unit test that is not automated does NOT EXIST!
e Seriously!

e Repetition

e No human intervention

»” M2S1 4/21

Unit tests

e Unit tests ensure that you get the specified behavior of a class
e Normally unit tests do test a single feature
e A test: one scenario, one point!

2
»” M2S1 5/ 21

Anatomy of a test

A test:

e Creates a context
e Performs a stimulus: an action in the context
e Checks the result with assertions

%
»” M2S1 6/21

Example: Testing duplicate set insertion

A test:

e Creates a context: Create an empty set
e Performs a stimulus: Add twice the same element
e Checks the results: Check that the set contains only one element

3
02 m2si 7/ 21

Set testcase in Pharo

TestCase subclass: #SetTest

SetTest >> testAdd

| empty |
"Context"
empty := Set new.

"Stimulus"
empty add: 5.
empty add: 5.

"Check"
self assert: empty size equals: 1.

SetTest run: #testAdd

2
»” M2S1 8/ 21

Set testcase in Java (Junit40)

import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class SetTest {

@Test

public void testAdd() {
//Context
Set empty = new Counter();

//Stimulus
empty.add(5);
empty.add(5);

//Check
assertEquals(empty.size(),1);

H

»” M2S1 9/ 21

Success, failures, and errors

e Success: a test passes
e A failure is a failed assertion, i.e., a verified property/assertion failed
e An error is an unexpected condition, i.e., an unexpected runtime error

2
» M2S1 10/ 21

A failure

If we get empty size returning 2 instead of 1.

SetTest >> testAdd
| empty |
empty := Set new.

empty add: 5.
empty add: 5.

self assert: empty size equals: 1.

$
2hi2s1 11/ 21

An error

Sending the message foobar: raises an exception.

SetTest >> testAdd
| empty |
empty := Set new.
empty foobar: 5.
self assert: empty size equals: 1.

2
» M2S1 12/ 21

How to reuse setting test context?

If a context is repeated among tests:
e duplication is never a good idea
e hampers future evolution

The framework offers the setUp method to create a context before any test
execution.

2
» M2S1 13/ 21

setUp and tearDown messages

Executed systematically before and after each test run

e setUp allows us to specify and reuse the context
e tearDown to clean after test execution

#setUp #tearDown

Test method

#setUp #tearDown #setUp #tearDown #setUp #tearDown

Test Test Test

M2S1 14/ 21

Defining a setUp method

e Turn empty in an instance variable
e Just create a context, here empty is initialized to an empty set.

SetTestCase >>setUp
empty := Set new

setUp is executed for you before any test execution

SetTestCase >> testAdd
empty add: 5.
empty add: 5.

self assert: empty size equals: 1.

» M2S1 15/ 21

About writing tests

Remember: Tests represent your trust in the system

Build them incrementally

o Do not need to focus on everything
o When a new bug shows up, write a test

Even better, write them before the code

o Act as your first client, produce a better interface

Active documentation is always in sync

They have a cost: writing them, maintaining them. Make them worth
But pay off is Huge

2
» M2S1 16/ 21

But | can’t cover everything!

Sure! Nobody can but:

e \When someone discovers a defect in code, first write a test that demonstrates
the defect.

® Then debug until the test succeeds.

Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead. Martin Fowler

%
» M2S1 17/ 21

Testing style: TDD

The style here is to write a few lines of code, then a test that should run, or even
better, to write a test that won'’t run, then write the code that will make it run. Test
Infected, Beck & Gamma, 1998

e Write unit tests that thoroughly test a single class

e Write tests as you develop (even before you implement your class!)

e Write tests for every new piece of functionality

(see next lecture)

2
» M2S1 18/ 21

Good tests

Repeatable

Do not require human intervention
Are self-described

Change less often than the system
Tell a story

%
» M2S1 19/ 21

Conclusion

e Invest in tests
e Use Xtreme TDD: write a test, execute, debug, and code in the debugger (see

following lecture)
e Tests are your best investment

2
» M2S1 20/ 21

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

4
h s Inria VY
cea— LearningLab ook i g
©l0c0
BY NC ND

IMT-Université de Lille
Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

