
Test 101
The minimum you should know

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org

Goal of the lecture

 How can you trust that a change did not destroy something?
 What is my confidence in the system?
 What is unit testing?
 How do I write tests?

M2S1 2 / 21

Test main points

 When there is a change
◦ Tests verify that what worked before still works
◦ Tests are your life insurance: you get aware of a side effect and regression

 Tests are enablers of future evolution
 Tests reduce the fear of change
 Per se tests do not prevent bugs to happen but they reduce unnoticed bugs or

side effects

M2S1 3 / 21

About automation

A unit test that is not automated does NOT EXIST!
 Seriously!
 Repetition
 No human intervention

M2S1 4 / 21

Unit tests

 Unit tests ensure that you get the specified behavior of a class
 Normally unit tests do test a single feature
 A test: one scenario, one point!

M2S1 5 / 21

Anatomy of a test

A test:
 Creates a context
 Performs a stimulus: an action in the context
 Checks the result with assertions

M2S1 6 / 21

Example: Testing duplicate set insertion

A test:
 Creates a context: Create an empty set
 Performs a stimulus: Add twice the same element
 Checks the results: Check that the set contains only one element

M2S1 7 / 21

Set testcase in Pharo
TestCase subclass: #SetTest
...

SetTest >> testAdd
| empty |
"Context"
empty := Set new.

"Stimulus"
empty add: 5.
empty add: 5.

"Check"
self assert: empty size equals: 1.

SetTest run: #testAdd

M2S1 8 / 21

Set testcase in Java (Junit40)
import org.junit.jupiter.api.Test;
import static org.junit.jupiter.api.Assertions.assertEquals;

class SetTest {

@Test
public void testAdd() {
//Context
Set empty = new Counter();

//Stimulus
empty.add(5);
empty.add(5);

//Check
assertEquals(empty.size(),1);
} }

M2S1 9 / 21

Success, failures, and errors

 Success: a test passes
 A failure is a failed assertion, i.e., a verified property/assertion failed
 An error is an unexpected condition, i.e., an unexpected runtime error

M2S1 10 / 21

A failure

If we get empty size returning 2 instead of 1.

SetTest >> testAdd
| empty |
empty := Set new.

empty add: 5.
empty add: 5.

self assert: empty size equals: 1.

M2S1 11 / 21

An error

Sending the message foobar: raises an exception.

SetTest >> testAdd
| empty |
empty := Set new.
empty foobar: 5.
self assert: empty size equals: 1.

M2S1 12 / 21

How to reuse setting test context?

If a context is repeated among tests:
 duplication is never a good idea
 hampers future evolution

The framework offers the setUp method to create a context before any test
execution.

M2S1 13 / 21

setUp and tearDown messages

Executed systematically before and after each test run
 setUp allows us to specify and reuse the context
 tearDown to clean after test execution

Test method

#setUp #tearDown

Test

#setUp #tearDown

Test

#setUp #tearDown

Test

#setUp #tearDown

M2S1 14 / 21

Defining a setUp method

 Turn empty in an instance variable
 Just create a context, here empty is initialized to an empty set.

SetTestCase >> setUp
empty := Set new

setUp is executed for you before any test execution

SetTestCase >> testAdd
empty add: 5.
empty add: 5.

self assert: empty size equals: 1.

M2S1 15 / 21

About writing tests

 Remember: Tests represent your trust in the system
 Build them incrementally

◦ Do not need to focus on everything
◦ When a new bug shows up, write a test

 Even better, write them before the code
◦ Act as your first client, produce a better interface

 Active documentation is always in sync
 They have a cost: writing them, maintaining them. Make them worth
 But pay off is Huge

M2S1 16 / 21

But I can’t cover everything!

Sure! Nobody can but:
 When someone discovers a defect in code, first write a test that demonstrates

the defect.
 Then debug until the test succeeds.

Whenever you are tempted to type something into a print statement or a debugger
expression, write it as a test instead. Martin Fowler

M2S1 17 / 21

Testing style: TDD

The style here is to write a few lines of code, then a test that should run, or even
better, to write a test that won’t run, then write the code that will make it run. Test
Infected, Beck & Gamma, 1998
 Write unit tests that thoroughly test a single class
 Write tests as you develop (even before you implement your class!)
 Write tests for every new piece of functionality

(see next lecture)

M2S1 18 / 21

Good tests

 Repeatable
 Do not require human intervention
 Are self-described
 Change less often than the system
 Tell a story

M2S1 19 / 21

Conclusion

 Invest in tests
 Use Xtreme TDD: write a test, execute, debug, and code in the debugger (see

following lecture)
 Tests are your best investment

M2S1 20 / 21

Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

