
About defensive
programming

S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Advanced Object-Oriented Design

http://www.pharo.org

http://www.pharo.org


Goals

 Think about spurious checks
 Dynamically-typed languages do not need explicit type checks
 Favor testing

M10-5 2 / 12



Preamble

Object >> assert: aBlock description: aStringOrBlock
"Throw an assertion error if aBlock does not evaluates to true."
<debuggerCompleteToSender>
aBlock value
ifFalse: [ AssertionFailure signal: aStringOrBlock value ]

 assert:description: is checking and in addition raises an error.
 It changes the program control flow

M10-5 3 / 12



Defensive Example

BlLayoutCommonConstraints >> padding: aBlPadding
"Change element's margin to a BlMargin. aBlPadding must not be nil."
self
assert: [ aBlPadding isNotNil ]
description: [ 'Padding must not be nil' ].

padding := aBlPadding

M10-5 4 / 12



Analysis of the approach

 Runtime cost
 Assertions can be optional so we should not consider that they are executed
 Assertions can be a good help to track problems and stabilize

M10-5 5 / 12



Defensive Example 2

BlLayoutCommonConstraints >> padding: aBlPadding
"Change element's margin to a BlMargin. aBlPadding must not be nil."

aBlPadding isNil
ifTrue: [ self error: 'Padding must not be nil' ].

padding := aBlPadding

 What is the goal here? That padding does not break
 But I can still write x padding: aJunkObject
 So the test is not good and worth

M10-5 6 / 12



Better setter

BlLayoutCommonConstraints >> padding: aBlPadding
"Change element's margin to a BlMargin. aBlPadding must not be nil."

padding := aBlPadding

M10-5 7 / 12



Defensive Example 3

BlEvent >> source
"Return an event target that plays a role of a source of this event"

self
assert: [ self hasSource ]
description: [ 'Can not access a source if there is no one' ].

^ source

 Assertions are conceptually optional
 Tell look like leftover from debugging

M10-5 8 / 12



Defensive Example Alternative 2

BlEvent >> source
"Return an event target that plays a role of a source of this event"

self hasSource
ifFalse: [ self error: 'Can not access a source if there is no one' ].

^ source

 We could catch the error if needed.
 At least the reader knows that there is a check for real
 Now would be better to have a well initialized source

M10-5 9 / 12



About explicit type checks

BlLayoutCommonConstraints >> padding: aBlPadding
"Change element's margin to a BlMargin. aBlPadding must not be nil."

(aBlPadding isKindOf: BlPadding)
ifTrue: [ self error ].

padding := aBlPadding

 It is slow
 It prevents to extend the program and pass polymorphic objects

M10-5 10 / 12



Conclusion

 Avoid optional checks that are only for debugging purpose
 Avoid explicit type-checks
 Favor tests

M10-5 11 / 12



Produced as part of the course on http://www.fun-mooc.fr

Advanced Object-Oriented Design and Development
with Pharo

A course by
S.Ducasse, L. Fabresse, G. Polito, and P. Tesone

Except where otherwise noted, this work is licensed under CC BY-NC-ND 3.0 France
https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

2023

https://creativecommons.org/licenses/by-nc-nd/3.0/fr/

